FedMeS: Personalized Federated Continual Learning Leveraging Local Memory

Jin Xie1, Chenqing Zhu1, Songze Li1,2

1The Hong Kong University of Science and Technology (Guangzhou)
2The Hong Kong University of Science and Technology

\{jxie171, czhu032\}@connect.hkust-gz.edu.cn, songzeli@ust.hk

Abstract

We focus on the problem of Personalized Federated Continual Learning (PFCL): a group of distributed clients, each with a sequence of local tasks on arbitrary data distributions, collaborate through a central server to train a personalized model at each client, with the model expected to achieve good performance on all local tasks. We propose a novel PFCL framework called Federated Memory Strengthening (FedMeS) to address the challenges of client drift and catastrophic forgetting. In FedMeS, each client stores samples from previous tasks using a small amount of local memory, and leverages this information to both 1) calibrate gradient updates in local training; and 2) perform KNN-based Gaussian inference to facilitate local inference. FedMeS is designed to be task-oblivious, such that the same inference process is applied to samples from all tasks to achieve good performance. FedMeS is analyzed theoretically and evaluated experimentally. It is shown to outperform all baselines in average accuracy and forgetting rate, over various combinations of datasets, task distributions, and client numbers.

1 Introduction

Federated learning (FL) [McMahan et al., 2017] is an emerging distributed learning framework that allows for collaborative training of a model across multiple clients while keeping their raw data locally stored. A typical FL process involves local training on each client and global model aggregation on a cloud server, with only model updates or gradients being shared between clients and server.

Data collected from different clients in an FL system often have drastically different distributions. As seen in Figure 1(a), this can lead to model parameter divergence and client drift [Venkatesha et al., 2022], causing potentially poor performance for certain clients. The conventional way of training a single model is insufficient to fit all the non-IID data, and a personalized model needs to be trained for each participating client [Huang et al., 2021; Fallah et al., 2020], which is known as personalized FL.

Another key characteristic in real-world FL systems is that clients are continuously collecting new data (new task) which may exhibit different distributions from previous local data (tasks). Hence, it would be preferable to train a local model that is able to achieve consistently good performance in all local tasks. In an FL system, the problem is solved by federated continual learning (FCL) [Yao and Sun, 2020; Shoham et al., 2019; Yoon et al., 2021]. The phenomenon of a model failing to perform well on previously trained tasks is called catastrophic forgetting [Kirkpatrick et al., 2017], which is illustrated in Figure 1(b).

Figure 1: (a) Illustration of the model parameter divergence with non-IID datasets. (b) Illustration of catastrophic forgetting. (c) An overview of a PFCL system in IIoT scenario.

In practical FL systems, the data and task heterogeneity often exist both across clients and over time on a single client. For instance, as shown in Figure 1(c), in a IIoT scenario, multiple factories manufacturing different products would like to use FL for training defect detection models collaboratively. Other than the difference between the types of products, each factory may experience change of tasks over time due to e.g., change of recipe and upgrade of the production line. Aiming to address the challenges of client drift and catastrophic forgetting simultaneously, in the paper we focus on the personalized federated continual learning (PFCL) problem. In a PFCL system, each client observes a stream of arbitrarily dif-
ficient tasks, and would like to collaborate through the server to train a personalized model, which performs well on all local tasks.

While there have been prior attempts at tackling the FCL problem, like FedWeIT [Yoon et al., 2021], where task-generic and task-specific knowledge are shared across clients to decompose the model parameters. However, as demonstrated in [Venkatesha et al., 2022], FedMeS struggles to handle the issue of client drift caused by data heterogeneity and does not address the scalability of tasks.

In this paper, we propose a novel federated learning PFCL framework called Federated Memory Strengthening (FedMeS). FedMeS utilizes small amount of local memory at each client to store information about previous tasks, and leverage this memory to assist both the training and inference processes. During training process, the gradients are uniformly outperforms all baselines in terms of accuracy metrics and forgetting rate.

Moreover, FedMeS directly leverages the memory information in training process to perform KNN-based Gaussian inference, further strengthening the model’s personalization capability. Moreover, FedMeS exhibits a major advantage in being task-oblivious, meaning that the inference process for test samples from all tasks is identical, and all are expected to achieve high performance.

