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Motivating example

Existing DNNs face 2 key challenges:
1. They contain a large number of
parameters
2. They are vulnerable against
adversarial examples
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Motivating example
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Existing DNNs face 2 key challenges:
1. They contain a large number of
parameters

2. The against
adversarial example
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Universal Adversarial Perturbations
e Asingle perturbation can cause a
target model to misclassify on a large
set of inputs
e They are transferable
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Compression Techniques

Before pruning After pruning

[2]

Pruning: reduce the size of the DNN by
removing neurons that are irrelevant or have a
reduced contribution at inference time

> (PP) Post-training Pruning
m PP2, PP3, PP4

> (SFP) Soft-filter Pruning
m (SFP+M) with mixup regularization
m (SFP+C) with cutout regularization
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Compression Techniques
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(c) Additive Power-of-Two Quantization

Quantization: reduce the memory of the
deployed models by limiting the precision of
the parameters of the models

> (Q2,Q3,Q4) 2,3, and 4 bits

Figure 2: Quantization of unsigned data to 3-bit or 4-bit (@« = 1.0) using three different quantization levels.
APoT quantization has a more reasonable resolution assignment and it does not suffer from the rigid resolution.
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Adversarial Examples

[4]

Tabby Cat (82%)

Shower Curtain (89%)

C(x) := true class label of input x
x'=x4+0
f(x") #C(x)
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Universal Adversarial Perturbations (UAPSs)

[5]

f (x+ 0) # C( x) for multiple inputs

x € X of abenign dataset X

UAPs exploit systemic vulnerabilities of
the target model
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Experiments

> Untargeted
m  White-box (on self)
m Black-box (transfer)

> Targeted
m  White-box (all 10 class labels)
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Experiments: Metrics

m  White-box (on self)
m Black-box (transfer)

m  White-box (all 10 class labels)

> Untargeted # Universal Evasion Rate (UER)

UER(§) =|{x€ X : argmax F(x+ §) # C(x) }|- |71|

> Targeted IEEESSSE)  Targeted Success Rate (TSR)

1

TSR( 5,ytgt) =|{xe X: argmax F(x+ 8) = ytgt} T
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Untargeted UAP: White-box

CIFAR-10

Perturbation Size (¢)

SVHN
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b400400004

P400000004

Full
SFP
SFP+M
SFP+C
PP2
PP3
PP4
Q2

Q3

Q4

Full
SFP
SFP+M
SFP+C
PP2
PP3
PP4
Q2
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Quantization on CIFAR-10 displays a
lower average UER

The average UER is much higher on
CIFAR-10 than on SVHN
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Untargeted UAP: Black-box transfer attack

CIFAR-10
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SVHN
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e Full model is mainly vulnerable to the
UAPs crafted from the PP/ models

e Full model's average UER is much
higher on CIFAR-10 than on SVHN
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Untargeted UAP: Black-box transfer attack

CIFAR-10

0.83 0.82|0.80 [
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SFP+M - OBSM 0.72 | 0.69 0.43 0.32

SFP+C- 0.36 [05s1:]

0.43

ﬂ.
o

SFP+C
P
P

Average UER

Attack Source

SFP is the most robust technique against
transfer attacks
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Untargeted UAP: Black-box transfer attack

CIFAR-10
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94.02
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Models are more susceptible to transfer
attacks between networks sharing related
feature mappings
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Untargeted UAP: Black-box transfer attack

SVHN
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SFP models trained on SVHN are more

robust against UAP attacks from all other
models
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Untargeted UAP: Black-box transfer attack

SVHN
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SFP plus regularization lacks transferability
to the other models
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Untargeted UAP: Black-box transfer attack

CIFAR-10
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UAPs exploit combined activations of
neurons that are commonly activated for
classifying benign inputs.
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Untargeted UAP: Black-box transfer attack

CIFAR-10
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Quantization has gradient-masking
e Q2,Q3, Q4 have 54-63% UER on
themselves
e However PP2 achieves 77-79% UER
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Targeted UAPs

CIFAR-10 SVHN

SFP SFP
1.0 1.0
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The application and properties of the
datasets play an important role in the
robustness of the considered
compression techniques to UAP attacks
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Conclusions
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Conclusions

There exists a correlation between
clean model accuracy and UER of
untargeted white-box attacks
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Conclusions

SFP improves the model’'s
robustness to transfer attacks

1.

There exists a correlation between clean model
accuracy and UER of untargeted white-box
attacks
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Conclusions

Quantization can give a false sense
of security

There exists a correlation between clean model
accuracy and UER of untargeted white-box
attacks

SFP improves the model’s robustness to transfer
attacks
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Conclusions

Robustness to UAPs when using
compression methods is dataset and
application dependent

There exists a correlation between clean model
accuracy and UER of untargeted white-box
attacks

SFP improves the model’s robustness to transfer
attacks

Quantization can give a false sense of security
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Conclusions

To know more about it -- stop by our
poster

Thank you!!

There exists a correlation between clean model
accuracy and UER of untargeted white-box
attacks

SFP improves the model’s robustness to transfer
attacks

Quantization can give a false sense of security

Robustness to UAPs when using compression
methods is dataset and application dependent

AAAI Workshop: RSEML 2021 — Robustness and Transferability of Universal Attacks on Compressed Models

25



Thank you for listening!

Code available: https://github.com/kenny-co/sgd-uap-torch
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