

Easy and Scalable Federated Learning in the Age of Large Language Models with NVIDIA FLARE

Holger Roth, Principal Federated Learning Scientist, NVIDIA FL@FM-ICME, Niagara Falls, July 15th, 2024

LLMs in NVIDIA FLARE

- 1. NVIDIA FLARE Overview
- 2. Parameter-efficient Fine-tuning (PEFT)
- 3. Supervised Fine-tuning (SFT)

NVIDIA FLARE Overview

NVIDIA Federated Learning

Applications across industries



NVIDIA FLARE Security and Data Privacy

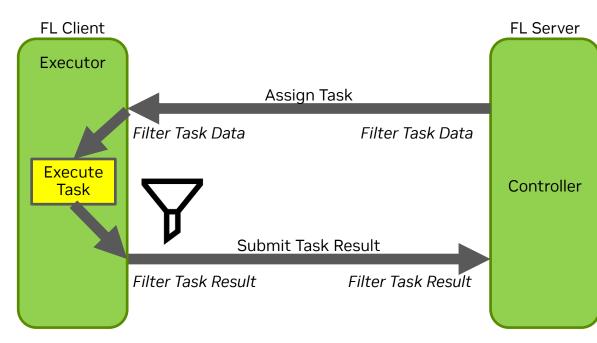
Defense in Depth approach to protecting data privacy and model IP

Privacy Preserving Algorithm Differential Privacy Homomorphic Encryption Confidential Computing

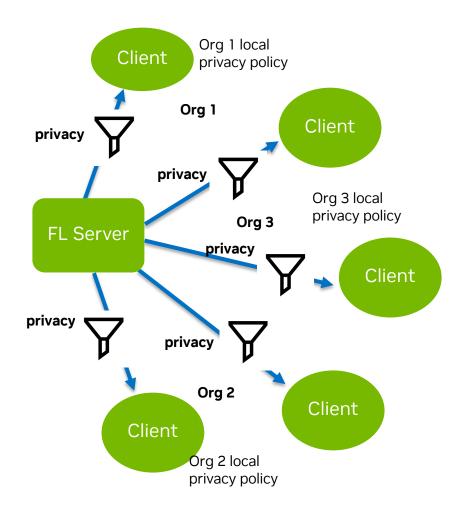
User Identity Verification Certificate and derived token authentication **Data Encryption in Transit** Server-Client communication encrypted User Defined Security Policy Site-Specific authentication Job authorization

High Level Architecture

Data privacy architecture



- Privacy filter can depend on:
 - Scope: any key-value pair such as datasets
 - Data kind: Weights, Weights Diff or Analytics data
 - Or any other data
- Research develop privacy filter
- Organization set privacy policy:
 - privacy budget, noise level as data privacy policy



Who's Using NVIDIA FLARE?

Parameter-efficient Fine-tuning (PEFT)

Adapt Foundational LLMs in FL

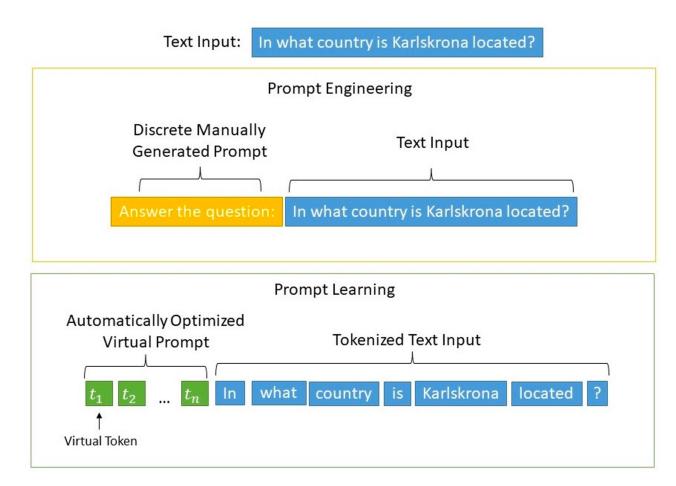
Parameter-efficient fine-tuning

Fine-tuning with a task-specific module

- Most LLM layers fixed; Only few dozen million params are being exchanged
- Tech: prompt-tuning/p-tuning/adapter/LoRA/others
- NVFlare example: sentiment analysis example with NeMo GPT model (345M/5B/20B)

Prompt Learning

Parameter-efficient adaptation of LLMs to downstream tasks



Tasks: brainstorming, classification,

closed QA, generation, information

extraction, open QA, summarization,

etc.

