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Abstract
Federated learning (FL) faces with severe backdoor1

threats. Due to the inaccessibility of clean sam-2

ples, the parameter server cannot clean them up in3

real time even if poisoning features are discovered.4

Meanwhile, existing backdoor defence methods al-5

ways require sacrificing model accuracy or increas-6

ing communication delay in exchange for better FL7

trustworthiness, which is unpractical in real sce-8

narios. To address these challenges, we propose9

a novel data-free and swift backdoor purification10

(DSBP) scheme based on multi-teacher adversar-11

ial distillation, which can effectively erase various12

backdoor variants in FL. The DSBP treats the pu-13

rification task as an adversarial game process be-14

tween knowledge inheritance and backdoor inhibi-15

tion, with the goal of enforcing the student model16

to learn the ensemble results of multiple teacher17

models on reconstructed clean samples, while be-18

ing insensitive to synthetic poisoned samples. In19

DSBP, we propose to utilize the self-similarity of20

poisoned features to optimize the trigger gener-21

ator, which is essential to accelerate the conver-22

gence of DSBP during the adversarial distillation23

process. We validate that the effectiveness of pro-24

posed DBSP by comparing with 4 state of-the-art25

defense approaches against 3 backdoor variants on26

3 datasets. The aversage attack success rate can be27

reduced from 96.6% to 2.3% with only 200 epochs.28

1 Introduction29

Federated learning (FL) coordinates a large number of dis-30

tributed clients to complete a global model training task over31

massive local data samples [Lim et al., 2020]. A typical32

FL system mainly includes two kinds of entities: 1) clients,33

which can receive learning tasks and submit model updates;34

2) servers, which can aggregate distributed model updates35

to obtain a global model based on specific rules. Recently,36

backdoor attacks on FL obtains increasing attention due to37

the high attack success rate they have achieved [Li et al.,38

2022]. New backdoor variants in FL render previous back-39

door defense methods that aim to do everything possible (.i.e.,40

trigger removal, ensemble prediction ) at the client side to41

disrupt the necessary backdoor implantation conditions use- 42

lessly [Hayase et al., 2021]. Firstly, FL infrastructures are 43

often delivered by open-source platforms (such as WeBank 44

FATE, TensorFlow-federated, PaddleFL, etc). Such third- 45

party FL infrastructure offers a venue for new backdoor vari- 46

ants, such as poisoning the pre-trained models [Jia et al., 47

2022], neuron hijacking [Liu et al., 2018b], and even code 48

poisoning [Bagdasaryan and Shmatikov, 2020]. Secondly, 49

in a real FL scenario, the cost of identifying poisoned sam- 50

ples one by one is very huge. Moreover, since FL does 51

not usually require every node to participate in the training 52

process, it is difficult to determine the deployment location, 53

timing, and scale of existing defense methods [Goldblum et 54

al., 2022]. In terms of backdoor purification methods that 55

target to remove backdoors from the final delivered mod- 56

els [Qiao et al., 2019; Wang et al., 2019; Li et al., 2021; 57

Liu et al., 2021], it’s workflow is often divided into two 58

stages: 1) model diagnosing, 2) model sanitizing. The former 59

stage aims to determine if the suspect model really contains 60

a hidden backdoor [Chen et al., 2019b; Kolouri et al., 2020; 61

Xu et al., 2021]. The model sanitizing stage aims to “for- 62

get” hidden backdoors using fine-tuned [Wang et al., 2019], 63

pruned [Liu et al., 2018a], or distilled [Li et al., 2021]. 64

Although many defence methods have been validated to 65

perform reasonably well in experimental settings, three trou- 66

bles it still should deal with in real-world FL systems: 1) Lack 67

of adaptability to multiple backdoor variants. During the 68

whole backdoor purification process, the criteria for model 69

diagnosis is extremely rigid so that it will not work when the 70

adversary changes attack modes [Wang et al., 2019]. In other 71

words, it will suffer from a high misdiagnosis rate. 2) Hin- 72

dering the model accuracy. As the intensity of model purifi- 73

cation increases, the backdoor gets weaker. But evaluations 74

in [Yan et al., 2023] show that existing data-driven methods 75

have unacceptable model accuracy degradation (10%) on the 76

CIFAR10 dataset when all employed backdoors are wiped 77

out. In the FL scenario, this degradation will be more sharply. 78

Our work: We propose a novel data-free swift backdoor 79

purification (DSBP) scheme for trustworthy FL, in which a 80

multi-teacher adversarial distillation (MAD) mechanism is 81

designed to train a clean student model with reconstructed 82

data. In DSBP, two teacher models are used: 1) weak model 83

Tw at training round r, 2) strong model Ts at training round 84

