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Background - Overview

*  With more layers and more complex structures, modern neural networks can
achieve near or even beyond human-level accuracy in solving classification
problems.

* Security industry has also adopted deep learning techniques in many fields,
including surveillance, authentication, facial recognition, etc.

 However, a recent researcht'J discovered that neural networks are vulnerable to
some delibrately-perturbed examples, though the perturbation 1s imperceptible to
humans. These examples are called adversarial examples.

D k [17] Szegedy et al., Intriguing Properties of
u e UNIVERSITY Neural Networks, arXiv, 2013.



Background — Decision Space

* Decision space: a vector space where all input samples lie in.
* Decision boundaries: hyper-surfaces that partition the decision space.

* In classification problems, we can define decision boundaries as sets of data points
with tied highest score for multiple classes. Or, when a sample moves In one
direction until being misclassified, that point will be on a decision boundary.

* In fact, decision boundaries are vague and data points near decision boundaries
may not have any physical meaning.

* Adversarial examples are carefully sought points that cross boundaries with
minimum effort.



Background — Nonlinearity and Robustness

Model linearity leads to high success rate of adversarial attacks.

Error amplification effect: Feature space distances between normal samples and
adversarial examples increase layer by layer.

* Three ways to introduce nonlinearity:

Activation: But sigmoid and ReLLU are mainly used in linear regions;

* Pooling (max pooling, averagepoohng);

*  Weight mapping: hard to be integrated In training, easy to map after training.



Related Works

Quantized neural network are more vulnerable to adversarial attackl!d,
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Use the Lipschitz constant to upper-bound the model’s sensitivity to adversarial

examplest2],

Error amplification effect: smaller Lipschitz constant could control the adversarial

perturbation not to be amplified.
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Motivation

* The difference in the output of one specific layer:

b= W+AW) - (x+Ax) —Wx= WAx + AWx +AWAx
Quant. Welght Adv. Input Adv.Loss  Quant. Loss

* Adversarial loss: can be measured by the accuracy drop

* Quantization loss: depends on both weights and inputs, we need an input-
independent criterion to evaluate the quantization process.

* The (quantization) error amplification effectt!): small residual perturbation is
amplified to a large magnitude 1n top layers of a model and finally leads to a wrong
prediction.

* The Lipschitz Constant ot AW
[AW ]|, = sup [l[AWZ|l,,

z: ||zl p=1

D | [17] Liao, et al. Defense against adversarial attacks using
UKE vniversiry high-level representation guided denoiser. CVPR, 2018.



Motivation

* Adversarial training 1s more vulnerable to quantization.

* Here FL. is a boundary-based training methodC!.
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Motivation (cont.)

* Larger margin between samples and decision boundaries i1s needed for tolerating
the quantization process. Boundary-based training (FL.) gives more (margin)
tolerance to quantization loss.

* Problems with Adversarial training (AdvT):

* AdvT has worse performance against white-box attacks than black-box attacks
(same attack strength), as white-box attacks are more fatal.
— But relatively speaking, WB are easier to defend than BB.
— BB need larger strength to downgrade accuracy (transferability matters).
* AdvT doesn’t cooperate well with other techniques (quantization-aware training or
regularization) w/ or w/o quantization.

— The objective functions/goals are diftferent or even in opposite directions.



Methodology — Feedback Learningl!]
Training | Sample and Margin | Example | Retrain and
| Selection Caleulation | Generation Test

* Classes are categorized into three robustness levels:

* High-level: top 20% ot all classes, 20 samples are selected for each class.
* Low-level: bottom 50% of all classes, 150 samples are selected for each class.

* Medium-level: all remaining classes, 100 samples are selected for each class.

* Generated example: direction with top-40 minimum margins, 1.5X-2.0X margins to
cross boundaries.

* All parameters here are empirical.

D k [17] Song et al., Feedback Learning for Improving the
u e UNIVERSITY

Robustness of Neural Networks, ICMLA, 2019.



Methodology — Nonlinear Mapping
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Methodology — Nonlinear Mapping (cont.)

* Procedures of combining nonlinear mapping with training:
1) Training with other defensive techniques
2) Post-training weight nonlinear mapping

* Which layers to map? Increasing nonlinearity vs. accuracy loss.
* Mapping more layers means higher nonlinearity level, but...