Through extensive experiments with various dataset combinations, task constructions, task distributions, and client numbers, we show that FedMeS uniformly outperforms all baselines in terms of accuracy metrics and forgetting rate. These results highlight the potential of FedMeS for real-world applications and as a basis for future research in the area of PFCL.

2 Related Work

2.1 Personalized Federated Learning

A lot of work has been done in personalized FL. A simple idea is by deploying a global model and fine tuning parameters through gradient descent on local clients [Cheng et al., 2021; Yu et al., 2020b; Zhang et al., 2022]. Meta-learning based FL methods realize model personalization through hyperparameters [Khodak et al., 2019]. PerKNN [Marfoq et al., 2022] is a special case, where embeddings of training samples are stored for local memorization for KNN-based Gaussian inference. The mainstream design is to interpolate a global model and one local model per client, and the task-specific models are learned both globally and locally [Achituv et al., 2021; Shen et al., 2020]. Like using regularization terms on proximal models to help construct personalized information [Li et al., 2021; Marfoq et al., 2021].

2.2 Continual Learning

Memory replay methods are widely used in continual learning (CL) to maintain prediction accuracies of past tasks. Generally speaking, a memory buffer is used to store previous data which are replayed while learning a new task to alleviate forgetting [Wang et al., 2022; Shim et al., 2021]. Experience replay (ER) jointly optimizes the network parameters by interleaving the previous task exemplars with current task data [Riemer et al., 2018; Isele and Cosgun, 2018]. An alternative solution is by constrained optimization. GEM [Lopez-Paz and Ranzato, 2017] and A-GEM [Chaudhry et al., 2018] leverage episodic memory to compute previous task gradients to constrain the current update step. Besides replay methods, regularization-based methods [Yu et al., 2020a; Shi et al., 2021] and parameter isolation methods [De Lange et al., 2021] have also been proposed for CL.

Federated Continual Learning. Although a lot of work has been done in CL, just a few works have tried to use CL in a federated setting. Besides the FedWeIT, other methods, like LPFCon2 [Casado et al., 2020], use traditional classifiers instead of DNN and propose an algorithm dealing with a concept drift based on ensemble retraining. FLwF and FLwF−2T [Usmanova et al., 2021] use a distillation-based approach dealing with catastrophic forgetting in FL scenario and focus on the class-incremental learning scenario.

3 Problem Definition

We consider an FL system that consists of m clients and a central server. Over time, each client k ($k = 1, \ldots, m$) continuously receives private datasets from a sequence of T machine learning tasks. For each task t ($t = 1, \ldots, T$), the corresponding dataset at client k is denoted as D_k^t. We focus on a general non-IID case, where D_k^t is drawn from some probability distribution P_k^t, and no particular relationships for P_k^t across k and t are assumed.

The conventional FL problem corresponds to a single-task scenario. For a particular task t, the following objective function is optimized over the global model w:

$$\min_w \mathcal{G}(F_1(w; D_1^t), \ldots, F_m(w; D_m^t)), \quad (1)$$

where $F_k(\cdot)$ is a local objective for client k over current dataset D_k^t, and $\mathcal{G}(\cdot)$ is an aggregation function. In [McMahan et al., 2017], $\mathcal{G} = \sum_{m=1}^m p_k F_k(w, D_k^t)$ is chosen as a weighted sum with $\sum p_k = 1$.

When task changes over time on each client, the client intends to obtain an evolving local model which maintains good performance on all its previous tasks. Motivated by this need, we introduce the concept of continual learning [Chaudhry et al., 2018] into the personalized FL framework, and formally define the personalized federated continual learning (PFCL) problem. Specifically, for client k ($k = 1, \ldots, m$) with a sequence of local datasets (D_k^1, \ldots, D_k^T), the personalized model w_k^t for task t ($t = 1, \ldots, T$) is obtained through

$$\min_{w_k^t} G_k(w_k^t; w^*) = \mathcal{L}(w_k^t; D_k^t) + \frac{\lambda}{2} \|w_k^t - w^*\|^2$$

s.t. $w^* \in \arg \min_w \mathcal{G}(\mathcal{L}(w; D_1^t), \ldots, \mathcal{L}(w; D_m^t)) \quad (2)$

where $\mathcal{L}(w; D)$ is the empirical loss of w on dataset D. $\mathcal{M}_k \subset \bigcup_{t=1}^T D_k^t$ is the episodic memory on client k storing samples
from all previous tasks (i.e., task 1 to \(t - 1 \)). Each client reserves an equal amount of memory to store some samples from each task. When learning the first task, \(M_k^1 = \emptyset \). Every time when client \(k \) finishes learning task \(t \), examples are randomly sampled from \(D_k^t \) and stored in the allocated space. The newly stored examples, together with current \(M_k^t \), constitute \(M_k^{t+1} \) as the episodic memory used for next task. The constraint \(\mathcal{L}(w_k^t; M_k^t) \leq \mathcal{L}(w_k^{t-1}; M_k^t) \) ensures that the model obtained from the new task \(t \) has a lower loss than the previous model over the samples of past datasets. This effectively alleviates the forgetting of previous tasks on current models.