r + k. The larger r is, the higher the model accuracy is. The 85



DSBP integrates backdoor detection and sanitation into one86

adversarial game procedure, where a clean student model S87

is obtained by absorbing the knowledge of Ts and Tw, while88

discards hidden backdoors. Given a backdoored model, two89

mutually-exclusive objectives will be jointly optimizing: 1)90

knowledge inheritance, which maximizes the similarity be-91

tween the outputs of Ts and the ensemble results of S and Tw92

over the entire input space, absorbing the knowledge from Ts93

and Tw, and 2) backdoor inhibition, which minimizes the ex-94

pected output change of S w.r.t. the input change. By jointly95

optimizing these two objectives based on the MAD mecha-96

nism, S∗ finally reaches the desired equilibrium: it inherits97

the knowledge of Ts and Tw (achieving the same accuracy98

on benign samples), and shows high robustness to malicious99

samples that can trigger the hidden backdoors in Ts. Our con-100

tributions are summarized as follows:101

• We propose a novel wisdom of backdoor purification102

and create a tool, named as DSBP, which can swiftly103

cures the backdoored FL model without clean training104

samples. To the best of our knowledge, DSBP is the105

fastest and most practical backdoor purification method106

for real FL systems.107

• A multi-teacher adversarial distillation (MAD) mecha-108

nism is proposed to optimize an adversarial game proce-109

dure, which requires to achieve an equilibrium state be-110

tween knowledge inheritance and backdoor inhibition.111

Therein, trigger generator is optimized based on the self-112

similarity of poisoned features.113

• We conduct comprehensive evaluations involving 3 stan-114

dard image datasets, several different sizes of patched115

triggers, 4 state of the art backdoor defences, and 3 kinds116

of backdoor variants. Specially, the average attack suc-117

cess rate can be reduced from 96.6% to 2.3% with only118

about 200 epochs.119

2 Related Work120

2.1 Backdoor Attacks on FL121

Recently, many practical backdoor attacks on FL have been122

constructed. Wang et al. [Wang et al., 2020] firstly verify123

that adversarial examples can be used by edge-case backdoor124

attacks. Bagdasaryan et al. [Bagdasaryan et al., 2020] pro-125

pose the first backdoor attack against FL, which selects spe-126

cific semantics as the triggers for generating poisoned sam-127

ples. Considering multiple colluding malicious clients, Xie128

et al. [Xie et al., 2020] formulate a distributed backdoor at-129

tack (DBA) method, in which each malicious client poisons130

local data with one kind of semantics and then forms a back-131

doored model that is only sensitive to the composited global132

trigger. Similarly, A.P. Sundar et al. [Sundar et al., 2022] uti-133

lize sizably-discrete local triggers to implant backdoors and134

validates its stealthiness using the DeepLIFT visual feature135

interpretation tool. Gong et al. [Gong et al., 2022] propose136

to use the model-agnostic triggers to increase the attack suc-137

cess rate of DBA. Zhang et al. [Zhang et al., 2022] find that138

tampering model parameters can improve the persistence of139

backdoor in FL. Xiao et al. [Xiao et al., 2022] demonstrate140

that malicious clients also can create some Sybil nodes to ma- 141

nipulate the FL aggregation process, making the poisoned lo- 142

cal models aggregated with higher probability. 143

2.2 Backdoor Purification for Trustworthy FL 144

Available backdoor purification methods mainly include two 145

classes: 1) Backdoor diagnosis. Unlike methods for pre- 146

venting backdoor implantation, the goal of backdoor diag- 147

nosis is to determine whether a pre-trained model contains 148

a backdoor. Neural Cleanse [Wang et al., 2019] identifies 149

hidden backdoors by clustering the reconstructed triggers of 150

each class. Qiao et al. [Qiao et al., 2019] improve the per- 151

formance of Neural Cleanse by recognizing the possible dis- 152

tribution space of triggers. 2) Backdoor erasing. Authors in 153

[Li et al., 2021; Yan et al., 2023] propose to distillate a clean 154

student model from the backdoored model. However, in FL, 155

due to inaccessibility of clean samples, the convergence speed 156

of backdoor erasing is too slow to adapt to the model aggre- 157

gation process. 158

We observe that the reason why existing defences can not 159

perform well in real FL scenarios is that backdoor prevention, 160

backdoor deactivation and backdoor erasing are independent 161

with each other. To swiftly sanitize hidden backdoors with- 162

out training samples, more powerful black-box backdoor pu- 163

rification methods should be appreciated. Therefore, in this 164

paper, we conduct the data-free and swift backdoor purifica- 165

tion (DSBF) scheme based multi-teacher adversarial distilla- 166

tion, which puts backdoor diagnosis and erasing into a unified 167

pipeline. 168

3 Data-free and Swift Backdoor Purification 169

