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Abstract
Federated Learning (FL) is notorious for its vul-1

nerability to Byzantine attacks. Most current2

Byzantine defenses share a common inductive bias:3

among all the gradients, the majorities are more4

likely to be honest. However, such bias is a poi-5

son to Byzantine robustness due to a newly discov-6

ered phenomenon – gradient skew. We discover7

that the majority of honest gradients skew away8

from the optimal gradient (the average of honest9

gradients) as a result of heterogeneous data. This10

gradient skew phenomenon allows Byzantine gra-11

dients to hide within the skewed majority of honest12

gradients and thus be recognized as the majority.13

As a result, Byzantine defenses are deceived into14

perceiving Byzantine gradients as honest. Moti-15

vated by this observation, we propose a novel skew-16

aware attack called STRIKE: first, we search for the17

skewed majority of honest gradients; then, we con-18

struct Byzantine gradients within the skewed ma-19

jority. Experiments on three benchmark datasets20

validate the effectiveness of our attack.21

1 Introduction22

Federated Learning (FL) [McMahan et al., 2017; Li et al.,23

2020] has emerged as a privacy-aware learning paradigm, in24

which data owners, i.e., clients, repeatedly use their private25

data to compute local gradients and upload them to a cen-26

tral server. The central server collects the uploaded gradi-27

ents from clients and aggregates these gradients to update the28

global model. In this way, clients can collaborate to train a29

model without exposing their private data.30

Unfortunately, FL is susceptible to Byzantine attacks due31

to its distributed nature [Blanchard et al., 2017; Guerraoui et32

al., 2018]. A malicious party can control a small subset of33

clients, i.e., Byzantine clients, to degrade the utility of the34

global model. During the training phase, Byzantine clients35

can send arbitrary messages to the central server to bias the36

global model. A wealth of defenses [Blanchard et al., 2017;37

Pillutla et al., 2019; Shejwalkar and Houmansadr, 2021] have38

been proposed to defend against Byzantine attacks in FL.39

∗Work done during internship at Sony AI.
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Figure 1: The LLE visualization of honest gradients in the non-IID
setting on CIFAR-10. The majority of honest gradients (blue circles)
are skewed away from the optimal gradient (green star). In this case,
we can hide Byzantine gradients (pink crosses) within the skewed
majority of honest gradients to circumvent defenses.

They aim to estimate the optimal gradient, i.e., the average 40

of gradients from honest clients, in the presence of Byzantine 41

clients. 42

Most existing defenses [Blanchard et al., 2017; Shejwalkar 43

and Houmansadr, 2021; Karimireddy et al., 2022] share a 44

common inductive bias: the majority gradients are more 45

likely to be honest. Generally, they assign higher weights to 46

the majority gradients. Then they compute the global gradient 47

and use it to update the global model. As a result, the output 48

global gradient of defenses is biased towards the majority of 49

gradients. 50

However, this inductive bias of Byzantine defenses is 51

harmful to Byzantine robustness in FL due to the pres- 52

ence of gradient skewness. In practical FL, data across dif- 53

ferent clients is non-independent and identically distributed 54

(non-IID), which gives rise to heterogeneous honest gradi- 55

ents [McMahan et al., 2017; Li et al., 2020; Karimireddy 56

et al., 2022]. On closer inspection, we find that these het- 57

erogenous honest gradients are highly skewed. In Figure 1, 58

we use Locally Linear Embedding (LLE) [Roweis and Saul, 59

2000] to visualize the honest gradients on CIFAR-10 dataset 60

[Krizhevsky and others, 2009] when data is non-IID split. De- 61

tailed setups and more results are provided in Appendix A. 62

As shown in Figure 1, the majority of honest gradients skew 63



away from the optimal gradient. We term this phenomenon64

as ”gradient skew”.65

When honest gradients are skewed, the defenses’ bias to-66

wards majority gradients is a poison to Byzantine robustness.67

In fact, we can hide Byzantine gradients within the skewed68

majority of honest gradients as shown in Figure 1. In this69

case, the bias of defenses would drive the global gradient70

close to the skewed majority but far from the optimal gra-71

dient.72

In this paper, we study how to exploit the gradient skew73

in the more practical non-IID setting to circumvent Byzan-74

tine defenses. We first formulate the definition of gradient75

skew and theoretically analyze the vulnerability of Byzantine76

defenses under the skew. Based on the above analysis, we77

design a novel two-Stage aTtack based on gRadIent sKEw78

called STRIKE. In particular, STRIKE hides Byzantine gra-79

dients within the skewed majority of the honest gradients as80

shown in Figure 1. STRIKE can take advantage of the gradi-81

ent skew in FL to break Byzantine defenses.82

In summary, our contributions are:83

• To the best of our knowledge, we are the first to dis-84

cover the gradient skew phenomenon in FL: the major-85

ity of honest gradients are skewed away from the opti-86

mal gradient. We theoretically analyze the vulnerabil-87

ity of Byzantine defenses under gradient skew. Under88

the gradient skew, we can circumvent defenses by hid-89

ing Byzantine gradients within the skewed majority of90

honest gradients.91

• Based on the theoretical analysis, we propose a two-92

stage Byzantine attack called STRIKE. In the first stage,93

STRIKE searches for the majority of the honest gra-94

dients under the guidance of Karl Pearson’s formula.95

In the second stage, STRIKE constructs the Byzantine96

gradients within the skewed majority by solving a con-97

strained optimization problem.98

• Experiments on three benchmark datasets validate the99

effectiveness of the proposed attack. For instance,100

STRIKE attack improves upon the best baseline by and101

57.84% against DnC on FEMNIST dataset when there102

are 20% Byzantine clients.103

2 Related Works104

Byzantine attacks. [Blanchard et al., 2017] first disclose105

the Byzantine vulnerability of FL. [Baruch et al., 2019] ob-106

serve that the variance of honest gradients is high enough for107

Byzantine clients to compromise Byzantine defenses. Based108

on this observation, they propose LIE attack that hides Byzan-109

tine gradients within the variance. [Xie et al., 2020] further110

utilize the high variance and propose IPM attack. Particularly,111

they show that when the variance of honest gradients is large112

enough, IPM can make the inner product between the aggre-113

gated gradient and the honest average negative. However, this114

result is restricted to a few defenses, i.e., Median [Yin et al.,115

2018], Trmean [Yin et al., 2018], and Krum [Blanchard et116

al., 2017]. [Fang et al., 2020] establish an omniscient attack117

called Fang. However, Fang attack requires knowledge of118

the Byzantine defense, which is unrealistic in practice. [She-119

jwalkar and Houmansadr, 2021] propose Min-Max and Min- 120

Sum attacks that solve a constrained optimization problem 121

to determine Byzantine gradients. From a high level, both 122

Min-Max and Min-Sum aim to maximize while ensuring the 123

Byzantine gradients lie within the variance. [Karimireddy et 124

al., 2022] propose Mimic attack that takes advantage of data 125

heterogeneity in FL. In particular, Byzantine clients pick an 126

honest client to mimic and copy its gradient. The above at- 127

tacks take advantage of the large variance of honest gradients 128

to break Byzantine defenses. However, they all ignore the 129

skew nature of honest gradients in FL and fail to exploit this 130

vulnerability. 131

Byzantine resilience. [El-Mhamdi et al., 2021; Farhad- 132

khani et al., 2022; Karimireddy et al., 2022] provide state- 133

of-the-art theoretical analysis of Byzantine resilience under 134

data heterogeneity. [El-Mhamdi et al., 2021] discuss the 135

Byzantine resilience in the decentralized, asynchronous set- 136

ting. [Farhadkhani et al., 2022] provide a unified framework 137

for Byzantine resilience analysis, which enables the com- 138

parison among different defenses on a common theoretical 139

ground. [Karimireddy et al., 2022] improve the upper bound 140

of Byzantine resilience by the fraction of Byzantine clients, 141

which recovers the standard convergence rate when there are 142

no Byzantine clients. They all share a common bias: the ma- 143

jority of gradients are more likely to be honest. However, this 144

bias is a poison to Byzantine robustness in the presence of 145

gradient skew. In practical FL, the distribution of honest gra- 146

dients is highly skewed due to data heterogeneity. Therefore, 147

existing defenses are especially vulnerable to attacks that are 148

aware of gradient skew. 149

3 Notations and Preliminary 150

3.1 Notations 151

∥·∥ denotes the ℓ2 norm of a vector. For vector v, (v)k repre- 152

sents the k-th coordinate of v. Model parameters are denoted 153

by w and gradients are denoted by g. We use ḡ to denote the 154

optimal gradient, i.e., the average of honest gradients. And 155

ĝ denotes global gradients obtained by Byzantine defenses. 156

We use subscript i to denote client i and use superscript t to 157

denote communication round t. 158

3.2 Preliminary 159

Federated learning. Suppose that there are n clients and a
central server. The goal is to optimize the global loss function
L(·):

min
w
L(w), where L(w) =

1

n

n∑
i=1

Li(w). (1)

Here w is the model parameter, and Li(·) is the local loss 160

function on client i for i = 1, . . . , n. 161

In communication round t, the central server distributes
global parameter wt to the clients. Each client i performs sev-
eral epochs of SGD to optimize its local loss function Li(·)
and update its local parameter to wt+1

i . Then, each client i
computes its local gradient gt

i and sends it to the server.

gt
i = wt

i −wt+1
i , i = 1, . . . , n. (2)



After receiving gradients, the server aggregates the gradients
and updates the global model to wt+1.