* Mapping feature extractors (convolutional layers) introduces more accuracy
loss than mapping classifiers (FC layers)t.

* Adversarial perturbations have larger impact on models’” decision-making than
feature extraction.

D k [17] Inkawhich et al., Feature Space Perturbations Yield
u e UNIVERSITY

More Transferable Adversarial Examples, CVPR, 2019.



Experimental Results

* Datasets: MNIST (4-layer CNN) and CIFAR-10 (wide ResNet-32).
* Models: Orig., Adv. (adversarially-trained model), F.L.. (feedback learning).

* Attacks (adversarial and non-adversarial): clean image, CW-L2, FGSM, PGD, BIM,
Momentum IM, normal noise, uniform noise; white-box and black-box attacks.

* 3-bit quantization, post-training weight quantization only.

* Nonlinear mapping only the last tew layers.

- Histogram of weights

F.L.w/o . F.L.w/
mapping CIFAR-10, 4 mapping
last layer
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Experimental Results — Accuracy on MNIST

*  White-box accuracy: ~20% improvement on F.L.. model, no improvement on Orig. and Adv.
models.

— F.L. model has better tolerance to error introduced by quantization and nonlinear mapping.

* Black-box accuracy: same robustness after mapping.

Table 1: The accuracy of white-box attacks on MNIST models. Table 2: The accuracy of black-box attacks and noises on MNIST models.
Models Clean CW-L2 FGSM (w) FGSM (s) PGD BIM MIM Models CW-L2 FGSM (w) FGSM (m) FGSM (s) Normal Uniform
Orig. 99.17%  39.40% 73.53% 7.67% 4.38% 5.68% 6.77% Orig. 97.56% 98.95% 97.80% 93.30%  97.19%  98.85%
Orig. (Q) 98.97%  36.98% 68.70% 740%  2.63%  3.53%  421%  Orig. (Q) 97.47% 98.47% 96.26%  90.08%  95.50%  98.38%
Adv. 08.40%  9451%  98.01%  96.24% OTTT%  9TAI%  97.32%  Adv. 07.28%  98.30%  08.22%  96.17% TT.16%  93.37%
Adv. (Q) 42.69%  25.56% 37.28% 32.28%  33.78%  31.44%  30.72% Adv. (Q) 39.42% 45.09% 43.14% 28.02%  17.62%  42.99%
F.L. 99.17%  51.60% 89.69% 39.43%  39.92%  41.42%  43.25% F.L. 97.04% 98.90% 97.36% 94.99%  97.01%  98.67%
F.L.(Q) 98.99% 49.49% 87.93% 38.36%  35.35%  36.48%  38.33% F.L. (Q) 96.38% 98.54% 96.84% 94.38% 96.58% 98.44%
Orig.+mu 99.06%  34.97% 7R.55% 6.32% 7.25% 8.61% 9.04% Orig.+mu 97.31% 98.72% 97.16% 90.61%  96.16%  98.69%
Orig+mu (Q)  98.94%  33.00%  73.78% 5.95%  5.21%  6.32%  6.82%  Orig+mu (Q) 96.83%  98.31% 06.15%  88.69%  95.16%  98.27%
Adv.+mu 97.97%  91.77% 97.00% 95.18%  96.79%  95.99%  95.90% Adv.+mu 97.44% 97.83% 97.62% 94.09%  74.06%  97.81%
Adv.4+mu (Q) 37.12%  28.20% 35.35% 31.15%  34.29%  32.64%  32.15% Adv.4+mu (Q) 38.02% 40.06% 39.60% 24.48% 15.69%  37.32%
F.L.+mu 99.11%  48.08% 89.25% 70.86%  57.39%  64.53%  64.92% F.L.+mu 97.47% 98.70% 96.72% 093.76%  96.64%  98.58%
F.LA4mu (Q) 98.93%  47.65% 88.31% 69.45% 55.24% 62.64% 62.92% F.L.+mu (Q) 97.68% 98.46% 96.44% 93.54%  96.36%  98.21%
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Experimental Results — Accuracy on CIFAR-10