4 FedMeS

We propose an algorithm called **Federated Memory Strengthening (FedMeS)** to solve the PFCL problem defined in (2). The key idea of FedMeS is to flexibly use the local memory on the samples of previous tasks in both the local training and inference processes. In training process, the local memory is used for gradient correction to avoid catastrophic forgetting; in inference process, a KNN algorithm based on the representations of local samples helps to improve the accuracy of the personalized model. The overall workflow of FedMeS is illustrated in Figure 2.

4.1 Training Process of FedMeS

As in a conventional FL setting, the training of task \(t (t = 1, \ldots, T) \) proceeds over multiple global iterations between the server and the clients. In each global iteration, the server broadcasts the global model \(w \) to the clients, waits for clients to upload personalized models \(w_k^t \), and aggregates them to update the global model \(w \leftarrow \frac{1}{m} \sum_{k=1}^{m} w_k^t \).

During local training process, each client \(k \) needs to run multiple local iterations to update \(w_k^t \). We focus on discussing parameter updates in a single local iteration.

As shown in (2), PFCL is a constraint minimizing problem, for which traditional Stochastic Gradient Descent does not directly apply. As shown in [Lopez-Paz and Ranzato, 2017], the constraint \(\mathcal{L}(w_k^t; M_k^t) \leq \mathcal{L}(w_k^{t-1}; M_k^t) \) is equivalent to the following condition on the inner product of gradients on the current and previous tasks:

\[
\langle \nabla \mathcal{L}(w_k^t; D_k^t), \nabla \mathcal{L}(w_k^t; M_k^t) \rangle \geq 0. \tag{3}
\]

By this transformation, it is not necessary to store the old parameters \(w_k^{t-1} \) and compute loss on \(M_k^t \) in every iteration; only the inner product needs to be computed and compared. If the inequality in (3) is satisfied, it means that the updates on current task \(t \) and the local memory are roughly in the same direction, so the optimization on current task would not negatively impact the performance of past tasks, and it is safe to update the model along the gradient of current task as follows, for some learning rate \(\eta_1 \):

\[
w_k^t = w_k^{t-1} - \eta_1 \left(\nabla \mathcal{L}(w_k^t; D_k^t) + \lambda \|w_k^t - w\| \right). \tag{4}
\]

When (3) does not hold, client \(k \) first adjusts its local weights \(w_k^t \) to avoid forgetting, through the following gradient correction step, for some learning rate \(\eta_2 \):

\[
w_k^t = w_k^t - \eta_2 \left(\nabla \mathcal{L}(w_k^t; D_k^t) - \nabla \mathcal{L}(w_k^t; D_k^t)^	op \nabla \mathcal{L}(w_k^t; M_k^t) \nabla \mathcal{L}(w_k^t; M_k^t) \right). \tag{5}
\]

This gradient correction occurs *within* the local weights and does not involve global weights (the reason why we do not need term \(\lambda \|w_k^t - w\| \) in (5)).

We note that *only one* of (4) and (5) would be executed in every local training iteration: we update the gradients based on the local objective function in (2) only when (3) holds, which means that the gradient update does not lead to catastrophic forgetting. When (3) is not satisfied, as demonstrated in [Chaudhry et al., 2018], updating \(w_k^t \)
according to (5) multiple times allows the inner product
\[\langle \nabla \mathcal{L}(w_k^j; D_k^j), \nabla \mathcal{L}(w_k^j; M_{k}^{j}) \rangle \] (which is \(< 0 \) currently) to
gradually approach and eventually exceed zero.