In FL, the adversaries may design adaptive attacks to bypass 170

existing backdoor purification. Therefore, to conduct a more 171

powerful and efficient method that can purify hidden back- 172

doors in a black-box way, we firstly identify the attacker’s 173

possible intentions. Subsequently, we present the defender’s 174

expectations and introduce the framework of proposed DSBP. 175

3.1 Attacker’s Intentions 176

We have the below assumptions for attacker’s intentions ac- 177

cording to Fang et al. [Fang et al., 2020]: i) They can arbi- 178

trarily manipulate its local training data and model updates to 179

implant backdoors once a client is captured. ii) They can re- 180

configure local training settings (e.g., the learning rate and the 181

number of training iterations). Malicious clients do not know 182

benign clients’ settings, but attackers can assume that defense 183

strategies exist in the FL system and deploy corresponding 184

evasion methods [Wang et al., 2020; Bhagoji et al., 2019; 185

Ning et al., 2022]. Besides, since the stochastic gradient 186

descent may monotonically decrease the loss function, the 187

accuracy of intermediate global model gradually increases 188

along with the model training rounds. Therefore, an addi- 189

tional basic assumption can be established: For any input 190

x, Acc(fr+1
θ (x)) > Acc(fr

θ (x)), which means that using 191

fr+1
θ as a teacher model will distill a better student model 192

Sr+1. And also, data samples reconstructed from fr+1
θ will 193

has higher quality. Specially, the teacher models in DSBP are 194

denoted as Ts = fr+k and Tw = fr, respectively. 195



Figure 1: The proposed DSBP scheme. An adversarial game be-
tween knowledge inheritance and backdoor inhibition is illustrated.
The knowledge inheritance is designed to transfer the teacher mod-
els’ reactions to the student model. Only when the Tw is backdoored,
the student model will learn both normal reactions and backdoor re-
actions. Backdoor inhibition is designed to suppress the sensitivity
of the student model to backdoor triggers, whereR is minimized.

3.2 Defender’s Expectations196

Instead of adopting the previous popular settings [Wang et al.,197

2019; Qiao et al., 2019; Li et al., 2021; Chen et al., 2019b]198

where model updates are accessible, and also different from199

the settings in [Yan et al., 2023] where only the backdoored200

model acts as the teacher model, we study a more practical201

setting, where the defender only can receive the delivered202

global models in each training round but does not have the203

ability to access model updates to execute model diagnosis.204

And also, it can not obtain clean samples to fine-tune the de-205

livered global models. Formally, the delivered global model206

at the training round r + k is denoted as T r+k
s : X 7→ Rnc ,207

which takes image x with size H × W × C as inputs and208

output a class score vector q ∈ Rnc . Moreover, we use T r
w209

to denote the delivered global model at the training round r,210

which has the same input and output size. Usually, after k211

training rounds, the accuracy of T r+k
s is higher than that of212

T r
w . During the k training rounds, if there are some malicious213

clients that have submitted poisoned updates to backdoor the214

FL-based system, the T r+k
s will be backdoored. In this case,215

T r+k
s predicts the poisoned images as the attacker-specified216

label yp. The defender’s goal is to transform the knowledge217

of teacher models T r+k
s and T r

w into a clean student model S218

without transferring hidden backdoors.219

3.3 Multi-teacher Adversarial Distillation220

We emphasize here the superiority of proposed DSBP via221

multi-teacher adversarial distillation (MAD) in real FL sce-222

narios. 1) Better match with actual needs: In many real-223

world cases such as face recognition, medical diagnosing,224

and so on, the defender does not want to erase backdoors225

frequently due to the high overheads and adverse effects on226

model accuracy. Our methods make it possible for the de-227

fender to swiftly construct a clean student model without228

accessing to clean samples and sacrificing model accuracy.229

Therefore, the DSBP will be more popular for large-scale230

deployments in real FL-based systems. 2) scalable and in- 231

dependent: Previous methods mainly use clean samples to 232

fine-tune the backdoored model, but their performance may 233

severely decrease if the attacker uses complex triggers [Xie 234

et al., 2020]. Our method can adaptively inverse various trig- 235

ger variants by updating the trigger generators. Therefore, we 236

believe our work will obtain rapid practical deployments. 237

In this subsection, we will further clarify the workflow 238

of MAD. The backdoored model T r+k
s and T r

w are distilled 239

into a clean student model S, where the generalized objective 240

function of MAD is formulated as: 241

S = argmin
S

L(T r+k
s , T r

w ,S)