* Similar results as MNIST with more significant improvement.
— Adv. model sufters more from quantization.
— White-box robustness improved by mapping in the Orig. model.
* Mapping the last three layers introduce more nonlinearity to models.
Table 3: The accuracy of white-box attacks on CIFAR-10 models. Table 4: The accuracy of black-box attacks and noises on CIFAR-10 models.
Models Clean  CW-L2 FGSM (w) FGSM(s)  PGD  BIM  MIM  Models CW-L2  FGSM (w) FGSM (m) FGSM (s)  Normal Uniform
Orig. 05.00%  930%  2090%  10.60%  220%  2.60%  2.50%  Orig. 5R.00%  55.07%  46.8T%  41.12%  21.40%  43.80%
Orig. (Q) A7.92%  13.60%  16.80%  11.90%  11.10%  17.80% 17.70%  Orig. (Q) 23.00%  2260%  20.64%  19.17% 19.30%  21.80%
Adv. 87.27%  54.20%  TAT0%  36.80%  66.80%  57.60%  59.70%  Adv. T6.44%  T5.82%  T461%  7T348%  7T0.30%  84.90%
Adv. (Q) 19.84%  15.80% 17.50% 10.90%  17.90%  18.20%  17.70%  Adv. (Q) 19.38% 19.32% 18.92% 18.55%  15.60%  17.80%
F.L. 03.77%  20.30%  39.70%  27.50%  4.00%  4.00%  4.00% FL. 6470%  6L82%  5TIA2%  53.68%  79.10%  85.50%
F.L. (Q) 00.14%  201.30%  42.60%  28.70%  590%  5.90% = 580% FIL.(Q) 62.99%  60.30%  56.07%  52.44% 72.40% 81.90%
Orig.+mu 0105%  5.30%  95.30%  94.90%  64.40%  95.30%  95.30%  Orig.+mu 55.95%  52.58%  44T4%  38.62%  2090%  41.00%
Orig+mu (Q)  51.55%  11.60%  45.10%  46.80% 30.80%  49.50%  49.40%  Orig+mu (Q)  25.64%  2453%  2141%  20.01% 15.80%  19.30%
Adv.+mu 85.70%  51.90%  83.30%  83.20%  8L60%  83.30%  83.30%  Adv.+mu 73.24%  72.79%  TLB2%  69.90%  68.20%  82.30%
Advormu (Q)  1680%  17.00%  1670%  16.70% 17.00%  17.30% 17.50%  Adv4+mu (Q)  15.74%  15.67% 15.23%  14.69%  11.10%  12.10%
F.L.+mu 03.80%  20.70%  92.80%  92.30%  80.50%  92.80%  92.80%  FL.+mu 63.60%  60.37%  55.58%  52.04%  73.60%  84.00%
F.L4mu (Q) 92.20% 23.10% 90.80% 90.70% 86.90% 90.80% 90.80%  F.L.+mu (Q) 62.54% 59.65% 55.03% 51.69%  72.20% 81.90%




Experimental Results — Ablation Study

* Nonlinearity vs. robustness: CIFAR-10,
map only the last layer.
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* These results align with our theoretical o o o
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Experimental Results — Lipschitz Measurement

*  The Lipschitz constant of the quantization weight loss (AW):
[AW|l, = sup [[AWZ|l,

z:||z||p,=1

*  Whenp = 2, ||AW||, is the maximum singular value of AW. ||AW ||, > 1 means quantization error
may be amplified in this layer.

* The adv model has weak tolerance to quantization.

|AW ||, of each layer in MNIST models. |AW ||, of the last five layers in CIFAR-10 models.
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Conclusions

* We observe that adversarially-trained neural networks are vulnerable to
quantization loss.

* We theoretically analyze both adversarial and quantization losses and come up
with criteria to measure the two losses. We also propose a solution to minimize
both losses at the same time.

* The results show that our method is capable of defending both black-box and
white-box gradient-based adversarial attacks and minimizing the quantization
loss, showing an average accuracy improvement against adversarial attacks of
7.55% on MNIST and 27.84% on CIFAR-10 compared to the next best approach
studied.

DukeUNIVERSITY 17