ḡt =
1

n

n∑
i=1

gt
i , wt+1 = wt − ḡt. (3)

Byzantine attack model. Assume that among the to-
tal n clients, f fixed clients are Byzantine clients. Let
B ⊆ {1, . . . , n} denote the set of Byzantine clients and
H = {1, . . . , n} \ B denote the set of honest clients. In each
communication round, Byzantine clients can send arbitrary
messages to bias the global model. The local gradients that
the server receives in the t-th communication round are

gt
i =

{∗, i ∈ B,
wt −wt+1

i , i ∈ H, (4)

where ∗ represents an arbitrary message. Following [Baruch162

et al., 2019; Xie et al., 2020], we consider the setting where163

the attacker only has the knowledge of honest gradients.164

Byzantine resilience. [Blanchard et al., 2017] show that
the popular mean aggregation rule is not resilient to Byzan-
tine attacks. Thus, the server replaces the mean aggrega-
tion rule in Equation (3) with a robust AGgregation Rules
(AGR) A, e.g., Krum [Blanchard et al., 2017], Median [Yin
et al., 2018], to compute the global gradient ĝt and update
the global model to wt+1.

ĝt = A(gt
1, . . . , g

t
n), wt+1 = wt − ĝt. (5)

A body of recent works [Farhadkhani et al., 2022; Karim-165

ireddy et al., 2022; Allouah et al., 2023] have theoretically166

defined Byzantine resilience for general robust AGRs. Par-167

ticularly, we adopt the definition from [Farhadkhani et al.,168

2022] in this work for analysis. We also discuss how our169

analysis can apply to other definitions of Byzantine resilience170

in Appendix B.2.171

Definition 1 ((f, λ)-resilient). Given f < n and λ ≥ 0, an
AGR A is (f, λ)-resilient if for any collection of n vectors
{g1, . . . , gn} and any set G ⊆ {1, . . . , n} of size n− f ,

∥A(g1, . . . , gn)− ḡG∥ ≤ λmax
i,j∈G

∥gi − gj∥, (6)

where ḡG =
∑

i∈G gi/(n − f) is the average of gradients172

{gi | i ∈ G}.173

Essentially, smaller λ means better resilience [Farhadkhani174

et al., 2022].175

4 Vulnerability of Robust AGRs under176

Gradient Skew177

In this section, we show that when honest gradients are178

skewed, we can establish Byzantine attacks to circumvent179

robust AGgregation Rules (AGRs). First, we verify the ex-180

istence of gradient skew in FL and formally define gradient181

skew. Then, we show how to exploit the gradient skew to182

launch Byzantine attacks and circumvent robust AGRs.183

4.1 Gradient Skew in FL Due to Non-IID data 184

Plenty of works [Baruch et al., 2019; Xie et al., 2020; 185

Karimireddy et al., 2022] have explored how large variance 186

can be harmful to Byzantine robustness. However, to the best 187

of our knowledge, none of the existing works is aware of the 188

skewed nature of honest gradients in the non-IID setting and 189

how gradient skew can threaten Byzantine robustness. 190

We take a close look at the distribution of honest gradi- 191

ents in the non-IID setting (without attack). To construct our 192

FL setup, we split CIFAR-10 [Krizhevsky and others, 2009] 193

dataset in a non-IID manner among 100 clients. For more 194

setup details, please refer to Appendix A.1. We run FedAvg 195

[McMahan et al., 2017] for 200 communication rounds. We 196

randomly sample a communication round and use Locally 197

Linear Embedding (LLE) [Roweis and Saul, 2000] to visu- 198

alize the gradients in this communication round in Figure 1. 199

From Figure 1, we observe that the majority of honest gra- 200

dients (blue circles) skew away from the optimal gradient 201

(green stars). More visualization results can be found in Ap- 202

pendix A.2. We name this phenomenon ”gradient skew”. 203

We formulate the definition of gradient skew for further 204

analysis. The idea behind this definition is to measure the 205

skewness of honest gradients by the distance between the ma- 206

jority of honest gradients and the optimal gradient, i.e., the 207

average of honest gradients. 208

Definition 2 ((f, γ)-skewed). The set of honest gradients
{gi | i ∈ H} is called (f, γ)-skewed if there exists a set S ⊆
H of size n− 2f such that

E[∥ḡS − ḡ∥2] ≥ γρ2S , (7)

where ḡ =
∑

i∈H gi/(n − f), ḡS =
∑

i∈S gi/(n − 2f), 209

and ρ2S = E[maxi,j∈S∥gi − gj∥2] is a measure of gradient 210

heterogeneity introduced by [El-Mhamdi et al., 2021]. Here, 211

gradients {gi | i ∈ S} are called the skewed majority (of hon- 212

est gradients), and γ is called the skewness of honest gradi- 213

ents {gi | i ∈ H}. 214

In Definition 2, γ measures the skew degree of the honest 215

gradients. A larger γ indicates a higher skew degree. 216

4.2 Robust AGRs are Brittle under Gradient Skew 217

When the honest gradients are skewed, robust AGRs are ex- 218

tremely vulnerable. In fact, we can hide Byzantine gradients 219

within the majority of honest gradients. This attack strat- 220

egy makes Byzantine gradients stealthy and difficult to detect. 221

The skewed nature of the majority further allows Byzantine 222

gradients to deviate the global gradient away from the opti- 223

mal gradient. The above argument can be formulated as the 224

following lower bound. 225

Proposition 1 (Vulnerability under skew). Given any (f, λ)-
resilient AGRA, if the set of honest gradients {gi | i ∈ H} is
(f, γ)-skewed, then there exist Byzantine gradients {gi | i ∈
B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (8)

where ḡ =
∑

i∈H gi/(n − f) is the optimal gradient, ρ2S = 226

E[maxi,j∈S∥gi − gj∥2], S is the index set of the skewed ma- 227

jority. 228
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(a) We search along the direction usearch = gmed−ḡ. The honest
gradients with the largest scalar projection pi are selected as the
skewed majority of honest gradients (blue circles).

Non-Majority Gradient

Majority Gradient

Optimal Gradient ḡ
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(b) We start from the average of skewed majority ḡS (dark blue
star) and select α such that Byzantine gradient gb (pink cross)
lies within the skewed majority.

Figure 2: Illustration of the proposed two-stage attack STRIKE: in the first stage, STRIKE searches for the skewed majority of honest
gradients; in the second stage, STRIKE hides Byzantine gradients within the skewed majority.