= argmin
S

D(T r+k
s , λ1T r

w + (1− λ1)S) + λ2R(S)
(1)

The first term D(T r+k
s , λ1T r

w + (1− λ1)S) is designed to 242

measure the discrepancy between outputs of T r+k
s and the en- 243

semble results of S and T r
w , therein λ1 is a hyper-parameter 244

that should be carefully adjusted. Minimizing this discrep- 245

ancy is equivalent to transferring the knowledge of T r+k
s and 246

T r
w to S. Compared to previous data-free distillation strate- 247

gies, the additional teacher model T r
w has two important func- 248

tions: 1) Accelerating knowledge inheritance, 2) Tracing the 249

poisoned training rounds. The second term R(S) is a inhi- 250

bition term that tries to restrain possible backdoors in S. By 251

jointly minimizing these two terms using a MAD mechanism, 252

we can distil a clean student model that absorbs the teacher’s 253

knowledge but discards backdoor reactions. In DSBP, we de- 254

sign two adversarial processes to simultaneously optimize D 255

and R. Two adversarial processes are respectively denoted 256

as: 1) knowledge inheritance and 2) backdoor inhibition. 257

Knowledge Inheritance (KI) 258

We utilize two intermediate global models to teach the stu- 259

dent model, achieving high accuracy on clean samples. Four 260

possible situations are considered: 1) Both T r+k
s and T r

w are 261

backdoored, 2) Only T r+k
s is backdoored, 3) Both T r+k

s and 262

T r
w are clean, 4) Only T r

w is backdoored. Intuitively, the stu- 263

dent model S is optimized to mimic the output of the teacher 264

models according to the principle of knowledge distillation. 265

Instead of using clean training data as inputs of all participa- 266

tion models, we design a sample generator G : Rn 7→ X to 267

dynamically generate false training samples that can make the 268

discrepancies between T r+k
s and λ1T r

w +(1−λ1)S be larger 269

during the training process. Meanwhile, the student model 270

S adversarially updates itself to minimize the discrepancy on 271

the generated false samples. In our KI framework, the dis- 272

crepancy between T r+k
s and (1− λ1)S + λ1T r

w is optimized 273

by the Mean Absolute Error (MAE) of model’s pre-softmax 274

outputs over randomly-generated false samples. The discrep- 275

ancy is shown as follows: 276

D(T r+k
s , T r

w ,S;G) = Ez∼pz(z)

[∥∥∥T r+k
s (G(z))− [(1− λ1)

S(G(z)) + λ1T r+k
w (G(z))]

∥∥∥
1

]
(2)

where z is a random noise sampled from the normal distri- 277

bution. In KI, both T r+k
s and T r

w are fixed, while G and S 278



are updated to optimize Eq.1 respectively. Once S catches up279

with the teachers over currently generated false samples, G280

will move forward to the next available space. For Situation281

1), two teacher models are backdoored so that G may gen-282

erate trigger-implanted false samples and transfer the back-283

doors into the student model. For Situation 2), the hidden284

backdoors in T r+k
w are forgotten if a small λ1 is configured.285

For Situation 3), a clean S will be achieved. For Situation 4),286

S will also be backdoored when λ1 7→ 0, but it can not be287

backdoored if λ1 7→ +∞. In summary, we can get a clean S288

by adjusting the size of λ1 except for Situation 1). In the next289

subsection, we will introduce how to comprehensively purify290

the backdoor reactions in Situation 1) using the Eq.3.291

Backdoor Inhibition (BI)292

In data-free scenario, we need retrieve the production of sam-293

ple space X and trigger space Σ if we want the adversarial294

process between KI and BI to converge. However, directly295

optimizing this adversarial process is extremely difficult be-296

cause the production of these two spaces is too large. To pre-297

vent from transferring backdoor reactions to S, an intuitive298

method is to make S exhibit strong robustness to the triggers299

with ℓ1 distances. To speed up the trigger search process,300

we consider that in targeted backdoor attacks, once data from301

different classes are patched with triggers, they will all be302

classified into the target class, defining as the self-similarity303

of poisoned features. To this end, the student model is desig-304

nated to predict the same result for inputs x, x+p and x′+p:305

R(S) = Ex,x′∼X

[∥∥S(x)− S(x+ p)
∥∥
1

+λ3

∥∥S(x′ + p)− S(x+ p)
∥∥
1

] (3)

where λ3 is a hyper-parameter that can be used to adjust the306

convergence speed of BI.307

3.4 Overall Training Process of DSBP308

Based on the above analysis, the overall training process of309

proposed DSBP scheme is the combination of KI (Eq.2) and310

BI (Eq.3). We summarize the coupled training processes as a311

whole objective function as follows:312

max
G,Gt

min
S

L(T r+k
s , T r

w ,S, G,Gt) = max
G,Gt

min
S

{D(T r+k
s ,

T r
w ,S;G) + λ2R(S;Gt)}

(4)