P-Tuning for Sentiment Analysis

Downstream task example:

- Financial PhraseBank dataset (<u>Malo et al.</u>) for sentiment analysis.
- The Financial PhraseBank dataset contains the sentiments for financial news headlines from a retail investor's perspective.

Example prompts and predictions:

The products have a low salt and fat content . sentiment: neutral

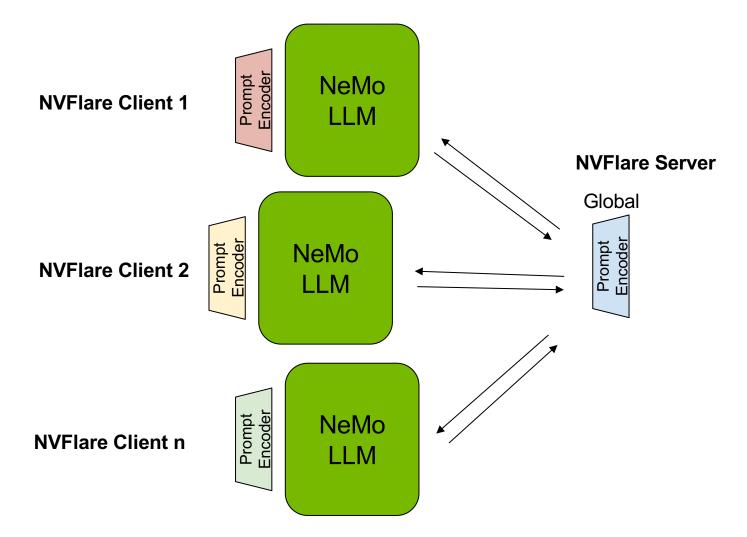
The agreement is valid for four years . **sentiment: neutral**

Diluted EPS rose to EUR3 .68 from EUR0 .50 . sentiment: positive

The company is well positioned in Brazil and Uruguay . sentiment: positive

Profit before taxes decreased by 9 % to EUR 187.8 mn in the first nine months of 2008, compared to EUR 207.1 mn a year earlier. *sentiment: negative*

NVFlare for P-Tuning With NeMo



LLM parameters stay fixed; Prompt encoder parameters are trained/updated

Lightning Client API

Example with <u>NeMo PEFT script</u>

Transform your script to FL with a few lines of code changes:

- 1. Import nvflare lightning api
- 2. Patch your lightning trainer
- 3. (Optionally) validate the current global model
- 4. Train as usually

Directly use all the PEFT methods implemented in NeMo script:

- adapter
- ia3
- p-tuning
- adapter + p-tuning
- LoRa

from nemo.core.config import hydra_runner
from nemo.utils import AppState, logging
from nemo.utils.exp_manager import exp_manager
from nemo.utils.model_utils import inject_model_parallel_rank

(0): import nvflare lightning api
import nvflare.client.lightning as flare

```
mp.set_start_method("spawn", force=True)
```

• • •

(1): flare patch
flare.patch(trainer)

while flare.is_running():

(2) evaluate the current global model to allow server-side model selection
print("--- validate global model ---")
trainer.validate(model)

(3) Perform local training starting with the received global model
print("--- train new model ---")

