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AI Model Complexity (1)
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AI Model Complexity (2)
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AI Model Scaling Law
More intelligence “for free” by Scaling   
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Training Dataset Scaling
Kolmogorov Compression 

Wen Tong and Yiqun Ge “Information Theory and Learning-AN INFORMATION THEORY VIEW ON LEARNING PROBLEMS” 

Cambridge University Press 2022

The more data the more intelligence 
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Model Fine-tuning   
In-Network LoRA
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Federated Learning
Share model not the Data 

Share Data Share Model
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Issue of Federated Learning (1)
The Need of a Trusted Host

Share Model

Federated: 
Set up a single controlled center within which each state division keeps 

some internal autonomy 

The trusted host to share the model 
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Issue of Federated Learning (2)
The Communications Cost

The total communication cost of 10 participants sending 

Llama2-7B to a server in 100 rounds of FL is:

"14 GB ∗ 10 ∗ 100 ∗ 2 = 28 TB"



10

Distributed Learning 
Model-Follow-Data Concept 

Wen Tong: “IEEE SPAWC-2022” July, 2022

Homogenous and Heterogenous Models
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Model Communications (1)  
Model-Follow-Data Concept 
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S

(D1)

AI packet AI packet

Data In Model Out

① ② ③

S: Source

D: Destination 
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Model Communications (2) 
Model-Follow-Data Concept 

f

① ② ③

Compute Data Interest AI Packet Routing Update Routing Algorithm

▪ Publish the data availability  

▪ IP protocol for model forwarding   

▪ Self training data cleaning 

▪ Data quality criteria 

▪ Option of distributed compute power 

▪ Express of interests 

▪ OBSF flooding  
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Model Communications (3) 
Model-Follow-Data Concept 

① ② ③

Model Version Management Model Distributed Ledger System Autonomous Model Training  

▪ Base Model Version

▪ Incremental Update Version 

▪ Discovery of data

▪ Discovery of compute

▪ Model verification 

▪ Version validation 

▪ Version audit  



14

Model size 

Heterogenous Model Communications  
Model-Follow-Data Concept 

Wen Tong: “IEEE SPAWC-2022” July, 2022
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Heterogenous Model Scaling with Local Data Training  
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In-Network Model Processing  
Heterogenous Model-Re-Normalization and Updates  
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Distributed Learning Algorithm – (Knowledge Distilling) 
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Distributed Learning Algorithm – (Generative Model) 
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Distributed Learning Algorithm – (Information Bottleneck) 
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Distributed Learning Algorithm – (LoRA) 

Heterogenous Model
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Distributed Learning Algorithm – (LoRA) 

Heterogenous Model

Topology: 10 Clients, 5 clients participating 

in each round

Dataset: CIFAR10 – 25k images as train, 

25k as test

Distribution: Heavy label shift, Dirichlet(0.1)

One base model: ViT-base (86M), pre-

trained on ImageNet21K images

Bandwidth Saving 
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Federated and Distributed Comparison 
Reduced Communications Cost  

▪ Federated Learning 100n

▪ Distributed Learning 

▪ Knowledge Distilling    4n

▪ Generative  2n

▪ Information Bottleneck 2n

▪ LoRA 2n
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Federated and Distributed Algorithms
Remove Inferior Model Contributions--how to un-learn  

෍ …. . ෍ ෩𝑊𝑛,𝑖 ෍∆ ෩𝑊𝑛,𝑖

𝑊0 + 𝐴1𝐵1 + 𝐴2𝐵2 + 𝐴3𝐵3 +⋯

▪ Federated Learning 

▪ Distributed Learning 
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Data and Computing Aware Model Routing 
Model-Follow-Data Concept 

Conventional: 
• Randomly chosen next hop

• Neither the model architecture nor the data 

characteristics have any impact on the 

decision 

Ours:
• Next hop selection based on new metric

• The model node obtains random 

minibatches from network nodes

• The model node computes a metric for 

each node based on its minibatch and 

current state of the model.
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Distributed Training for RAN
3GPP Architecture  

OTT  Model Plane
RAN Model Plane
gNB Model Plane
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Model Based Communications
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Data Memory
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→
←

(Wen Tong, Keynote IEEE-CTW-2021)
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A-RANTM

Sensing & 

Communications 

AI &        

Communications  

LLM

Transformer

Neuron Center  (1T) Neuron Edge (100B) Neuron Agent (10B) 

(Wen Tong, Keynote 6G SUMMIT Abu Dhabi Nov.16th, 2023)

Sensing & 

Communications 
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