Here we take Situation 1) where both T r+k
s and T r

s are313

backdoored as an example. We initialize the student model314

is same with T r+k
s . And then, we sequentially train S and315

simultaneously update the generators according to Alg. 1.316

In each training round, we first update S with k times317

(same as [Fang et al., 2019] to achieve a stable G, we set318

k = 5 in all of our experiments) to optimize Eq.4. And then,319

Gt is updated to generate a trigger that can maximizes the320

backdoor redaction. Finally, we will update S to make it be321

robust to all inputs.322

4 Experiments323

In this section, we first describe our experiment settings, and324

then we introduce the evaluation results of proposed DSBP325

Algorithm 1: Training process of DSBP under Situa-
tion 2)

1: Input: A backdoored teacher model T r+k
s (·, θt), batch

size B, λ1, λ2, learning rates αs, αg , αgt, loss weight βgt, .
2: Output: A clean student model S(·, θs).
3: Initialize the student model’s weights θs with θt.
4: Randomly initialize the sample generator G(·, θg) and

the semantic trigger generator Gt(·, θgt).
5: for The number of training iterations do
6: for k steps do
7: Randomly generate B samples {xi} and B triggers {pi}

with G and Gp;
8: Ls = 1/B

∑
i(∥T

r+k
s (xi)− [(1− λ1)S(xi)+

λ1T r
w ]∥1 + λ2∥S(xi)− S(xi + pi)∥1);

9: Update θs ← θs − αs∇θsLs;
10: end for
11: Randomly generate B samples {xi} with G;
12: Lg = −1/B

∑
i(∥T

r+k
s (xi)− [(1− λ1)S(xi)+

λ1T r
w (xi)]∥1);

13: Update θg ← θg − αg∇θgLg;
14: Randomly generate B samples {xi} and B triggers

{pi} with G and Gt;
15: Lgt = −1/B

∑
i{∥S(xi)− S(xi + pi)∥1 +

λ3∥S(xi + pi)− S(x′
i + pi)∥1};

16: Update θgt ← θgt − αgt∇θgtLgt

17: end for

scheme against the well-known backdoor attacks on FL and 326

compare the achieved effects with state of the art backdoor 327

defence methods. 328

4.1 Experimental Settings 329

Basic experiment settings for running environments is con- 330

figured as the same with [Yan et al., 2023], including default 331

parameters such as batch size, learning rate, client number, 332

trigger size, available model structures. The biggest differ- 333

ence is that this article focuses on FL attack and defense, thus 334

the pending-purified victim models are pre-trained using the 335

state of the art attacks on FL introduced in 4.1. 336

Benchmark Datasets 337

Three standard image datasets are employed to evaluate the 338

proposed framework, including MNIST, CIFAR10 and Mini- 339

ImageNet. 340

Backdoor Attack Settings 341

We employ three typical backdoor attacks on FL with dif- 342

ferent backdoor injecting mechanism: model scaling [Bag- 343

dasaryan et al., 2020], DBA [Xie et al., 2020] and Neurotoxin 344

[Zhang et al., 2022]). We use 3 different size of triggers for 345

each attack method. For a fair comparison, we re-implement 346

these backdoor attacks and create backdoored models using 347

the same Resnet-18 architecture provided by PyTorch. The 348

total number of FL clients is configured as 100 and each 349

epoch has less than 5 malicious clients. The scaling factor 350

for all backdoor attacks is configured as 100. As a common 351

practice for training small datasets with Resnet-18, the conv1 352

layer (kernal size = 7, stride = 2) is replaced by conv 353

(kernal size = 3, stride = 1) and the first Pooling layer 354

is canceled to deal with inputs of size 32× 32 (i.e. CIFAR10 355



Table 1: Comparison results of DSBP to data-driven and data-free purification methods on CIFAR10 dataset against different backdoor attacks
and different size of triggers. Numbers are displayed as percentages.