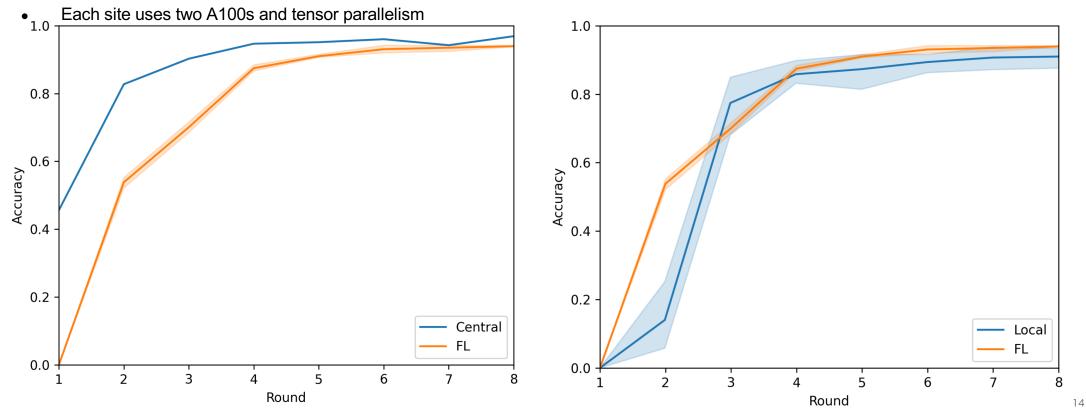
trainer.fit(model)

P-Tuning for Sentiment Analysis

FL can achieve performance comparable to centralized training

Federated p-tuning experiment:

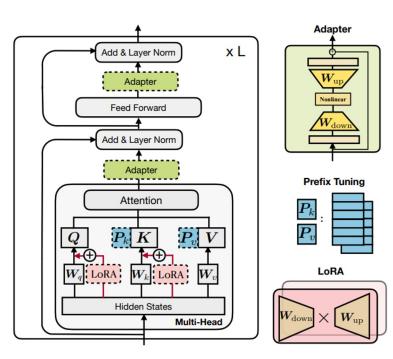
- Using 20B NeMo Megatron-GPT model hosted on HuggingFace
- **50M** parameters are updated (0.25%)
- 1800 pairs of statement and sentiment
- 600 for each site; shared validation set for direct comparison



Compare PEFT Methods With NeMo

Only 1 line configuration change

Transformer and PEFT methods:



Source: https://arxiv.org/abs/2110.04366

Different PEFT methods on the XSum summarization task: 22 Full Fine-tuning 21.94 Ours 21.90 21Adapter 20.98 2-20 10 LoRA 20.50 Prefix Tuning 20.46 1918 BitFit 17.32 0 5 10 15Fine-tuned Parameters (%)

peft:

peft_scheme: "adapter" # can be either adapter,ia3, or ptuning
restore_from_path: null

Used for adapter peft training

adapter_tuning:

type: 'parallel_adapter' # this should be either 'parallel_adap adapter_dim: 32

adapter_dropout: 0.0

norm_position: 'pre' # This can be set to 'pre', 'post' or null column_init_method: 'xavier' # IGNORED if linear_adapter is use row_init_method: 'zero' # IGNORED if linear_adapter is used, op norm_type: 'mixedfusedlayernorm' # IGNORED if layer_adapter is layer_selection: null # selects in which layers to add adapter weight_tying: False

position_embedding_strategy: null # used only when weight_tyin

ora_tuning:

adapter_dim: 32

adapter_dropout: 0.0

column_init_method: 'xavier' # IGNORED if linear_adapter is use row_init_method: 'zero' # IGNORED if linear_adapter is used, op layer_selection: null # selects in which layers to add lora of weight_tying: False

position_embedding_strategy: null # used only when weight_tyin

Used for p-tuning peft training

_tuning:

virtual_tokens: 10 # The number of virtual tokens the prompt of bottleneck_dim: 1024 # the size of the prompt encoder mlp bot embedding_dim: 1024 # the size of the prompt encoder embedding init_std: 0.023

ia3_tuning:

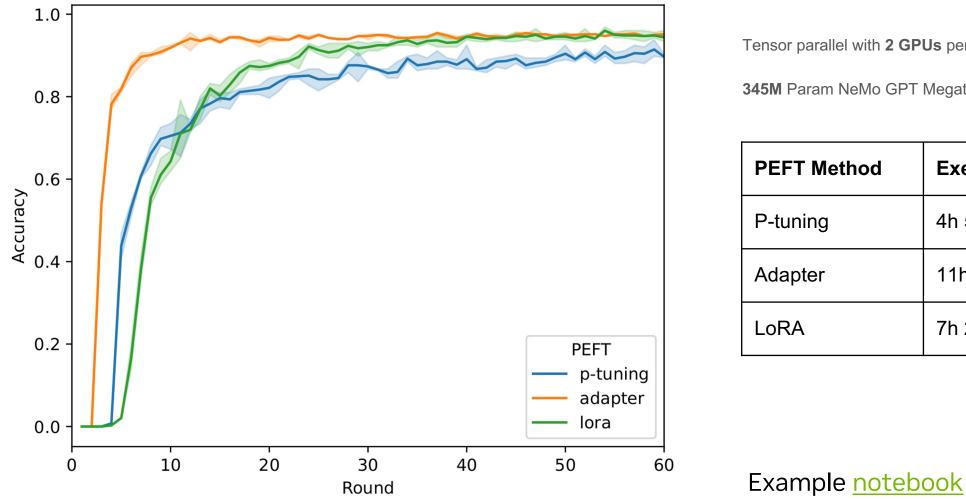
layer_selection: null # selects in which layers to add ia3 ad

NeMo YAML configuration

15

Compare PEFT Methods With NeMo

P-tuning vs. Adapter vs. LoRa



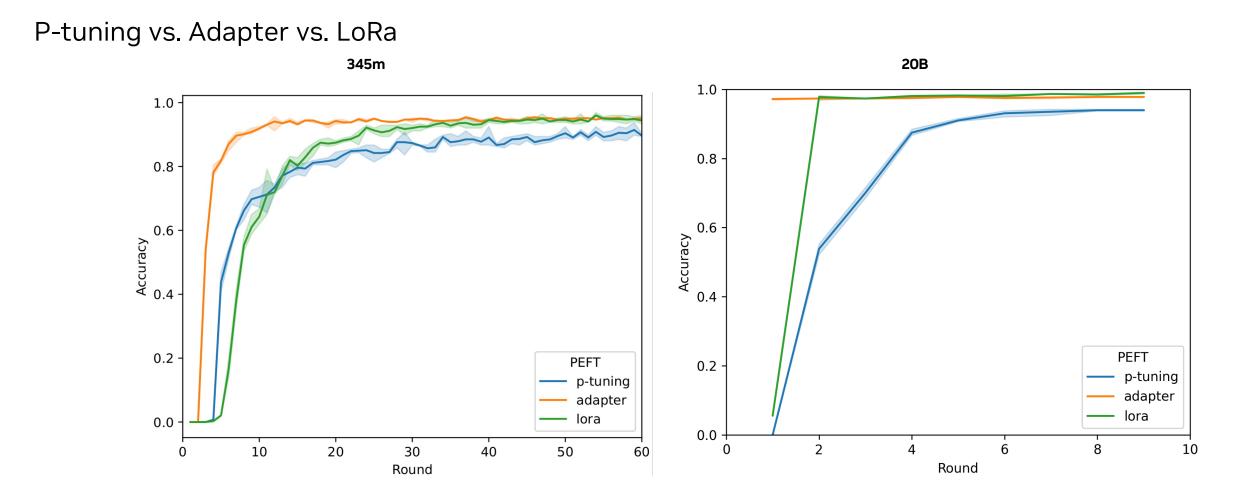
Tensor parallel with 2 GPUs per client

345M Param NeMo GPT Megatron model

PEFT Method	Execution time		
P-tuning	4h 59m		
Adapter	11h 25m		
LoRA	7h 27m		

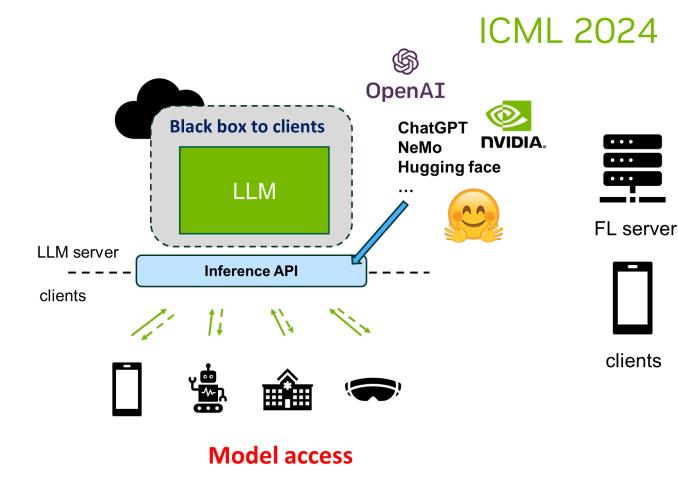
16

Compare PEFT Methods With NeMo



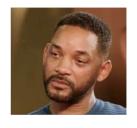
Example: https://github.com/NVIDIA/NVFlare/tree/main/integration/nemo/examples

