Robusta: Robust AutoML for Feature Selection via Reinforcement Learning

Xiaoyang Wang, Bo Li, Yibo Zhang, Bhavya Kailkhura, Klara Nahrstedt

University of Illinois at Urbana-Champaign

Lawrence Livermore National Laboratory

The Robustness of ML Pipeline

- Improving the robustness of neural networks has been studied intensively.
- <u>Real-world</u> (auto) ML pipeline does not only contain neural networks:
 - Google AutoML Tables
 - Microsoft AutoML
 - IBM AutoAl

- Feature selection is the pre-step of model training.
- What if we have already lost the accuracy before training the model?

Is Stable Feature Selection already an Answer?

- Stable feature selection aims to produce consistent feature selection results under small data perturbations.
- Main idea:
 - Take the intersection of feature selection results from different runs of a base algorithm(e.g., LASSO).
- The stability and robustness are orthogonal concepts.
- Example:
 - Feature A: 100% benign accuracy, 50% robustness.
 - Feature B: 100% benign accuracy, 90% robustness.
 - Feature C: 100% benign accuracy, 90% robustness.
 - A method that always pick A is stable.
 - A method that picks B or C at 50% chance is not stable.

Automated Robust Feature Selection

- <u>Goal</u>:
 - Automatically select a subset of features that improves the accuracy of downstream ML models (e.g., neural network) on <u>adversarial</u> samples and <u>benign</u> samples.
- Robusta Method overview:

- Part 1:
 - The RL agent: Action, State, Reward.
 - Part 2:
 - Reward shaping function for the RL agent to deal with the sparse reward problem.
- Part 3:
 - A feature scoring metric that improves the actions.

Part 1: The RL Framework for Feature Selection

- Actions:
 - Adding or removing a specific feature?
 - The action space explodes.
 - Apply a feature transformation or filter?
 - The granularity is too coarse.
- Assign <u>scores</u> to features and pick the highest one.
- Reward:
 - A weighted sum of the two accuracies upon termination.
- State:
 - The accuracy on benign samples and the accuracy on adversarial samples.

Part 2: Reward Shaping (1/2)

- The Robusta agent gets a reward when the 'game' terminates.
 - The feature selection game has many steps, and the reward is **sparse**.
- We, therefore, apply reward shaping function:

- The output value of the reward shaping function is the accuracy change at <u>each</u> <u>step</u>.
- Does the Robusta agent converge to the same policy with the reward shaping?

Evaluation

0-1 Robust

Loss

{0, 3, 8, 9, ...} Selected Features

Eval

Reward

Commit

Temporary

Feature Set

RL Agent

Part 2: Reward Shaping (2/2)

- The Robusta agent converges to the <u>same policy</u> with the reward shaping.
 - See Theorem 3.1 in our paper for more details.
- <u>Condition</u>:
 - The sum of shaped reward r' equals to the vanilla reward r.
- Why?
 - r' + r = 2*r
 - The reward shaping function only adds a const scaling factor to the cumulated reward.

Part 3: Feature Scoring Metric (1/3)

- Scoring metrics for benign accuracy:
 - Mutual Information score, F score, and the decision tree score.
- Scoring metric for adversarial accuracy:
 - Current metrics do not work well

• Use the feature attribution method (integrated gradient) to assign scores.

Part 3: Feature Scoring Metric for Robustness (2/3)

- Integrated gradient (IG) as feature scoring metric for robustness.
- IG computes the path integral w.r.t the model from the benign sample(reference input) to the corrupted/adversarial sample.

• <u>Theory</u> backed.

Step 3: Feature Scoring Metric for Robustness (3/3)

- Integrated gradient (IG) as feature scoring metric for robustness.
- IG computes the path integral w.r.t the model from the benign sample(reference input) to the corrupted/adversarial sample.

corrupted/adversarial sample benign sample

- Empirically useful:
 - Manually remove the ulletperturbations on the features with high integrated gradient score.

The proportion of MNIST adversarial examples becomes benign (solid line), the same adversarial example (dash line), a new adversarial example (dot line) by removing adversarial perturbations from a subset of features.

Framework Design Recap

- Actions:
 - Using multiple <u>metrics</u> to score features.
 - Selecting features based on their <u>score</u>.
- State:
 - The accuracy on benign samples and the accuracy on adversarial samples.
- Reward:
 - The <u>change</u> of the accuracies and the ultimate accuracy.
- Practical Considerations:
 - Delete bad features and step back.
 - Terminate if no progress.

Experimental Result

- Setting:
 - We assume the feature engineering is invisible to adversary.
 - We consider transferable adversarial attack from a surrogate model trained with full features.
 - Adversarial samples will go through the feature engineering pipeline.
- Quantitative result:

DATA SET (ϵ)	STABLE	LASSO	CONCRETE	ROBUSTA
Spam (8/255)	91.7	80.06%	80.36%	77.27%
ISOLET (1/10)	91.7	76.65%	81.54%	81.99%
MNIST (1/10)	/	94.55%	97.21%	95.76%
MNIST (2/10)	/	94.54%	97.24%	95.71%
MNIST (3/10)	/	94.58%	97.22%	95.68%
CIFAR (8/255)	/	94.43%	94.44%	90.92%

Table 1: Performance (accuracy on benign samples) of the ML Model using selected features

* We bold the numbers if the best method outperforms all the others by 3%.

Table 2: Robustness (accuracy on adversarial examples) of the ML model using selected features under PGD attack

DATA SET (ϵ)	STABLE	LASSO	CONCRETE	ROBUSTA
Spam (8/255)	18.10%	55.36%	49.73%	68.03%
ISOLET (1/10)	25.98%	42.74%	24.13%	48.02%
MNIST (1/10)	/	77.82%	77.93%	83.19%
MNIST (2/10)	/	38.27%	27.10%	44.87%
MNIST (3/10)	/	14.14%	4.67%	18.11%
CIFAR (8/255)	/	7.25%	14.29%	36.74%

* We bold the numbers if the best method outperforms all the others by 3%.

Experimental Result

• Quantitative result:

Table 3: Average accuracy on benign and adversarial examples of the ML model using selected features.

DATA SET (ϵ)	STABLE	LASSO	CONCRETE	ROBUSTA
Spam(8/255)	54.90%	67.71%	65.05%	72.65%
ISOLET $(1/10)$	59.50%	59.70%	52.84%	65.01%
MNIST (1/10)	/	41.29%	87.57%	89.48%
MNIST (2/10)	/	35.55%	62.17%	70.29%
MNIS(3/10)	/	32.58%	50.95%	56.90%
CIFAR(8/255)	/	50.84%	54.37%	63.83%

* We bold the numbers if the best method outperforms all the others by 3%.

Table 4: Trade-off ratio between performance and robustness of the ML model using selected features.

DATASET (ϵ)	STABLE	LASSO	CONCRETE	ROBUSTA
Spam (8/255)	5.07	1.45	1.62	1.13
ISOLET (1/10)	3.58	1.79	3.38	1.71
MNIST (1/10)	/	1.21	1.24	1.15
MNIST (2/10)	/	2.47	3.60	2.13
MNIST (3/10)	/	6.68	20.82	5.28
CIFAR (8/255)	/	13.02	6.61	2.47

* The closer to 1.0, the better.

- The feature selection step does have impact on the robustness.
- Our method mitigates the negative impact.