The detailed proof is provided in Appendix B.1. Proposi-229

tion 1 suggests that when the honest gradients are skewed, we230

can always launch Byzantine attacks to deviate the global gra-231

dient from the optimal gradient. Moreover, the more skewed232

the honest gradients are, the farther the global gradient is233

from the optimal gradient. An interesting result in Proposi-234

tion 1 is that smaller λ leads to a larger lower bound in Equa-235

tion (8), which implies that our attack is even more effective236

on robust AGRs with stronger resilience. This is because the237

global gradient obtained by robust AGRs with stronger re-238

silience is closer to the majority of uploaded gradients (in-239

cluding Byzantine and honest). And the majority of uploaded240

gradients are away from the optimal gradients under our at-241

tack. Therefore, a robust AGR with stronger resilience is even242

more sensitive to our attack.243

We further show that the above vulnerability enables us to244

prevent the global model from converging to the optimum for245

any L-smooth global loss function and unbiased honest gra-246

dients. These assumptions are standard in Byzantine robust247

learning [Karimireddy et al., 2021; Farhadkhani et al., 2022].248

Assumption 1 (L-smooth). The loss function is L-smooth,
i.e.,

∥∇L(w)−∇L(w′)∥ ≤ L∥w −w′∥, ∀w,w′ ∈ Rd. (9)

Assumption 2 (Unbias). The stochastic gradients sampled
from any local data distribution are unbiased estimators of
local gradients for all clients, i.e.,

E[gt
i ] = ∇L(wt), ∀i = 1, . . . n, t = 0, . . . , T − 1. (10)

Now we present our main result.249

Proposition 2. Given any (f, λ)-resilient AGR A, L-smooth
global loss function L, and learning rate η ≤ 1/L,
if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all
t = 0, . . . , T − 1, then there exist Byzantine gradients
{gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model

parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2),

t = 1, . . . , T,
(11)

where wt is the parameter of global model in the t-th commu- 250

nication round, w∗ is the global optimum of global loss func- 251

tionL, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt
i − gt

j∥2], and St 252

is the index set of the skewed majority of honest gradients in 253

t-th communication round. 254

The proof of Proposition 2 can be found in Appendix B.1. 255

Proposition 2 indicates that under gradient skew, we can es- 256

tablish Byzantine attacks to keep the global model away from 257

the optimum. The lower bound in Proposition 2 is also 258

aligned with the one in Proposition 1: a larger skewness γ 259

would lead to a larger lower bound, and so does a smaller 260

λ. Note that we do not require the loss function to be non- 261

convex, which implies that Proposition 2 also applies to more 262

challenging convex loss functions. 263

5 Proposed Attack 264

In this section, we introduce the proposed STRIKE attack. 265

As discussed in Section 4, the attack principle of STRIKE 266

is to hide Byzantine gradients within the skewed majority of 267

honest gradients. In order to achieve this goal, we carry out 268

STRIKE attack in two stages: in the first stage, we search for 269

the skewed majority of honest gradients; in the second stage, 270

we construct Byzantine gradients within the skewed majority 271

found in the first stage. The procedure of STRIKE attack is 272

shown in Algorithm 1. 273

Search for the skewed majority. In order to hide the 274

Byzantine gradient in the skewed majority of the honest gra- 275

dients, we first need to find the skewed majority. In particu- 276

lar, we search along the direction designed according to Karl 277

Pearson’s formula [Knoke et al., 2002; Moore et al., 2009]. 278



Algorithm 1 STRIKE Attack
Input: Honest gradients {gi | i ∈ H}, hyperparameter ν > 0 that controls attack strength (default ν = 1)
Output: Byzantine gradients {gb | g ∈ B}

gmed ← Coordinate-wise median of {gi | i ∈ H} # Stage 1: search for the skewed majority
usearch ← gmed − ḡ
for i ∈ H do
pi ← ⟨gi,usearch/∥usearch∥⟩

end for
S ← Set of n− f indices of honest gradients with the highest pi
ḡS ←

∑
i∈S gi/(n− 2f) # Stage 2: hide Byzantine gradients within the skewed majority

σS ← Coordinate-wise standard deviation of {gi | i ∈ S}
solve Equation (20) for α
for b ∈ B do
gb ← ḡS + να · sign(ḡS − ḡ)⊙ σS

end for
return Byzantine gradients {gb | g ∈ B}

The honest gradients farthest from the optimal gradient along279

the direction are selected as the skewed majority of honest280

gradients. Figure 2a illustrates the search procedure in this281

stage.282

Karl Pearson’s formula [Knoke et al., 2002; Moore et al.,
2009] implies that the majority and median lie on the same
side of mean. Therefore, we search for the skewed majority
along the direction usearch defined as:

usearch = gmed − ḡ, (12)

where gmed is the coordinate-wise median of honest gradients283

{gi | i ∈ H}, i.e., the k-th coordinate of gmed is (gmed)k =284

median{(gi)k | i ∈ H}, and ḡ =
∑

i∈H gi/(n − f) is the285

average of honest gradients.286

For each honest gradient gi, we compute its scalar projec-
tion pi on the searching direction usearch:

pi = ⟨gi,
usearch

∥usearch∥
⟩, ∀i ∈ H, (13)

where ⟨·, ·⟩ represents the inner product. The n−2f gradients
with the highest scalar projection values are identified as the
skewed majority. The goal is for AGR to consider the selected
n− 2f gradients as honest and the unselected f gradients as
Byzantine. Let S denote index set, that is

S = Set of (n− 2f) indices of the gradients with (14)
the highest scalar projection pi. (15)

Then the skewed majority of honest gradients are287

{gi | i ∈ S}.288

Hide Byzantine gradients within the skewed majority.289

In this stage, we aim to hide Byzantine gradients {gi | i ∈ B}290

within the skewed majority {gi | i ∈ S} identified in stage291

1. The primary goal of our attack is to disguise Byzantine292

gradients and the skewed majority {gi | i ∈ B ∪ S} as hon-293

est gradients. Meanwhile, the secondary goal is to maximize294

the attack effect, i.e., maximize the distance between these295

”fake” honest gradients and the optimal gradient. The hiding296

procedure in this stage is illustrated in Figure 2b.297

According to Definition 1, robust AGRs are sensitive to the
diameter of gradients. Therefore, we ensure that the Byzan-
tine gradients lie within the diameter of the skewed majority

in order not to be detected.

∥gb − gs∥ ≤ max
i,j∈S

∥gi − gj∥, ∀b ∈ B, s ∈ S. (16)

Meanwhile, we want to maximize the attack effect. There-
fore, we need to maximize the distance between ḡS∪B =∑

i∈S∪B gi/(n− f) and the optimal gradient.

max
{gb|b∈B}

∥ḡS∪B − ḡ∥. (17)

In summary, our objective can be formulated as the follow-
ing constrained optimization problem.

max
{gb|b∈B}

∥ḡS∪B − ḡ∥

s.t. ḡS∪B =
∑

i∈S∪B
gi/(n− f)

∥gb − gs∥ ≤ max
i,j∈S

∥gi − gj∥, ∀b ∈ B, s ∈ S
(18)

Equation (18) is too complex to be solved due to the high
complexity of its feasible region. Therefore, we restrict
{gb | b ∈ B} to the following form:

gb = ḡS + α · sign(ḡS − ḡ)⊙ σS , ∀b ∈ B, (19)

where ḡS =
∑

i∈S gi/(n− 2f) is the average of the skewed 298

majority of honest gradients, α is a non-negative real number 299

that controls the attack strength, sign(·) returns the element- 300

wise indication of the sign of a number,⊙ is the element-wise 301

multiplication, and σS is the element-wise standard deviation 302

of skewed majority {gi | i ∈ S}. ḡS lies within the feasible 303

region of Equation (18), which ensures that {gb | b ∈ B} are 304

feasible when α = 0. sign(ḡS− ḡ) controls the element-wise 305

attack direction, and ensures that gb is farther away from the 306

optimal gradient ḡ under a larger α. σS controls the element- 307

wise attack strength and ensures that Byzantine gradients are 308

covert in each dimension. 309

With the restriction in Equation (19), Equation (18) can be



Table 1: Accuracy (mean±std) under different attacks against different defenses on CIFAR-10, ImageNet-12, and FEMNIST. The best attack
performance is in bold (the lower, the better).