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models



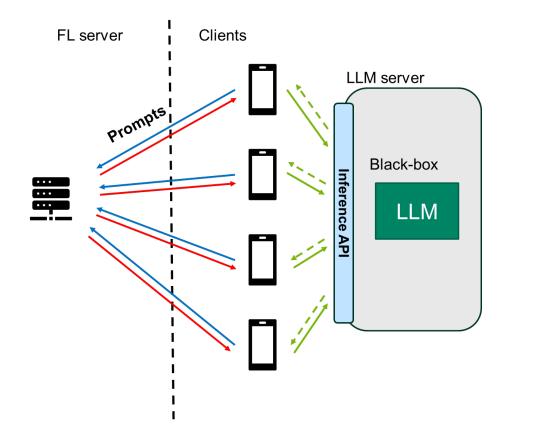
Please train this model with 5B parameters and upload it to me. Let's do this with 1000 communication rounds.

clients



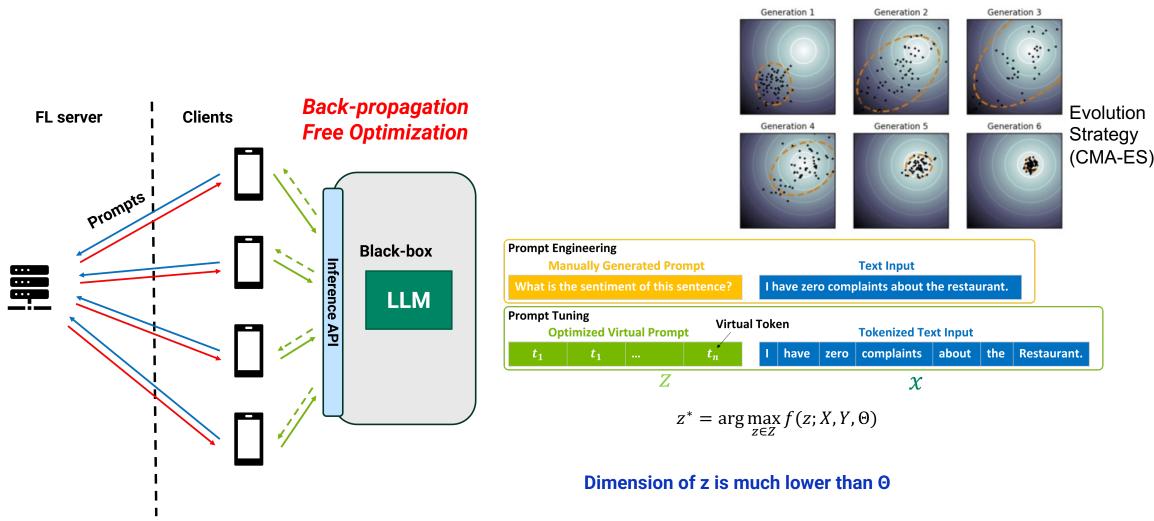
Computation/memory limitation Communication cost

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models



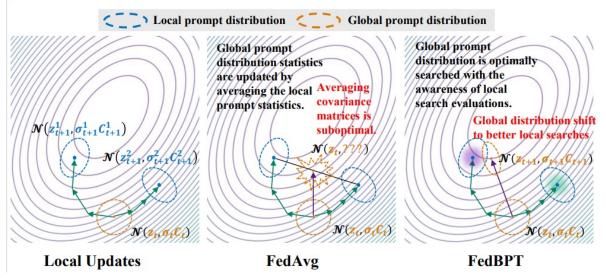
- The clients train prompts while treating the LLM as a blackbox model.
- The clients only conduct inference without backpropagation.
- The clients upload and download prompts rather than the whole model.