In FedMeS, rather than fixing regularization parameter \(\lambda \),
we propose a loss-based approach for dynamically adjusting
\(\lambda \). Specifically, we set the value of \(\lambda \) as:
\[\lambda = 2 \cdot \text{sigmoid} \left(\frac{1}{\mathcal{L}(w, D_k^j)} \right) \] (6)

Intuitively, when \(\mathcal{L}(w, D_k^j) \) is relatively large, it means the
global model \(w \) performs poorly on the current task of client \(k \), and the personalized model \(w_k^j \) should deviate from the
global model by decreasing \(\lambda \). On the other hand, a small
\(\mathcal{L}(w, D_k^j) \) would encourage \(w_k^j \) to approach the global model
\(w \) which correspond to a larger \(\lambda \). Here the sigmoid function
is used to limit the value of \(\lambda \) within \([0, 2] \).

4.2 Inference Process of FedMeS

As shown in Figure 2, FedMeS utilizes local memory not
only to mitigate catastrophic forgetting during training, but
also to improve the inference performance on test samples.

Specifically, to perform an inference task after learning task
\(t \), a client \(k \) first generates a set of representation-label pairs
(R-L pairs) from the current local memory as
\[
\left\{ \left(P_{w_k^j}(m_k^j), y_{m_k^j} \right) : \left(m_k^j, y_{m_k^j} \right) \in M_{k}^{j} \right\}
\] (7)

Here \(m_k^j \), \(i = 1, \ldots, |M_{k}^{j}| \), is the input of the \(i \)-th sample
in \(M_{k}^{j} \), and \(y_{m_k^j} \) is its label.

Function \(P_{w_k^j}(m_k^j) \) generates an embedding representation
of \(m_k^j \), which for example, could be the output of the last
convolutional layer in the case of CNNs, or the output of an
arbitrary self-attention layer in the case of transformers. Then,
for a test sample \(x \) (from unknown task), we first find the \(K \)
nearest neighbors of \(x \) from the formed R-L pairs:
\[
K^{(K)}(x) = \left\{ \left(P_{w_k^j}(m_k^j), y_{m_k^j} \right) : 1 \leq j \leq K \right\}
\] (8)

which satisfy
\[
dist(P_{w_k^j}(x), P_{w_k^j}(m_k^j)) \leq dist(P_{w_k^j}(x), P_{w_k^j}(m_k^{j+1})) \] (9)

Here \(dist(\cdot, \cdot) \) could be any distance metric, and in FedMeS
the Euclidean distance is used. Denote \(h_{w_k^j}(x) \) as the local esti-
mate of the conditional probability \(P_{M_k^{j}}(y|x) \), where \(P_{M_k^{j}} \)
is the probability distribution of \(M_{k}^{j} \). Then the \(K \) nearest
neighbors found in \(K^{(K)}(x) \) are used to compute \(h_{w_k^j}(x) \)
with a Gaussian kernel:
\[
\left[h_{w_k^j}(x) \right]_y \propto \sum_{j=1}^{K} 1_{y=y_{m_k^j}} \times \exp(-dist(P_{w_k^j}(x), P_{w_k^j}(m_k^j))) \] (10)

Finally, the FedMeS prediction result of \(x \) on client \(k \) is ob-
tained by the following distribution
\[
\text{FedMeS}_k(x) \triangleq \theta_k \cdot h_{w_k^j}(x) + (1 - \theta_k) h_{w_k^j}(x).
\] (11)

Here \(h_{w_k^j} \) is the personalized local model parameterized by
\(w_k^j \), and \(\theta_k \in (0, 1) \) is a hyperparameter which can be tuned
through a local validation or cross-validation.

Remark 1. As proved in [Khandelwal et al., 2019],
augmenting the model inference with a memorization mechanism
(KNN in this case) helps to improve the performance. In
[Marfoq et al., 2022], local memorization through KNN has
been applied to improve the accuracies of local models in
personalized FL, for a single task. FedMeS extends the ap-
lication of this technique on episodic memorization over an
arbitrary sequence of tasks, via utilizing a subset of samples
from each task. Also, this inference enhancement of FedMeS
comes for free, as this memory is readily available from the
preceeding training process.

Remark 2. Another major advantage of FedMeS is that it
is task-oblivious. That is, the same inference process is ap-
piled for all test samples, and no prior knowledge is needed
about which task the sample belongs to. This also reflects
the robustness of FedMeS: regardless of the original task, a
good inference performance is always guaranteed by a uni-
fied FedMeS inference process. This is, however, not the case
for other task-incremental learning CL methods like in [De-
lange et al., 2021].