Attack
Methods

Trigger
Size

Backdoored
t=’truck’

Finepruning NAD GDM DHBE DSBP
Nclean = 2000 Nclean = 2000 Nclean = 2000 No data (r=1500) No data (r=300)

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Model scaling
2× 2 84.75 98.92 82.70 12.8 82.75 0.38 77.92 0.25 83.05 1.2 83.77 0.25
3× 3 85.02 99.39 81.17 9.2 82.87 7.08 78.39 0.37 82.96 1.4 84.11 0.33
5× 5 85.11 99.28 81.96 57.8 82.41 8.76 78.21 0.46 83.24 1.7 83.88 0.27

Neurotoxin
2× 2 64.85 96.32 63.49 17.5 60.28 1.22 56.39 0.92 63.19 1.1 63.49 0.56
3× 3 65.04 93.45 63.39 37.9 60.21 9.98 57.33 1.21 64.11 1.7 64.12 0.52
5× 5 68.82 99.00 64.74 54.1 60.69 9.57 58.08 0.68 65.45 1.4 64.02 0.54

DBA
1× 4 77.91 91.60 68.65 12.6 71.24 0.4 67.57 0.03 74.96 1.8 75.11 0.38
1× 5 76.67 98.70 68.90 18.0 70.49 3.2 65.98 0.21 73.40 2.1 74.95 0.22
1× 6 75.58 92.87 67.79 53.4 70.67 5.6 64.88 0.23 72.58 2.4 72.52 0.12

Mean ACC/ASR 75.97 96.61 71.42 30.37 71.29 5.13 73.86 0.484 73.66 1.64 74.00 0.35

in our experiments). For inputs of size 64 × 64 (i.e. Mini-356

ImageNet in our experiments), the conv1 layer is replaced by357

conv (kernal size = 5, stride = 2).358

Configurations for Backdoor Purification Methods:359

Available backdoor purification methods in FL mainly in-360

clude data-driven and data-free methods. Fig. 2 illustrates the361

architectural comparison between data-free and data-driven362

methods. Three data-driven methods: 1) Finepruning [Liu et363

al., 2018a], 2) NAD [Li et al., 2021], and 3) GDM [Qiao et364

al., 2019], are implemented as baselines. For these baselines,365

4% of clean training gsamples (about 2000 samples) are avail-366

able for the defender. Data-free method acting as baseline is367

DHBE [Yan et al., 2023], which combines model inversion368

[Fredrikson et al., 2015] with knowledge distillation [Chen et369

al., 2019a]. However, DHBE requires at least 1000 rounds to370

reduce ASR to within 10%. Moreover, the effect of DHBE371

is extremely sensitive to its hyper-parameters. In DSBP,372

since two teacher models are used, more hyper-parameters373

are needed as illustrated in Eq. 1 and Eq. 3. Therein, λ2374

is inherited from the DHBE and we configure λ2 as 0.1 in375

all experiments. The λ1 is a new hyper-parameter that en-376

ables the student model to imitate the updating process377

of the teacher model, rather than inherit the knowledge378

of the teacher model. Further analysis about λ2 is included379

in ablation experiments. λ3 is another new hyper-parameter,380

controlling the convergence speed of proposed DSBP. For the381

optimizer, we globally employ an SGD optimizer with initial382

learning rate of 0.1, momentum of 0.9, and weight decay of383

5e − 4 to update the student model, and use an Adam opti-384

mizer with initial learning rate of 1e-3 to update two different385

generators. The student model and the generators are jointly386

optimized for 50 iterations × 200 epochs, where the student387

is updated by five times and generators are updated once in388

one iteration. 128 fake samples and triggers are generated389

in each iteration. The learning rates of SGD optimizer and390

Adam optimizer are decayed by 0.1 at epoch 180 and 240,391

respectively.392

4.2 Purifying Hidden Backdoors393

Since the effectiveness of data-driven methods depends on394

how confident the defender is that the given model contains395

Figure 2: Architectural comparison between data-free sanitizing
methods and data-driven sanitizing methods in FL. Data-free san-
itizing methods are dominated by the FL server and can work well
without accessing to original samples.