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models



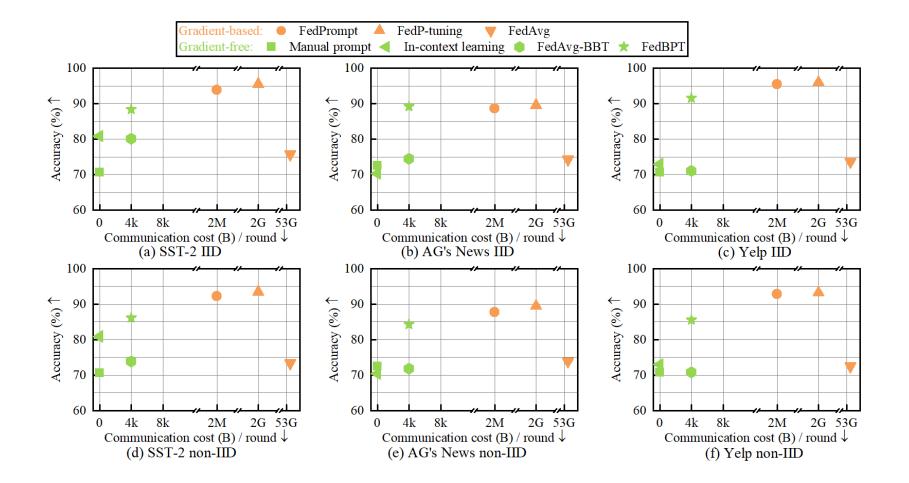
Results on RoBERTa-350M

		# trainable parameters	SST-2		AG's News	
	Method		IID	Non-IID	IID	Non-IID
Gradient- based	FedPrompt	51K	90.25	85.55	87.72	85.62
	FedAvg + P-tuning	15M	90.6	87.16	88.17	86.11
	FedAvg + model tuning	355M	83.6	83.6	75.75	75.75
Gradient- free	Manual prompt	0	83.6		75.75	
	FedAvg + BBT	500	84.45	84.17	76.54	76.46
	FedBPT	500	87.52	86.70	82.36	81.03



Jingwei Sun et al. ICML 2024 (arxiv 2310.01467)

Results on Llama2-7B



Raspberry Pi Jetson TX2

Smart Phone

2:11 💠 🛈 🛇 🔈 🔹 ↔ ∠! a) print_timings: eval time = 0.01 ms runs (0.01 ms per token, 200000.00 tokens per seco Print_timings: total time = 90519.08 ms Question: the piquant story needs more dramatic meat on its bones . Answer:Negative slot 0 released (79 tokens in cache) slot 0 is processing [task id: 192] slot 0 : kv cache rm - [0, end) print_timings: prompt eval time = 118094.48 ms / 101 tokens (1169.25 ms per token, <u>0.86 tokens per secon</u> eval time = print timings: 0.01 ms 0.01 ms per token. 200000.00 tol print Question: the film 's few ideas are stretched to the point of evaporation ; the whole central section is one big chase that seems to have no goal and no urgency. Answ slot 0 released (102 tokens in cach slot 0 is processing [task id: 195] slot 0 : kv cache rm - [0, end) END PGUP HOME 1 PGDN CTRL ALT 5 9 0 2 3 4 8 o p b n

Demo with Llama2-7B

User data

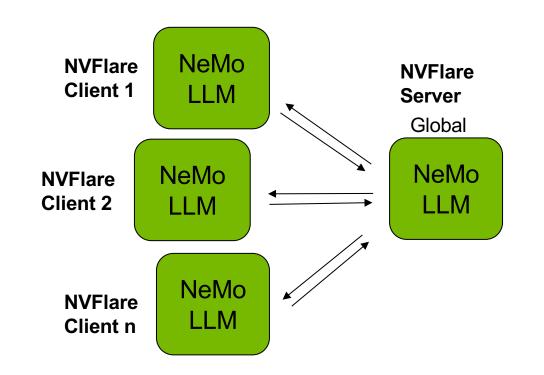
More details (paper and code in NVIDIA FLARE)...