4.3 Convergence Analysis

In this section, we analyze the convergence performance of
FedMeS. All proofs are omitted due to page limit. Follow-
ing assumptions are made to facilitate the analysis. For each
communication round \(r \) on client \(k \) when solving task \(t \), de-
note \(w_k^{(r)} \), \(w^{(r)} \) respectively as the value of \(w_k^j \), \(w \) at round \(r \).

Assumption 1. The loss function \(\mathcal{L}(w_k^{(r)}) \) is \(c \)-convex
and \(L \)-smooth for \(k = 1, \ldots, m \).

Assumption 2. The expectation of stochastic gradients of the
loss function \(\mathcal{L}(w_k^{(r)}) \) is uniformly bounded at all devices
and all iterations, i.e.:
\[
E[||\nabla \mathcal{L}(w_k^{(r)}; \xi_k^{(r)})||^2] \leq \sigma^2 \] (12)

Assumption 3. The global model converges with rate \(g(r) \),
i.e., there exists \(g(r) \) such that \(\lim_{r \to \infty} g(r) = 0 \), \(E[||w^{(r)} -
\hat{w^*}||^2] \leq g(r) \).

First, we discuss the situation where the constraint
\(\mathcal{L}(w_k^j; M_k^j) \leq \mathcal{L}(w_k^{(r-1)}; M_k^j) \) in (2) is not satisfied, which
corresponds to \(\langle \nabla \mathcal{L}(w_k^j; D_k^j), \nabla \mathcal{L}(w_k^j; M_k^j) \rangle < 0 \) in our al-
gorithm. Under this circumstance, FedMeS starts to execute
(5) to perform gradient correction. We denote the iteration
inex of repeating (5) as \(s(s = 1, 2, \ldots) \), and \(g(w_k^{(s)}; \xi_k^{(s)}) \) as
the stochastic gradient of \(\mathcal{L}(w_k^{(s)}; M_k^j) \) at iteration \(s \). Following
First and second moment limits assumptions in [Bottou et al.,
2018], we make two assumptions below.

Assumption 4. There exists scalars \(\mu_G \geq \mu > 0 \) such that
for all \(s \in \mathbb{N} \),
Theorem 6. Under the assumptions above and with the updating rule of (5), when \(s \geq 2 \), we have,
\[
\mathbb{E}[L(w_k^{(s)}; M_k^t) - L(w_k^*; M_k^t)] \leq \frac{LM}{2c^2\mu^2} \tag{15}
\]
Using Theorem 6, as long as the constraint \(L(w_k^*; M_k^t) \leq L(w_{k-1}^*; M_k^t) \) is violated, the updating rule of (5) on \(w_k \) ensures that \(L(w_k^*; M_k^t) \) converges to its local optimum. Therefore, after a certain number of iterations \(L(w_k^*; M_k^t) \) would be less than \(L(w_{k-1}^*; M_k^t) \) with high probability, satisfying the constraint again.

Then, we analyze the situation where the inequality constraint of \(L(w_k^*; M_k^t) \leq L(w_{k-1}^*; M_k^t) \) is satisfied on client \(k \). In this case, the PFCL objective for FedMeS can be simplified as (2). As is proved in Theorem 1 in [Li et al., 2021] for (2), the following theorem holds.

Theorem 7. With Assumptions 1, 2 and 3, there exists a constant \(C \) such that for \(\lambda \in \mathbb{R} \), \(w_k^* \) converges to \(w_k^* := \arg\min_{w \in \mathcal{D}_k} G_k(w_k^*; w^*) \) with rate \(Cg(\lambda) \).

By Theorem 6, even if the violation of \(L(w_k^*; M_k^t) \leq L(w_{k-1}^*; M_k^t) \) unfortunately occurs, as we only optimize on \(\mathcal{D}_k \) and neglect \(M_k^t \) under the rule of (4), the off-track \(w_k \) can always be corrected to meet the constraint. By Theorem 7, the local model \(w_k^* \) would enjoy the same convergence rate with the global model \(w^* \) with a constant multiple gap when \(L(w_k^*; M_k^t) \leq L(w_{k-1}^*; M_k^t) \) is satisfied. To sum up, while the gradient correction in (5) may occur several times during the training, the corrected local model would always converge to its optimum.