backdoor, we omit their backdoor diagnosing process and di- 396

rectly observe and report their backdoor purification perfor- 397

mance. As for the comparison to existing data-free method, 398

we focus on discussing hyper-parameter selection and conver- 399

gence speed. Our experimental results show that the proposed 400

DSBP scheme demonstrates superior performance than both 401

data-driven and data-free methods. 402

Comparison with Data-driven Methods 403

Comparison results of our framework with data-driven meth- 404

ods on different backdoor attacks are shown in Table 1. It 405

shows that the DSBP outperforms data-driven methods by a 406

large margin on all kinds of backdoor attacks: The DSBP 407

only sightly degrades the performance of the original model 408

(about 1.97%), and reduce the attack success rate of all 409

triggers to nearly neglectable. In contrast, the results of 410

Finepruning, and NAD has about 4.5% accuracy degradation 411

when the learning rate is set to 0.01. Under this setting, the 412

backdoor purification effectiveness of Finepruning is unstable 413

and failed to suppress ASR below 10% on some triggers. The 414



results of NAD perform better under multiple scenarios, the415

ASRs of most triggers are suppressed below 10%, but NAD416

still requires clean samples. The GDM achieves much better417

results than NAD and finepruning methods since it conducts418

the recovering routines of different triggers and then specifi-419

cally erases the hidden backdoor. But the robustness of trig-420

gers recovered in GDM can not be guaranteed due to data421

imbalance in FL. Despite the above weak performance, the422

effectiveness of data-driven methods is extremely sensitive to423

hyperparameters and the quantity of the clean dataset.424

a) Data-driven methods become less effective as the425

trigger invisibility increases. We define three invisibility426

levels for triggers in backdoor attacks: 1) Low invisibil-427

ity: All malicious clients use the same trigger and samples428

patched with such trigger is easily detected using outlier de-429

tection or visual verification. 2) Medium invisibility: Each430

malicious client uses customized triggers, and only the global431

trigger can activate hidden backdoors, rendering client-side432

detection methods ineffective. 3) High invisibility: Sample-433

specific triggers are used to implant backdoors into the FL434

model. This level of invisibility usually requires the use of435

advanced data analysis and model detection techniques, as436

well as highly specialized and in-depth domain knowledge to437

be detected and identified. Figure 3 illustrates the triggers438

under different invisibility levels.

Figure 3: Illustration of our experimental settings with different trig-
ger invisibility levels.

439

To visually present the relationship between trigger invis-440

ibility and defense effectiveness, we use “0”, “1” and “2” to441

represent the invisibility levels. Fig. 4 shows the records of442

ASR after deploying different data-driven methods. When443

there is no defense strategy, the ASR of backdoor attacks can444

exceed 96% using any form of trigger. However, as the invis-445

ibility of triggers increases, the effectiveness of data-driven446

methods decreases. Moreover, this decline in effectiveness is447

pronounced on complex datasets.448

b) Data-driven methods are extremely sensitive to the449

learning rate and the quantity of the clean dataset. Since450

the DBSP is extended from DHBE, basic comparison exper-451

iments on this point can refer to [Yan et al., 2023] for saving452

the texture space. The DSBP scheme is insensitive to hy-453

perparameters (e.g., the learning rate, λ1, and λ2) due to its454

adversarial design, being demonstrated in ablation studies.455

Figure 4: Effectiveness comparison with data-driven methods on
MNIST and CIFAR10. As the invisibility of triggers increases, the
effectiveness of data-driven methods decreases.

Comparison with Data-free Methods 456

Data-free backdoor purification method has not been widely 457

studied yet. We only compare with DHBE [Yan et al., 2023]. 458

As S and Gt are updated adversarially and simultaneously, 459

all triggers that can be generated by Gt will be mitigated. In 460

DSBP, the G is optimized using [Chen et al., 2019a] and Gt 461

is optimized using Eq. 3. With these tricks, the distribution 462

of generated samples is more equilibrium and the quality of 463

generated data is also more real. the DSBP has comparable 464

performance with DHBE under FL scenarios for the whole 465

training process of DSBP only needs 200 epochs.

Figure 5: Robustness of DSBP to λ1 against DHBE.

466
Moreover, we also compare the robustness of DHBE and 467

DSBP to hyper-parameter λ1. In this experiment setting, we 468

select two DBA pre-trained models as the strong teacher Ts 469

and the weak teacher Tw, the weak teacher is not backdoored 470

and also acts as the student model S. λ2 is configured as 0.1 471

for all testings. Specially, we do not use any boosting strate- 472

gies on DHBE as the baseline. Figure 5 shows the compar- 473

ison results between DSBP and DHBE on robustness to λ1. 474

Both λ1 = 0.1 and λ1 = 0.001 enforce the DHBE to be un- 475

available. However, the performance of the proposed DSBP 476

increases as λ1 decreases, making the parameter conditions 477

easier and more interpretable. 478



4.3 Ablation Studies479

In this subsection, we show that the effectiveness of the pro-480

posed DSBP is insensitive to a wide range of choices of hy-481

perparameters, and DSBP is able to deal with backdoor at-482

tacks with different size of triggers using a same set of hyper-483

parameters. These ablation studies suggest that our backdoor484

purification framework is robust enough and can be deployed485

in real-world applications with little trouble.486

The effectiveness of ℓ1 Vs. Smooth-ℓ1487

Seen from Table 1, both data-driven and data-free methods re-488

quire additional 1500-2000 training rounds, which is imprac-489

tical in actual federated learning scenarios, as we cannot wait490

for thousands of additional training rounds before proceeding491

to the next model aggregation. Intuitively, Eq. 7 is the key to492

sanitize the hidden backdoor, but using ℓ1 as the loss function493

is difficult to balance the impact of outliers and noise on the494

distillation process, resulting in slow convergence speed. Fig.495

6 compares the effect of backdoor inhibition under the sce-496

narios of using Smooth-ℓ1 and ℓ1, indicating that Smooth-ℓ1497

can achieve the accelerated backdoor inhibition.498

Figure 6: The ASR records with ℓ1 and Smooth-ℓ1 when λ3 = 0.