Supervised Fine-tuning

Supervised Fine-tuning (SFT)

Towards "instruction-following" LLM

Unlike PEFT, SFT finetunes the entire network

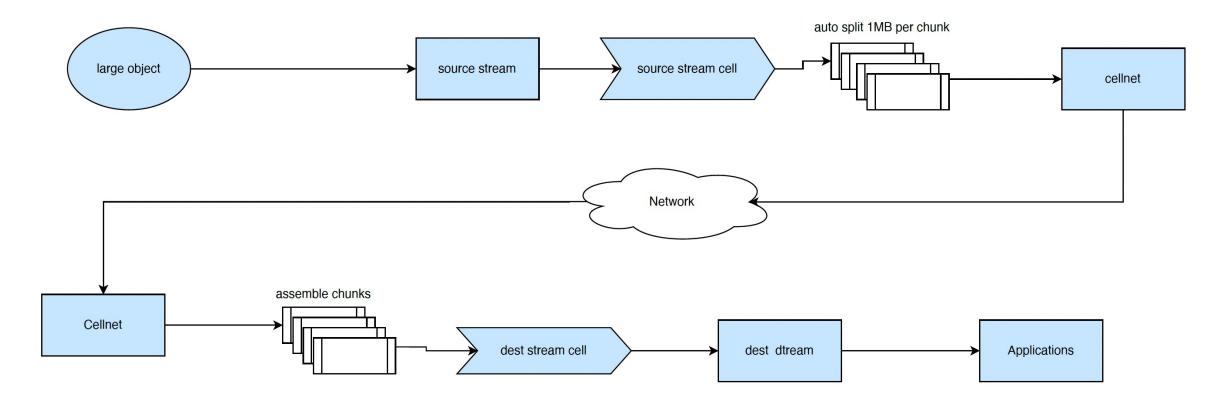


The first step of "Chat-GPT training scheme".

NVFlare Streaming

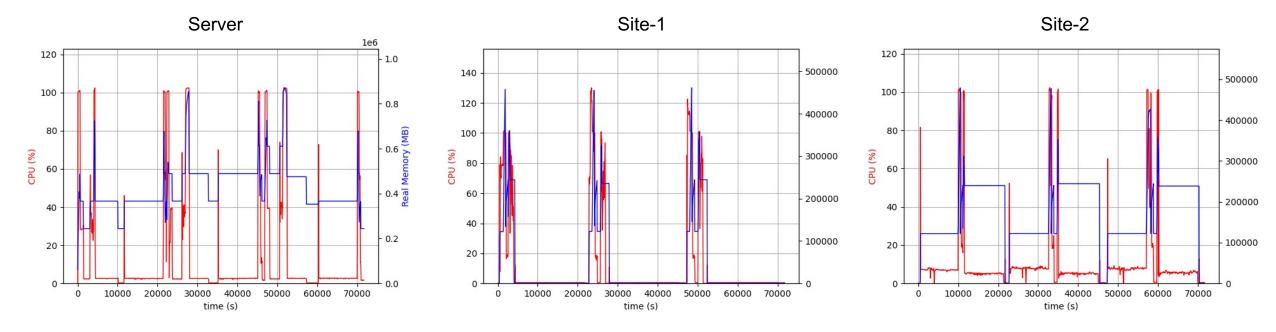
Support Large Model Transmission

- Model size of mainstream LLM can be huge: 7B -> 26 GB (beyond the 2 GB GRPC limit)
- In order to transmit LLMs in SFT, NVFlare can now support **large object** streaming



Memory Usage During Streaming

128GB model (compare Llama-2-70B 129GB ckpt)



- Model streaming across regions and cloud providers, including AWS and Azure.
- Clients received and sent the models in about 100 minutes.