CIFAR-10

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 54.76 ± 0.06 53.73 ± 2.05 56.04 ± 3.13 51.99 ± 2.04 54.44 ± 0.46 60.81 ± 0.56 55.21 ± 3.72
LIE 57.89 ± 0.22 49.20 ± 3.27 53.90 ± 5.43 46.73 ± 4.86 63.11 ± 0.43 61.58 ± 2.85 58.84 ± 0.64
IPM 47.55 ± 1.75 51.68 ± 1.85 55.36 ± 2.10 56.85 ± 2.07 58.75 ± 5.59 62.30 ± 3.60 48.43 ± 0.17
MinMax 59.44 ± 3.41 57.27 ± 0.63 60.20 ± 1.63 57.17 ± 5.50 59.38 ± 5.15 62.53 ± 2.67 57.72 ± 2.94
MinSum 55.47 ± 1.70 52.27 ± 0.53 54.59 ± 2.38 56.43 ± 1.74 54.70 ± 1.96 61.89 ± 1.62 46.78 ± 0.32
Mimic 56.00 ± 4.26 52.55 ± 0.89 53.61 ± 0.86 57.19 ± 2.50 51.00 ± 0.11 62.10 ± 5.22 46.77 ± 2.52
STRIKE (Ours) 42.90 ± 1.97 48.29 ± 0.40 52.92 ± 1.75 38.31 ± 0.47 50.67 ± 0.27 59.16 ± 1.84 44.82 ± 0.97

ImageNet-12

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 59.62 ± 0.73 58.56 ± 4.80 59.71 ± 5.00 61.64 ± 1.98 14.87 ± 1.58 59.78 ± 1.50 58.49 ± 1.99
LIE 62.66 ± 0.30 51.41 ± 1.52 60.99 ± 1.22 54.14 ± 3.14 16.19 ± 3.95 67.85 ± 2.87 67.12 ± 0.39
IPM 52.66 ± 2.01 59.20 ± 2.44 61.25 ± 0.62 59.17 ± 1.27 14.33 ± 5.95 66.31 ± 3.60 55.93 ± 0.57
MinMax 68.17 ± 1.91 67.76 ± 0.07 63.05 ± 0.75 59.33 ± 3.85 20.99 ± 3.07 68.05 ± 1.59 65.99 ± 1.26
MinSum 57.50 ± 3.09 58.78 ± 2.10 64.04 ± 0.69 67.15 ± 0.32 16.38 ± 2.70 68.69 ± 1.18 61.70 ± 1.62
Mimic 66.86 ± 0.04 59.39 ± 6.07 60.45 ± 7.09 58.94 ± 1.27 11.35 ± 2.26 69.07 ± 4.69 55.26 ± 1.30
STRIKE (Ours) 27.24 ± 1.63 42.98 ± 1.62 43.30 ± 3.13 38.11 ± 1.02 8.33 ± 1.85 53.40 ± 4.94 38.81 ± 0.65

FEMNIST

Attack Multi-Krum Median RFA Aksel CClip DnC RBTM

BitFlip 82.67 ± 5.13 71.57 ± 3.61 83.41 ± 4.33 81.42 ± 3.45 83.85 ± 8.50 83.58 ± 5.20 82.58 ± 6.08
LIE 68.11 ± 6.86 58.38 ± 7.06 66.19 ± 7.93 38.48 ± 3.32 73.03 ± 3.86 77.42 ± 5.60 53.35 ± 5.17
IPM 84.12 ± 3.06 72.60 ± 8.42 83.42 ± 4.13 78.28 ± 7.37 84.93 ± 4.41 83.03 ± 5.02 83.21 ± 6.42
MinMax 68.42 ± 5.91 66.44 ± 5.88 71.55 ± 5.98 34.22 ± 4.94 72.12 ± 4.39 75.40 ± 3.78 59.23 ± 3.41
MinSum 62.06 ± 3.13 65.46 ± 3.66 70.36 ± 7.24 44.91 ± 3.90 75.40 ± 4.88 77.11 ± 3.61 68.10 ± 8.86
Mimic 83.15 ± 3.46 74.00 ± 4.79 83.87 ± 3.00 79.06 ± 7.21 83.94 ± 5.25 82.22 ± 5.40 81.92 ± 3.40
STRIKE (Ours) 22.13 ± 7.78 55.19 ± 3.49 39.43 ± 5.06 16.58 ± 3.63 18.88 ± 4.30 17.56 ± 5.95 39.33 ± 11.98

simplified to the following optimization problem,

maxα

s.t. ∥ḡS + α · sign(ḡS)⊙ σS − gs∥ ≤ max
i,j∈S

∥gi − gj∥,

∀s ∈ S,
(20)

which can be easily solved by the bisection method described310

in Appendix C. While α that solves Equation (20) is the-311

oretically provable, we find in practice that an adjusted at-312

tack strength can further improve the effect of STRIKE. We313

use an additional hyperparameter ν(> 0) to control the at-314

tack strength of STRIKE. STRIKE sets gb = ḡS + να ·315

sign(ḡS)⊙σS − gi for all b ∈ B and uploads Byzantine gra-316

dients to the server. Higher ν implies higher attack strength.317

We discuss the performance of STRIKE with different ν in318

Appendix D.2.319

6 Experiments320

6.1 Experimental Setups321

We briefly introduce the tested dataset, compared baseline at-322

tacks, and evaluated defenses in this subsection. Full setups323

are deferred to Appendix D.1.324

Datasets. Our experiments are conducted on three real- 325

world datasets: CIFAR-10 [Krizhevsky and others, 2009], 326

a subset of ImageNet [Russakovsky et al., 2015] refered as 327

ImageNet-12 [Li et al., 2021b] and FEMNIST [Caldas et al., 328

2018]. Please refer to Appendix D.1 for more details about 329

data distribution. 330

Baseline attacks. We consider six state-of-the-art at- 331

tacks: BitFlip [Allen-Zhu et al., 2020], LIE [Baruch et al., 332

2019], IPM [Xie et al., 2020], Min-Max [Shejwalkar and 333

Houmansadr, 2021], Min-Sum [Shejwalkar and Houmansadr, 334

2021], and Mimic [Karimireddy et al., 2022]. The de- 335

tailed hyperparameter setting of these attacks is shown in Ap- 336

pendix D.1. 337

Evaluated defenses. We evaluate the performance of our 338

attack on the following robust AGRs: Multi-Krum [Blan- 339

chard et al., 2017], Median [Yin et al., 2018], RFA [Pillutla 340

et al., 2019], Aksel [Boussetta et al., 2021], CClip [Karim- 341

ireddy et al., 2021] DnC [Shejwalkar and Houmansadr, 342

2021], and RBTM [El-Mhamdi et al., 2021]. Besides, we also 343

consider a simple yet effective bucketing scheme [Karim- 344

ireddy et al., 2022] that adapts existing robust AGRs to the 345

non-IID setting. The detailed hyperparameter settings of the 346

above robust AGRs are listed in Appendix D.1. 347
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Figure 3: Accuracy under different attacks against seven robust AGRs with bucketing on ImageNet-12. The lower, the better.