Trigger size Vs. Convergence speed499

Existing backdoor purification methods need to determine the500

shape, size, texture, and location of actual triggers, and com-501

monly present better when the trigger size is smaller. For trig-502

gers with low invisibility level and medium invisibility level,503

when the trigger size increases from 2 × 2 to 5 × 5, the ef-504

fectiveness of all data-driven methods will decrease. For trig-505

gers with high invisibility levels, this weakness will extend to506

data-free methods. Authors of DHBE suggest that more neu-507

rons may be influenced by larger triggers, causing it hard to508

be erased by model unlearning and knowledge distillation. In509

contrast, the proposed DSBP framework appears to be more510

effective for larger triggers because the trigger generator in511

DSBP will try its best to produce larger triggers to cover the512

real triggers. In DBA, if the size of the local trigger on each513

malicious client is configured as 1× 4 and the number of the514

triggers is configured as 4, then the global trigger size will be515

larger than 4× 4 (actually it is often configured as 7 ∗ 4) be-516

cause the minimum distance between each local trigger is 1.517

In our experiment, we use the coverage of the global trigger518

size by the noise size set on the generator as a metric to study519

the impact of trigger generator settings on defense effective-520

ness and model convergence speed. Table 2 presents the spe-521

cific experimental results, which show that the size of the trig-522

ger has little effect on the defense effectiveness of DSBP, but523

the above coverage metric has a significant impact on model524

convergence speed (named as “Convg”), i.e., as the coverage 525

increases, the convergence speed of DSBP increases. How- 526

ever, when the coverage exceeds 1, the convergence speed 527

gradually decreases as the coverage increases. 528

Table 2: Comparison between different trigger generator settings.
The trigger number is configured as 4 for all.

Gp Local trigger Min-area Max-coverage Convg

5 × 5
1 × 4 7 × 4 0.25 1200
1 × 5 7 × 5 0.25 1500
1 × 6 7 × 6 0 -

10 × 10
1 × 4 7 × 4 ≥ 1 1000
1 × 5 7 × 5 ≥ 1 800
1 × 6 7 × 6 ≥ 1 500

The impact of λ3 on DSBP 529

DSBP’s ability to quickly sanitize hidden backdoors is at- 530

tributed to the self-similarity of poisoned features, which is 531

weighted using λ3. In our experiments, we test the impact of 532

λ3 on the convergence speed of proposed DSBP scheme, and 533

the results on different datasets are shown in Table 3. Three 534

weight values of λ3 are configured: 1) 0, 2) 0.1, 3) 0.3. It 535

can be observed that the ASR discrepancy increases sharply 536

as the value of λ3 increases. 537

Table 3: The impact of λ3 on DSBP over different datasets. The
student model is trained with 200 epochs.

Datasets λ3 Acc ASR Discrepancy
0 96.78 62.44 -34.66

MNIST 0.1 96.62 5.32 -91.78
0.3 96.60 1.02 -96.08
0 72.67 53.21 -43.47

CIFAR10 0.1 72.31 6.59 -90.1
0.3 73.26 0.97 -95.71
0 73.59 54.93 -41.82

Mini-Imagenet 0.1 73.77 6.82 -89.93
0.3 73.52 1.21 -95.53

5 Conclusion 538

In this paper, a novel data-free and swift backdoor purifica- 539

tion (DSBP) scheme based on multi-teacher adversarial distil- 540

lation is proposed, which can effectively erase various back- 541

door variants in FL. The DSBP models the purification task as 542

an adversarial game process between knowledge inheritance 543

and backdoor inhibition, with the goal of enforcing the stu- 544

dent model to learn the ensemble results of multiple teacher 545

models on reconstructed clean samples, while being insen- 546

sitive to synthetic poisoned samples. To accelerate the con- 547

vergence of DSBP during the adversarial distillation process, 548

we also propose to utilize the self-similarity of poisoned fea- 549

tures to optimize the trigger generator. Extensive experiments 550

based on 3 benchmark datasets against 4 state of-the-art de- 551

fense approaches over 3 backdoor variants demonstrate the 552

effectiveness of proposed DSBP. 553
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