SFT for Instruction Following

3 open datasets

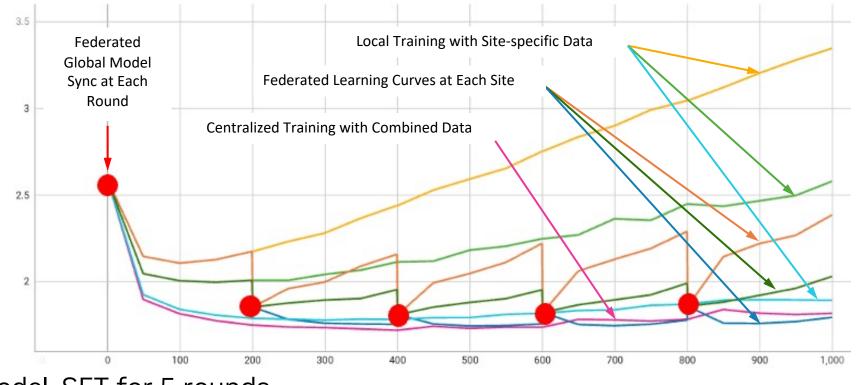
We use three datasets:

- Alpaca
- databricks-dolly-15k
- OpenAssistant

Containing instruction-following data in different formats under different settings:

- oasst1 features a tree struture for full conversations
- other two are instruction(w/ or w/o context)-response pairs

SFT With FL Achieving better performance



NeMo 1.3B model, SFT for 5 rounds

5 experiments in total: training on each client's own dataset, combined dataset, and all three clients using FedAvg in NVFlare.

- Local models tend to overfit
- Steps in FL because of global model sync and update

SFT Model Evaluation

LLM Performance

Non-trivial task compared with "fixed downstream tasks" where we usually have metrics like accuracy, F-1 scores, etc.

Common practice is to test the resulting LLMs on **benchmark tasks**, and/or human evaluations

We perform standard language modeling tasks under zero-shot setting, including HellaSwag(H), PIQA(P), and WinoGrande(W)

BaseModel - Before SFT

	H_acc	H_acc _norm	P_acc	P_acc _norm	W_acc	Mean
BaseModel	0.357	0.439	0.683	0.689	0.537	0.541
Alpaca	0.372	0.451	0.675	0.687	0.550	0.547
Dolly	0.376	0.474	0.671	0.667	0.529	0.543
Oasst1	0.370	0.452	0.657	0.655	0.506	0.528
Combined	0.370	0.453	0.685	0.690	0.548	0.549
FedAvg	0.377	0.469	0.688	0.687	0.560	0.556

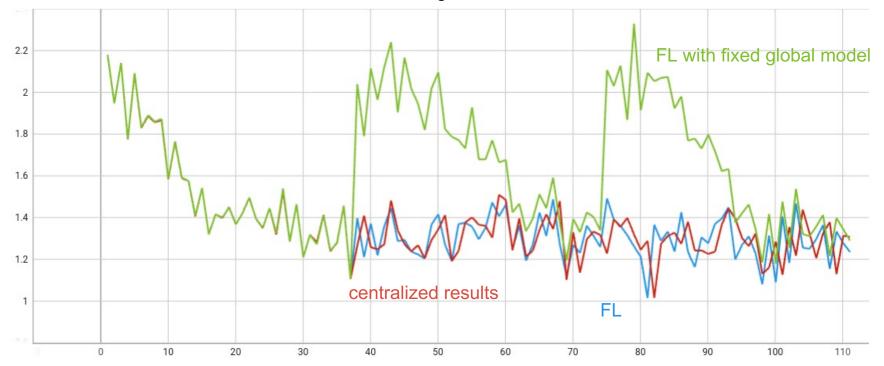
Table 1. Model performance on three benchmark tasks: HellaSwag (H), PIQA (P), and WinoGrande (W)

SFT and PEFT With HuggingFace

LLaMA-2

- Showcasing the functionality of federated SFT and PEFT with Llama-2-7b-hf model
- Model transmission size over the FLARE network
- PEFT: ~134 MB
- SFT: ~27 GB

PEFT curves for three-epoch centralized training and three-round (one epoch/round) federated learning with one client.



Conclusions

- FL enables adapting LLMs with privacy in mind.
- Fine-tuning LLMs with FL can utilize diverse distributed datasets.
- NVIDIA FLARE enables real-world collaborative LLM training with massive models (100s GB).

JOIN US AT NVIDIA FLARE DAY 2024 September 18th

Webinar

Check the news!

https://nvidia.github.io/NVFlare



Try it out at

https://github.com/NVIDIA/NVFlare

Thank you!

Holger Roth <hroth@nvidia.com>