6.2 Experiment Results348

Attacking against various robust AGRs. Table 1 demon-349

strates the performance of seven different attacks against350

seven robust AGRs on CIFAR-10, ImageNet-12, and FEM-351

NIST datasets. From Table 1, we can observe that: Our352

STRIKE attack generally outperforms all the baseline attacks353

against various defenses on all datasets, which verifies the354

efficacy of our STRIKE attack. On ImageNet-12 and FEM-355

NIST, the improvement of STRIKE over the best baselines is356

more significant. We hypothesize that this is because the skew357

degree is higher on ImageNet-12 and FEMNIST compared to358

CIFAR-10. Since STRIKE exploits gradient skew to launch359

Byzantine attacks, it is more effective on ImageNet-12 and360

FEMNIST. DnC demonstrates almost the strongest resilience361

to previous baseline attacks. This is because these attacks fail362

to be aware of the skew nature of honest gradients in FL. By363

contrast, our STRIKE attack can take advantage of gradient364

skew and circumvent DnC defense. The above observations365

clearly validate the superiority of STRIKE.366

Attacking against robust AGRs with bucketing. Fig-367

ure 3 demonstrates the performance of seven different at-368

tacks against the bucketing scheme [Karimireddy et al., 2022]369

with different robust AGRs. The results demonstrate that our370

STRIKE attack works best against Multi-Krum, RFA, and371

Aksel. When attacking against DnC, Median, and RBTM,372

only MinSum attack be comparable to our STRIKE attack.373

Imparct of ν on STRIKE attack. We study the influence374

of ν on ImageNet-12 dataset. We report the test accuracy375

under STRIKE attack with ν in {0.25 ∗ i | i = 1, . . . , 8}376

against seven different defenses on ImageNet-12 in Figure 5.377

As shown in the Figure 5, the performance of STRIKE is gen-378

erally competitive with varying ν. In most cases, simply set-379

ting ν = 1 can beat almost all the attacks (except for CClip,380

yet we observe that the performance is low enough to make381

the model useless).382

The effectiveness of STRIKE attack under different383

non-IID levels. We vary Dirichlet concentration parameter384

β in {0.1, 0.2, 0.5, 0.7, 0.9} to study how our attack behaves385

under different non-IID levels. We additionally test the per-386

formance in the IID setting. As shown in Figure 6, the accu-387

racy generally increases as β decreases for all attacks. The 388

accuracy under our STRIKE attack is consistently lower than 389

that os all the baseline attacks. Besides, we also note that the 390

accuracy gap between our STRIKE attack and other baseline 391

attacks gets smaller when the non-IID level decreases. We 392

hypothesize the reason is that gradient skew is milder as the 393

non-IID level decreases, which aligns with our theoretical re- 394

sults in Propositions 1 and 2. Even in the IID setting, our 395

STRIKE attack is competitive compared to other baselines. 396

The performance of STRIKE attack with different 397

Byzantine client ratio. We vary the number of Byzantine 398

clients f in {5, 10, 15, 20} and fix the total number of clients 399

n to be 50. In this way, Byzantine client ratio f/n varies 400

in {0.1, 0.2, 0.3, 0.4} to study how our attack behaves under 401

different Byzantine client ratio. As shown in Figure 7, the 402

accuracy generally decreases as f/n increases for all attacks. 403

The accuracy under our STRIKE attack is consistently lower 404

than all the baseline attacks. 405

The performance of STRIKE attack with different 406

client number. We vary the number of total clients n in 407

{10, 30, 50, 70, 90} and set the number of Byzantine clients 408

f = 0.2n accordingly. The results are posted in Figure 8 in 409

Appendix D.2. As shown in Figure 8, the accuracy generally 410

decreases as client number n increases for all attacks. The 411

accuracy under our STRIKE attack is consistently lower than 412

all the baseline attacks under different client number. 413

7 Conclusion 414

In this paper, we theoretically analyze the vulnerability of ex- 415

isting defenses in the non-IID setting due to the skewed na- 416

ture of honest gradients. Based on the analysis, we propose a 417

novel STRIKE attack that can exploit the vulnerability. Gen- 418

erally, STRIKE hides Byzantine gradients within the skewed 419

majority of honest gradients. In order to achieve this goal, 420

STRIKE first searches for the skewed majority of honest gra- 421

dients, then constructs Byzantine gradients within the skewed 422

majority by solving a constrained optimization problem. Em- 423

pirical studies on three real-world datasets justify the efficacy 424

of our STRIKE attack. 425
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A Visualization of Gradient Skew557

In order to gain insight into the gradient distribution, we use Locally Linear Embedding (LLE) 1 [Roweis and Saul, 2000] to558

visualize the gradients. From the visualization results, we observe that the distribution of gradient is skewed throughout FL559

training process when the data across different clients is non-IID. In this section, we first provide the detailed experimental560

setups of the observation experiments and then present the visualization results.561

A.1 Experimental Setups562

For CIFAR-10, we set the number of clients n = 100 and the Dirichlet concentration parameter β = 0.1. For ImageNet-12, we563

set the number of clients n = 50 and the Dirichlet concentration parameter β = 0.1. For FEMNIST, we adopt its natural data564

partition as introduced in Section 6.1. For all three datasets, we set the number of Byzantine clients f = 0. For CIFAR-10 and565

FEMNIST, we sample 100 clients to participate in training in each communication round. More visualized gradients would help566

us capture the characteristic of gradient distribution. For ImageNet-12, we sample 50 clients in each communication round.567

This is because we train ResNet-18 on ImageNet-12 and LLE on 100 gradients of ResNet-18 would be intractable due to the568

high dimensionality. Other setups align with Table 4.569

For LLE, we set the number of neighbors to be k = 0.1m, where m is the number of sampled clients, to capture both local570

and global geometry of gradient distribution.571

A.2 Gradient Visualization Results572

On each dataset, we run FedAvg for T communication round. Among the total T communication rounds, we randomly sample573

6 rounds for visualization. For each round, we use LLE to visualize all the gradients and the optimal gradient (the average of574

all gradients) in this round. Please note that LLE is not linear. Therefore, the optimal gradient after the LLE may not be the575

average of all uploaded gradients after LLE. The visualization results are posted in Figure 4 below. In Figure 4, the majority of576

gradients skew away from the optimal gradient. These results imply that the gradient distribution is skewed during the entire577

training process.578

B Theoretical Analysis: Exploit Gradient Skew to Circumvent Byzantine Defenses579

We first recall all the definitions and assumptions for the integrity of this section.580

Definition 1 ((f, λ)-resilient). Given f < n and λ ≥ 0, an AGR A is (f, λ)-resilient if for any collection of n vectors
{g1, . . . , gn} and any set G ⊆ {1, . . . , n} of size n− f ,

∥A(g1, . . . , gn)− ḡG∥ ≤ λmax
i,j∈G

∥gi − gj∥, (21)

where ḡG =
∑

i∈G gi/(n− f) is the average of gradients {gi | i ∈ G}.581

1Compared to LLE, t-SNE [Van der Maaten and Hinton, 2008] is a more popular visualization technique. Since t-SNE adjusts Gaussian
bandwidth to locally normalize the density of data points, t-SNE can not capture the distance information of data. However, gradient skew
relies heavily on distance information. Therefore, t-SNE is not appropriate for the visualization of gradient skew. In contrast, LLE can
preserve the distance information of data distribution.
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Figure 4: Visualization of gradient skew on three benchmark datasets.



Definition 2 ((f, γ)-skewed). The set of honest gradients {gi | i ∈ H} is called (f, γ)-skewed if there exists a set S ⊆ H of
size n− 2f such that

E[∥ḡS − ḡ∥2] ≥ γρ2S , (22)

where ḡ =
∑

i∈H gi/(n − f), ḡS =
∑

i∈S gi/(n − 2f), and ρ2S = E[maxi,j∈S∥gi − gj∥2] is a measure of gradient het-582

erogeneity introduced by [El-Mhamdi et al., 2021]. Here, gradients {gi | i ∈ S} are called the skewed majority (of honest583

gradients), and γ is called the skewness of honest gradients {gi | i ∈ H}.584

Assumption 1 (L-smooth). The loss function is L-smooth, i.e.,

∥∇L(w)−∇L(w′)∥ ≤ ∥w −w′∥, ∀w,w′ ∈ Rd. (23)

Assumption 2 (Unbias). The stochastic gradients sampled from any local data distribution are unbiased estimators of local
gradients for all clients, i.e.,

E[gt
i ] = ∇L(wt), ∀i = 1, . . . n, t = 0, . . . , T − 1. (24)

B.1 Proofs585

Supporting Lemma586

We start with proving the lemma stated below.587

Lemma 1. Given any d-dimensional random vectors X and Y , the following inequalities hold:

(
√

E[∥X∥2]−
√
E[∥Y ∥2])2 ≤ E[∥X + Y ∥2] ≤ (

√
E[∥X∥2] +

√
E[∥Y ∥2])2 (25)

Proof. E[∥X + Y ∥2] can be written as follows,

E[∥X + Y ∥2] = E[∥X∥2 + ∥Y ∥2 + 2⟨X,Y ⟩] = E[∥X∥2] + E[∥Y ∥2] + 2E[⟨X,Y ⟩]. (26)

According to the Cauchy–Schwarz inequality, we have

|E[⟨X,Y ⟩]| ≤ E[|⟨X,Y ⟩|] ≤ E[∥X∥∥Y ∥] ≤ E[∥X∥2]E[∥Y ∥2]. (27)

That is

−E[∥X∥2]E[∥Y ∥2] ≤ E[⟨X,Y ⟩] ≤ E[∥X∥2]E[∥Y ∥2]. (28)

Combine Equation (26) and Inequality (28), then we have

E[∥X + Y ∥2] ≥ E[∥X∥2] + E[∥Y ∥2]− 2E[∥X∥2]E[∥Y ∥2] = (
√
E[∥X∥2]−

√
E[∥Y ∥2])2, (29)

and

E[∥X + Y ∥2] ≤ E[∥X∥2] + E[∥Y ∥2] + 2E[∥X∥2]E[∥Y ∥2] = (
√
E[∥X∥2] +

√
E[∥Y ∥2])2. (30)

588

Proof of Proposition 1589

We recall the proposition statement below.590

Proposition 1 (Vulnerability under skew). Given any (f, λ)-resilient AGR A, if the set of honest gradients {gi | i ∈ H} is
(f, γ)-skewed, then there exist Byzantine gradients {gi | i ∈ B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (31)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index set of the skewed majority.591

Proof. According to Definition 2, there exists S ⊆ H of size n− 2f and γ > 1 such that

E[∥ḡS − ḡ∥2] = γρ2S . (32)

For all i ∈ B, we set Byzantine gradient gi = ḡS . We then show that, under this attack, the aggregation error is lower-592

bounded as shown in Equation (8).593

We consider the average and heterogeneity of the forged honest gradients {gi | i ∈ S ∪ B}.594



The average is computed as follows.