5 Experiments

5.1 Setup

Datasets and models. We select five commonly used public datasets: CIFAR-100 [Krizhevsky et al., 2009], MiniImageNet (Extended-MNIST) [Cohen et al., 2017], CORe50 [Lomonaco and Maltoni, 2017], MiniImageNet-100 [Vinyals et al., 2016] and TinyImageNet-200 [Le and Yang, 2015]. For the purpose of PFCL evaluation, following the dataset splitting method proposed in [Rebuffi et al., 2017] we split these datasets into multiple tasks forming four cross-class datasets:

- **Split CIFAR-100**: This consists of 100 classes, we split them into 10 tasks with 10 classes each. **Split EMNIST**: We utilize 60 of the 62 categories in the original dataset, and split them into 10 tasks with 6 classes each. A total of 120,000 images are used. **Split CORe50**: CORe50 is specifically designed for assessing continual learning techniques and has 50 objects collected in 11 different sessions. We naturally split it into 11 tasks with 50 classes each. **Split MiniImageNet**: MiniImageNet-100 is commonly used in few-shot learning benchmarks, which consists of 50,000 data points and 10,000 testing points from 100 classes. We split this dataset into 10 tasks with 10 classes each.

Besides, we also design the cross-domain datasets to evaluate the cross domain performance for FedMeS. **Fusion Tasks-40**: This benchmark combines images from three distinct datasets: CIFAR-100, MiniImageNet-100, and TinyImageNet-200, resulting in a total of 400 classes. These classes are then divided into 40 non-IID tasks, with each task comprising 10 disjoint classes from the other tasks. This dataset is substantially, with 200,000 images from the three heterogeneous datasets.

We use 6-layer CNNs for the Split CIFAR-100 and Split COR50, 2-layer CNNs for the Split EMNIST, and ResNet-18 [He et al., 2016] for Split MiniImageNet and Fusion Tasks-40. For the task and dataset distributions, each client is assigned a unique task sequence, in which each task consists of randomly selected subset of 2-5 classes, with the goal of ensuring data heterogeneity.
Metrics. There are mainly two kinds of metrics considered in this paper following [Chaudhry et al., 2018].

- Average Accuracy: We apply four different kinds of average accuracy to evaluate the performance, we define the averaged accuracy of client k among all learned T tasks after the training of task t: $A_{k,t} = \frac{1}{T} \sum_{t=1}^{T} A_{k,t}$, as the test accuracy of task i after the training of task t in client k; averaged accuracy of client k after training all T tasks $Acc_{Client,k} = \frac{1}{T} \sum_{t=1}^{T} A_{k,t}$; average accuracy among all m clients at t-th task: $Acc_{Task,t} = \frac{1}{m} \sum_{j=1}^{m} A_{j,t}$; average accuracy among all m clients in all learned T tasks after completing the training process of all tasks: $Acc_{ALL} = \frac{1}{mT} \sum_{j=1}^{m} \sum_{t=1}^{T} A_{j,t}$.

- Forgetting rate: The forgetting rate is the averaged disparity between minimum task accuracy during continuous training, it can measure the performance preventing catastrophic forgetting. For the forgetting rate F_{k} of client k at t-th task, it is defined as $F_{k} = \frac{1}{t} \sum_{i=1}^{t} \max_{j \in \{1, \ldots, t-1\}} (a_{k,i} - a_{k,i-1})$.

Baselines. Since there is no particular algorithm for PFCL problems, we compare our proposed FedMeS with other personalized FL and FC techniques.

- FedAvg: A classical FL method which the server aggregates the models for all clients according to a weighted averaging of model parameters in each clients.

- Ditto: A simple personalized FL method that utilizes a regularization term addressing the accuracy, robustness and fairness in FL while optimizing communication efficiency.

- FedRep: A personalized FL method that learns a divided model with global representation and personalized heads. Only the global representation is communicated between the server and clients, while each client adapts its personalized head locally.

- FedAGEM: This can be seen as a simple federated continual learning method that combines the conventional A-GEM method with FedAvg, achieved by applying A-GEM as the local training process on the client side.

- FedWeIT: state-of-the-art FCL approach based on parameter isolation, which uses masks to divide the model parameter into base parameters and task-adaptive parameters. The server averages the base parameters and broadcasts the task-adaptive parameters from all clients. Each client then trains all the task-adaptive parameters with the new task’s weights based on a regularized objective.