ḡB∪S =
1

n− f

∑
i∈B∪S

gi (33)

=
1

n− f
(
∑
i∈B

gi +
∑
i∈S

gi) (34)

=
1

n− f
(f ḡS + (n− 2f)ḡS) (35)

= ḡS . (36)
Then we consider the heterogeneity of gradients {gi | i ∈ S ∪ B} ρS∪B. 595

For all b ∈ B and i ∈ S,
∥gb − gi∥2 = ∥ḡS − gi∥2 (37)

= ∥ 1

n− 2f

∑
j∈S

gj − gi∥2 (38)

= ∥ 1

n− 2f

∑
j∈S

(gj − gi)∥2 (39)

≤ 1

n− 2f

∑
j∈S
∥gj − gi∥2 (40)

≤ max
j∈S
∥gj − gi∥2 (41)

where Inequality (40) comes from the Cauchy inequality. 596

Then for the heterogeneity of {gi | i ∈ S ∪ B}, we have:

ρ2B∪S =E[ max
i,j∈B∪S

∥gi − gj∥2] (42)

=E[max
i,j∈S

∥gi − gj∥2] (43)

=ρ2S . (44)

For notation simplicity, we denote A(g1, . . . , gn) by ĝ. Then we can lower bound E[∥ĝ − ḡ∥2] as follows

E[∥ĝ − ḡ∥2] = E[∥(ḡ − ḡS∪B)− (ĝ − ḡS∪B∥))2] (45)

= E[∥(ḡ − ḡS)− (ĝ − ḡS∪B∥))2] (46)

≥ (
√
E[∥ḡ − ḡS∥]2 −

√
E[∥ĝ − ḡS∪B∥2])2. (47)

Here, Equation (46) is due to Equation (33), Inequality (47) relies on Lemma 1 597

We can lower bound term
√

E[∥ḡ − ḡS∥2]−
√
E[∥ĝ − ḡS∪B∥2] as follows.√

E[∥ḡ − ḡS∥2]−
√

E[∥ĝ − ḡS∪B∥2] ≥
√
γ · ρ2S −

√
λ2ρ2S∪B (48)

=
√
γ · ρ2S −

√
λ2ρ2S (49)

= (

√
γ

λ
− 1)λρS (50)

≥ (

√
γ

λ
− 1)

f

n− f
· ρS (51)

= Ω(

√
γ

λ
· f

n− f
· ρS) (52)

where Equation (48) results from Equation (32) and Equation (6), Equation (49) relies on Equation (44). In Inequality (51), we 598

use the fact λ ≥ f/(n− f) from [Farhadkhani et al., 2022]. 599

We combine Inequality (47) and Equation (52) for the final conclusion in Equation (8):

E[∥ĝ − ḡ∥2] = Ω(
γ

λ2
· f2

(n− f)2
· ρ2S). (53)

600



Proof for Proposition 2601

We recall the proposition statement below.602

Proposition 2. Given any (f, λ)-resilient AGR A, L-smooth global loss function L, and learning rate η ≤ 1/L,
if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T − 1, then there exists Byzantine gradients
{gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2), t = 1, . . . , T, (54)

where wt is the parameter of global model in the t-th communication round, w∗ is the global optimum of global loss function603

L, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt
i − gt

j∥2], and St is the index set of the skewed majority of honest gradients in t-th604

communication round.605

Proof. According to Proposition 1, for all t = 0, . . . , T − 1, there exist Byzantine gradients {gt
i | i ∈ B} such that

E[∥ĝt − ḡt∥2] ≥ C · γ
λ2
· f2

(n− f)2
· (ρt)2, (55)

where C is a constant, and (ρt)2 = maxi,j∈St∥gt
i − gt

j∥2, and St is the skewed majority of the honest gradients in t-th
communication round. Let ρ2 = mint=1,...,T−1(ρ

t)2, then we have

E[∥ĝt − ḡt∥2] ≥ C · γ
λ2
· f2

(n− f)2
· ρ2, (56)

We prove Equation (8) in the following two different cases.606

Case 1. E[∥wt −w∗∥2] < Cη2γf2ρ2/4λ2(n− f)2.607

Since wt+1 = wt − ηĝt, we can rewrite ∥wt+1 −w∗∥2 as follows.

∥wt+1 −w∗∥2 = ∥(wt − ηĝt)−w∗∥2 (57)

= ∥(∇L(wt)− ηĝt) + (wt −w∗ − η∇L(wt))∥2 (58)

= ∥(∇L(wt)− ηĝt) + (wt −w∗ − η(∇L(wt)−∇L(w∗)))∥2. (59)

In Equation (59) we use the fact that∇L(w∗) = 0.608

Combine Equation (59) and Lemma 1, we can lower bound E[∥wt+1 −w∗∥2] as follows,

E[∥wt+1 −w∗∥2] = ∥(∇L(wt)− ηĝt) + (wt −w∗ − η(∇L(wt)−∇L(w∗)))∥2 (60)

≥ (η
√
E[∥∇L(wt)− ĝt∥2]︸ ︷︷ ︸

A

−
√
E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2]︸ ︷︷ ︸

B

)2. (61)

To obtain a further lower bound for Equation (61) amounts to give lower and upper bound for terms A and B, respectively.609

To lower bound term A, again we use Lemma 1,

E[∥∇L(wt)− ĝt∥2] = E[∥(ḡt − ĝt) + (∇L(wt)− ḡt)∥2] (62)

≥ (
√

E[∥ḡt − ĝt∥2]−
√

E[∥∇L(wt)− ḡt∥2])2 (63)

≥ (
√
C ·
√
γ

λ
· f

n− f
· ρ− σ√

n− f
)2. (64)

Here, σ2 =
∑

i∈H Var[gt
i ]/(n − f) is the average variance of stochastic gradients. Inequality (64) is a combined result of610

Equation (56) and the law of large numbers.611

We apply Lemma 1 to upper-bound term B as follows,

E[∥wt −w∗ − (∇L(wt)−∇L(w∗))∥2] ≤ E[(∥wt −w∗∥+ η · L∥wt −w∗∥)2] (65)

= (1 + Lη)2E[∥wt −w∗∥2] (66)

≤ (1 + Lη)2 · C
4
· η2 · γ

λ2
· f2

(n− f)2
· ρ2 (67)



Combine Inequality (64) and Inequality (67), we have

E[∥wt+1 −w∗∥2] ≥(η(
√
C ·
√
γ

λ
· f

n− f
· ρ− σ√

n− f
)− η(1 + Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ)2 (68)

= (
η(1− Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ− σ√

n− f
)2 (69)

= Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2) (70)

Here Equation (70) uses the fact that SGD variance σ2 is negligible with respect to the gradient heterogeneity ρ2. 612

Case 2. E[∥wt −w∗∥2] ≥ Cη2γf2ρ2/4λ2(n − f)2. In this case, we let Byzantine gradients behave honestly such that
ĝt = ḡt. Then E[∥wt+1 −w∗∥2] can be lower-bounded as follows.

E[∥wt+1 −w∗∥2] = E[∥(wt − ηḡt)−w∗∥2] (71)

= E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))− η(ḡt −∇L(wt))∥2] (72)

≥ (
√

E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2]− η
√
E[∥ḡt −∇L(wt)∥2])2. (73)

In Equation (72) we use the fact that∇L(w∗) = 0, and Equation (73) comes from Lemma 1 613

We first lower-bound E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2],
E[∥wt −w∗ − η(∇L(wt)−∇L(w∗))∥2] ≥ E[(∥wt −w∗∥ − η · L∥wt −w∗∥)2] (74)

= (1− Lη)2E[∥wt −w∗∥2] (75)

≥ (1− Lη)2 · C
4
· η2 · γ

λ2
· f2

(n− f)2
· ρ2 (76)

Then we upper-bound E[∥ĝt −∇L(wt)∥2]
E[∥ĝt −∇L(wt)∥2] = E[∥ḡt −∇L(wt)∥2] (77)

≤ σ2

n− f
(78)

Here, σ2 =
∑

i∈H Var[gt
i ]/(n− f) is the average variance of stochastic gradients. 614

Combining Equation (76) and Equation (78), we have

E[∥wt+1 −w∗∥2] ≥ (
η(1− Lη)

2
·
√
Cγ

λ
· f

n− f
· ρ− η

σ√
n− f

)2 (79)

= Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2) (80)

Here Equation (80) uses the fact that SGD variance σ2 is negligible with respect to the gradient heterogeneity ρ2. 615

In both cases, we have

E[∥wt+1 −w∗∥2] = Ω(η2(1− Lη)2 · γ
λ2
· f2

(n− f)2
· ρ2), t = 0, . . . , T − 1, (81)

which completes the proof 616

617

B.2 Application to Other Definitions of Byzantine Resilience 618

In this section, we discuss how our analysis applies to other definitions of Byzantine resilience. In particular, we consider the 619

definitions of Byzantine resilience in recent works of [Karimireddy et al., 2022; Allouah et al., 2023]. 620

Circumvent (δmax, c)-AGRs 621

The following formulation of Byzantine resilience in [Karimireddy et al., 2022] improves the upper bound by the fraction of 622

Byzantine clients, and thus can recover the standard convergence rate when there are no Byzantine clients. 623

Definition 3 ((δmax, c)-AGR). A robust AGR gA is called a (δmax, c)-AGR if, given any input {g1, . . . , gn} of which a subset
of at least size |G| > (1− δ)n for δ ≤ δmax < 0.5 and satisfies E[∥gi − gj∥] ≤ ρ2, the output ĝ of AGR A satisfies:

E[∥ĝ − ḡG∥2] ≤ cδρ2 where ĝ = Aδ(g1, . . . , gn), ḡG =
∑
i∈G

gi/(n− f). (82)



We show that any (δmax, c)-AGR A also satisfies the resilience defined in Definition 1624

Proposition 3. Any (δmax, c)-AGR A is (f, λ)-resilient for any f ≤ δmaxn and λ =
√
cδ.625

Proof. Consider any deterministic vectors {g1, . . . , gn}, f ≤ δmaxn, and subset G ⊆ {1, . . . , n} of size n − f . According to
Definition 3, we have

∥ĝ − ḡG∥2 ≤ cδρ2 (83)

where ĝ = Aδ(g1, . . . , gn), ḡG =
∑

i∈G gi/(n − f), δ = f/n, and ρ2 ≥ maxi,j∈G ∥gi − gj∥2 The expectation is dropped
since input vectors {g1, . . . , gn}, f ≤ δmaxn are deterministic. We take ρ2 = maxi,j∈G ∥gi − gj∥ take the square root of both
sides of Inequality (83), then we have

∥ĝ − ḡG∥ ≤
√
cδ max

i,j∈G
∥gi − gj∥. (84)

Therefore, A is (f, λ)-resilient for any f ≤ δmaxn and λ =
√

cf/n.626

Combining Proposition 3 with Proposition 1 and Proposition 2, the following corollaries are obvious.627

Corollary 1. Given any (δmax, c)-AGR A with δmax ≥ f/n, if the set of honest gradients {gi | i ∈ H} is (f, γ)-skewed, then
there exist Byzantine gradients {gi | i ∈ B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

c
· f

n− f
· ρ2S). (85)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index set of the skewed majority.628

Corollary 2. Given any (δmax, c)-resilient AGR A with δmax ≥ f/n, L-smooth global loss function L, and learning rate
η ≤ 1/L, if honest gradients {gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T − 1, then there exists Byzantine gradients
{gt

b | b ∈ B, t = 0, . . . , T − 1} such that the global model parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
c
· f

n− f
· ρ2), t = 1, . . . , T, (86)

where wt is the parameter of global model in the t-th communication round, and w∗ is the global optimum of global loss629

function L.630

Circumvent (f, κ)-robust AGRs631

The following notion of Byzantine resilience in [Allouah et al., 2023] is also a unified robustness criterion that is fine-grained632

to obtain tight convergence guarantees.633

Definition 4 ((f, κ)-robust). Let f < n/2 and κ ≥ 0, a robust AGR gA is called (f, κ)-robust] if for any input {g1, . . . , gn}
and any set G ⊆ G of size n− f , the output ĝ of AGR A satisfies:

∥A(g1, . . . , gn)− ḡG∥ ≤
κ

n− f

∑
i∈S
∥gi − ḡG∥2 where ḡG =

∑
i∈G

gi/(n− f). (87)

We show that any (f, κ)-robust A also satisfies the resilience defined in Definition 1.634

Proposition 4. Any (f, κ)-robust AGR A is (f, λ)-resilient for λ =
√
κ.635

Proof. Given any deterministic vectors {g1, . . . , gn} and subset G ⊆ {1, . . . , n} of size n− f . According to Definition 4, we
have

∥ĝ − ḡG∥2 ≤
κ

n− f

∑
i∈S
∥gi − ḡG∥2 ≤

κ

n− f

∑
i∈S

max
j∈G
∥gi − gj∥ ≤ κmax

i,j∈G
∥gi − gj∥2 (88)

We take take the square root of both sides of Inequality (88), then we have

∥ĝ − ḡG∥ ≤
√
κmax

i,j∈G
∥gi − gj∥ (89)

Therefore, A is (f, λ)-resilient for λ =
√
κ.636

Combining Proposition 4 with Proposition 1 and Proposition 2, the following corollaries are obvious.637



Corollary 3. Given any (f, κ)-robust AGR A, if the set of honest gradients {gi | i ∈ H} is (f, γ)-skewed, then there exist
Byzantine gradients {gi | i ∈ B} such that

E[∥A(g1, . . . , gn)− ḡ∥2] ≥ Ω(
γ

κ
· f2

(n− f)2
· ρ2S). (90)

where ḡ =
∑

i∈H gi/(n− f) is the optimal gradient, ρ2S = E[maxi,j∈S∥gi − gj∥2], S is the index set of the skewed majority. 638

Corollary 4. Given any (f, κ)-robust AGRA, L-smooth global loss function L, and learning rate η ≤ 1/L, if honest gradients
{gt

i | i ∈ H} are (f, γ)-skewed for all t = 0, . . . , T − 1, then there exists Byzantine gradients {gt
b | b ∈ B, t = 0, . . . , T − 1}

such that the global model parameter is bounded away from the global optimum w∗:

E[∥wt −w∗∥2] ≥ Ω(η2(1− Lη)2 · γ
κ
· f2

(n− f)2
· ρ2), t = 1, . . . , T, (91)

where wt is the parameter of global model in the t-th communication round, w∗ is the global optimum of global loss function 639

L, ρ2 = mint=0,...,T−1 E[maxi,j∈St∥gt
i − gt

j∥2], and St is the index set of the skewed majority of honest gradients in t-th 640

communication round. 641

C Bisection Method to Solve Equation (20) 642

In this section, we present the bisection method used to solve Equation (20). We define f(·) as follows.

f(α) = max
i∈S
∥ḡS + α · sign(ḡS)⊙ σS − gi∥ − max

i,j∈S
∥gi − gj∥, α ∈ [0,+∞). (92)

We can easily verify the following facts: 1. f(0) ≤ 0, f(α)→ +∞ when α→ +∞; 2. f(·) is continuous; 3. f(·) has unique 643

zero point in [0,+∞). Therefore, optimizing Equation (20) is equivalent to finding the zero point of f(·), which can be easily 644

solved by bisection method in Algorithm 2.

Algorithm 2 Bisection method
Input: The skewed majority of honest gradients {gi | i ∈ S}, tolerance ε > 0, max iteration M > 0

αmin ← 0
αmax ← 1
while f(α) < 0 do
αmax ← 2αmax

end while
iter ← 0
while αmax − αmin > ε and iter < M do
αmid ← (αmax + αmin)/2
if f(αmid) < 0 then

αmin ← αmid
else
αmax ← αmid

end if
iter ← iter + 1

end while
α← (αmax + αmin)/2
return α

645

D Experimental Setups and Additional Experiments 646

D.1 Experimental Setups 647

Data Distribution 648

For CIFAR-10 [Krizhevsky and others, 2009] and ImageNet-12, we use Dirichlet distribution to generate non-IID data by 649

following [Yurochkin et al., 2019; Li et al., 2021a]. For each class c, we sample qc ∼ Dirn(β) and allocate a (qc)i portion 650

of training samples of class c to client i. Here, Dirn(·) denotes the n-dimensional Dirichlet distribution, and β > 0 is a 651

concentration parameter. We follow [Li et al., 2021a] and set the number of clients n = 50 and the concentration parameter 652

β = 0.5 as default. 653

For FEMNIST, the data is naturally partitioned into 3,597 clients based on the writer of the digit/character. Thus, the data 654

distribution across different clients is naturally non-IID. For each client, we randomly sample a 0.9 portion of data as the 655

training data and let the remaining 0.1 portion of data be the test data following [Caldas et al., 2018]. 656



Hyperparameter Setting of Baselines Attacks657

The compared baseline attacks are: BitFlip [Allen-Zhu et al., 2020], LIE [Baruch et al., 2019], IPM [Xie et al., 2020], Min-Max658

[Shejwalkar and Houmansadr, 2021], Min-Sum [Shejwalkar and Houmansadr, 2021], and Mimic [Karimireddy et al., 2022].659

The hyperparameter setting of the above attacks is listed in the following table.

Table 2: The hyperparameter setting of six baseline attacks. N/A represents there is no hyperparameter required for this attack.

Attacks Hyperparameters

BitFlip N/A
LIE z = 1.5
IPM ε = 0.1
Min-Max γinit = 10, τ = 1× 10−5, ∇p: coordinate-wise standard deviation
Min-Sum γinit = 10, τ = 1× 10−5, ∇p: coordinate-wise standard deviation
Mimic N/A

660

The Hyperparameter Setting of Evaluated Defenses661

The performance of our attack is evaluated on seven recent robust defenses: Multi-Krum [Blanchard et al., 2017], Median [Yin662

et al., 2018], RFA [Pillutla et al., 2019], Aksel [Boussetta et al., 2021], CClip[Karimireddy et al., 2021] DnC [Shejwalkar663

and Houmansadr, 2021], and RBTM [El-Mhamdi et al., 2021]. The hyperparameter setting of the above defenses is listed in664

the following table. we also consider a simple yet effective bucketing scheme [Karimireddy et al., 2022] that adapts existing

Table 3: The hyperparameter setting of seven evaluated defenses. N/A represents there is no hyperparameter required for this defense.

Defenses Hyperparameters

Multi-Krum N/A
Median N/A
RFA T = 8
Aksel N/A
CClip L = 1, τ = 10
DnC c = 1,niters = 1, b = 1000
RBTM N/A

665
defenses to the non-IID setting. We follow the original paper and set the bucket size to be s = 2.666

Evaluation667

We use top-1 accuracy, i.e., the proportion of correctly predicted testing samples to total testing samples, to evaluate the668

performance of global models. The lower the accuracy, the more effective the attack. We run each experiment five times and669

report the mean and standard deviation of the highest accuracy during the training process.670

Other Setups671

The number of Byzantine clients of all datasets is set to f = 0.2 · n. We test STRIKE with ν ∈ {0.25 · i | i = 1, . . . , 8} and672

report the lowest test accuracy (highest attack effectiveness).673

The hyperparameter setting for datasets FEMNIST [Caldas et al., 2018], CIFAR-10 [Krizhevsky and others, 2009] and674

ImageNet-12 [Russakovsky et al., 2015] are listed in below Table 4.675



Table 4: Hyperparameter setting for FEMNIST, CIFAR-10 and ImageNet-12. # is the number sign. For example, # Communication rounds
represents the number of communication rounds.

Dataset FEMNIST CIFAR-10 ImageNet-12

Architecture CNN
[Caldas et al., 2018]

AlexNet
[Krizhevsky et al., 2017]

ResNet-18
[He et al., 2016]

# Communication
rounds 800 200 200

# Sampled Clients 10 50 50

# Local epochs 1 1 1
Optimizer SGD SGD SGD
Batch size 128 128 128
Learning rate 0.5 0.1 0.1
Momentum 0.5 0.9 0.9
Weight decay 0.0001 0.0001 0.0001
Gradient clipping Yes Yes Yes
Clipping norm 2 2 2

D.2 Additional Experiments 676

Performance under Varying Hyperparameter ν 677

We study the influence of ν on ImageNet-12 dataset. We report the test accuracy under STRIKE attack with ν in {0.25 ∗ i | 678

i = 1, . . . , 8} against seven different defenses on ImageNet-12 in Figure 5. We also report the lowest test accuracy (best 679

performance) of six baseline attacks introduced in Section 6.1 as a reference. Please note that a lower accuracy implies higher 680

attack effectiveness. 681

As shown in the Figure 5, the performance of STRIKE is generally competitive with varying ν. In most cases, simply setting 682

ν = 1 can beat other attacks (except for CClip, yet we observe that the performance is low enough to make the model useless). 683

The impact of ν value is different for different robust AGRs: for Median and RFA, the accuracy is relatively stable under 684

different νs; for CClip and Multi-Krum, the accuracy is lower with larger νs; for Aksel and DnC, the accuracy first decreases 685

and then increases as ν increases. 686
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Figure 5: Accuracy under STRIKE attack with ν in {0.25 ∗ i | i = 1, . . . , 8} against seven different defenses on ImageNet-12. The
gray dashed line in each figure represents the lowest test accuracy (best performance) of six baseline attacks introduced in Section 6.1. We
include it as a reference. The lower the accuracy, the more effective the attack. Other experimental setups align with the main experiment as
introduced in Section 6.1.

Performance under Different Non-IID Levels 687

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all datasets. Therefore, we fix the de- 688

fense to be DnC in this experiment. As discussed in Appendix D.2, simply setting ν = 1 yields satisfactory performance of our 689



STRIKE attack. Thus, we fix ν = 1 in this experiment. We vary Dirichlet concentration parameter β in {0.1, 0.2, 0.5, 0.7, 0.9}690

to study how our attack behaves under different non-IID levels. Lower β implies a higher non-IID level. We additionally test691

the performance in the IID setting. Other setups align with the main experiment as introduced in Section 6.1. The results are692

posted in Figure 6 below.693

As shown in Figure 6, the accuracy generally increases as β decreases for all attacks. The accuracy under our STRIKE attack694

is consistently lower than all the baseline attacks. Besides, we also note that the accuracy gap between our STRIKE attack and695

other baseline attacks gets smaller when the non-IID level decreases. We hypothesize the reason is that gradient skew is milder696

as the non-IID level decreases, which aligns with our theoretical results in Propositions 1 and 2. Even in the IID setting, our697

STRIKE attack is competitive compared to other baselines.698
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Figure 6: Accuracy under different attacks against DnC under different non-IID levels on ImageNet12. Lower β implies a higher non-IID
level. ”IID” implies that the data is IID distributed. The lower, the better. Other setups align with the main experiment as introduced in
Section 6.1.

Performance under Different Byzantine Client Ratio699

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all datasets. Therefore, we fix the700

defense to be DnC in this experiment. As discussed in Appendix D.2, simply setting ν = 1 yields satisfactory performance of701

our STRIKE attack. Thus, we fix ν = 1 in this experiment. We vary the number of Byzantine clients f in {5, 10, 15, 20} and702

fix the total number of clients n to be 50. In this way, Byzantine client ratio f/n varies in {0.1, 0.2, 0.3, 0.4} to study how our703

attack behaves under different Byzantine client ratio. Other setups align with the main experiment as introduced in Section 6.1.704

The results are posted in Figure 7 below.705

As shown in Figure 7, the accuracy generally decreases as f/n increases for all attacks. The accuracy under our STRIKE706

attack is consistently lower than all the baseline attacks. The results suggest that all attacks are more effective when there are707

more Byzantine clients. Meanwhile, our attack is the most effective under different Byzantine client number.708
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Figure 7: Accuracy under different attacks against DnC under different Byzantine client ratio on ImageNet12. The lower, the better. Other
setups align with the main experiment as introduced in Section 6.1.



Performance under Different Client Number 709

As shown in Table 1, DnC demonstrates the strongest robustness against various attacks on all datasets. Therefore, we fix the 710

defense to be DnC in this experiment. As discussed in Appendix D.2, simply setting ν = 1 yields satisfactory performance of 711

our STRIKE attack. Thus, we fix ν = 1 in this experiment. We vary the number of total clients n in {10, 30, 50, 70, 90} and set 712

the number of Byzantine clients f = 0.2n accordingly. In this way, We can study how our attack behaves under different client 713

number. Other setups align with the main experiment as introduced in Section 6.1. The results are posted in Figure 8 below. 714

As shown in Figure 8, the accuracy generally decreases as client number n increases for all attacks. The accuracy under our 715

STRIKE attack is consistently lower than all the baseline attacks under different client number. 716
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Figure 8: Accuracy under different attacks against DnC under different client number on ImageNet12. The lower, the better. Other setups
align with the main experiment as introduced in Section 6.1.
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