All the experiments were conducted using PyTorch version 1.9 on a single machine equipped with two Intel Xeon 6226R CPUs, 384GB of memory, and four NVIDIA 3090 GPUs. The operating system utilized was Ubuntu 20.04.4. Each experiment is repeated for 5 times. The averages and standard deviations of the above metrics are reported.

5.2 Results

Cross-class Performance

Table 1 presents Acc_{ALL} and forgetting rate in four cross-class datasets. For every cross-class datasets, our proposed FedMeS method outperforms all baselines in terms of average accuracy forgetting rate. It is observed that FedWeIT experienced a significant decline in performance when applied to the Split MiniImageNet. This is primarily due to its requirement of modifying the model structure to decompose the model parameters individually. Specifically, the downsample layers in ResNet-18 contain a relatively small number of essential parameters, and decomposing these layers negatively impacted the model’s accuracy. Additionally, this modification process significantly increases the complexity of implementation. In contrast, FedMeS does not require such modifications, thus highlighting another advantage of FedMeS in terms of efficient implementation. Figure 3 and Figure 4 respectively presents the Acc_{Task} and Acc_{Client} for the Split CIFAR-100 datasets. For every task FedMeS achieves highest Acc_{Task} and lowest forgetting rate, and for each client FedMeS achieves the best Acc_{Client}. According to these results, we further make the following observations.

Catastrophic forgetting. Shown in Figure 3, catastrophic forgetting causes serious limitation for FedAvg and Ditto.
as they do not incorporate previous task information in training. As a result, their model accuracies are inferior to other methods with much higher forgetting rates. FedRep exhibits certain robustness against heterogeneity over tasks and clients. However, without a designed mechanism to address catastrophic forgetting, it still subjects to gradual decay in average accuracy as new tasks arrive. The isolation method of FedWeIT to obtain adaptive weights on the clients cannot well maintain the knowledge from the previous tasks, resulting in a lower accuracy than FedMeS in every dataset. FedMeS is less affected by catastrophic forgetting due to its use of episodic memory to replay knowledge from previous tasks.

Client drift. FedAGEM and FedWeIT fail to effectively address data heterogeneity, resulting in inferior model performance compared to FedMeS. FedWeIT relies on the stored knowledge of all tasks at the server, which may dilute the impact of individual tasks of each client. In contrast, FedMeS achieves the highest accuracy in all settings thanks to its reliable personalization mechanism and local inference process. The advantage of FedMeS in adapting client drift is more evident from Figure 4, where FedMeS is shown to achieve the highest accuracy performance for all clients. Also, FedMeS has the narrowest shade area over all clients, indicating its ability to obtain consistent performance across all clients and all tasks.

Cross-domain Performance
Figure 5 presents the averaged test accuracy of each client across all tasks in the Fusion Tasks-40 dataset. The results indicate that the proposed FedMeS method outperforms the FedWeIT method, with higher average accuracy and lower forgetting rate among all clients and tasks. The poor performance of certain clients has a significant impact on other clients, and the isolation method employed by FedWeIT to mitigate catastrophic forgetting proves to be ineffective in this experiment with a large number of tasks. In contrast, the proposed FedMeS method demonstrates consistent performance across all tasks and clients, providing strong evidence for its effectiveness in addressing the catastrophic forgetting and client drift issues in the PFCL problem.

6 Conclusion
This paper has presented an in-depth examination of the challenges associated with catastrophic forgetting and client drift in PFCL and proposed the FedMeS framework as a solution to these issues. FedMeS leverages a small reference memory in the local training process to replay knowledge from previous tasks to alleviate forgetting, and the same memory is also used for the inference process by applying KNN-based Gaussian inference to further improve model personalization capability. We thoroughly analyzed the convergence behavior of FedMeS, and performed extensive experiments over various PFCL tasks. For all experiments, FedMeS uniformly outperforms existing techniques in terms of prediction accuracy and forgetting rate.
Acknowledgement

This work is in part supported by the National Nature Science Foundation of China (NSFC) Grant 62106057, Guangzhou Municipal Science and Technology Guangzhou-HKUST(GZ) Joint Project 2023A03J0151 and Project 2023A03J0011, Foshan HKUST Projects FSUST20-FYTRI04B, and Guangdong Provincial Key Lab of Integrated Communication, Sensing and Computation for Ubiquitous Internet of Things.

References

[McMahan et al., 2017] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks

