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Abstract

We focus on the problem of Personalized Feder-1

ated Continual Learning (PFCL): a group of dis-2

tributed clients, each with a sequence of local tasks3

on arbitrary data distributions, collaborate through4

a central server to train a personalized model at5

each client, with the model expected to achieve6

good performance on all local tasks. We propose7

a novel PFCL framework called Federated Mem-8

ory Strengthening (FedMeS) to address the chal-9

lenges of client drift and catastrophic forgetting.10

In FedMeS, each client stores samples from pre-11

vious tasks using a small amount of local mem-12

ory, and leverages this information to both 1) cal-13

ibrate gradient updates in local training; and 2) per-14

form KNN-based Gaussian inference to facilitate15

local inference. FedMeS is designed to be task-16

oblivious, such that the same inference process is17

applied to samples from all tasks to achieve good18

performance. FedMeS is analyzed theoretically19

and evaluated experimentally. It is shown to out-20

perform all baselines in average accuracy and for-21

getting rate, over various combinations of datasets,22

task distributions, and client numbers.23

1 Introduction24

Federated learning (FL) [McMahan et al., 2017] is an emerg-25

ing distributed learning framework that allows for collabora-26

tive training of a model across multiple clients while keeping27

their raw data locally stored. A typical FL process involves28

local training on each client and global model aggregation on29

a cloud server, with only model updates or gradients being30

shared between clients and server.31

Data collected from different clients in an FL system of-32

ten have drastically different distributions. As seen in Figure33

1(a), this can lead to model parameter divergence and client34

drift [Venkatesha et al., 2022], causing potentially poor per-35

formance for certain clients. The conventional way of train-36

ing a single model is insufficient to fit all the non-IID data,37

and a personalized model needs to be trained for each partic-38

ipating client [Huang et al., 2021; Fallah et al., 2020], which39

is known as personalized FL.40

Another key characteristic in real-world FL systems is 41

that clients are continuously collecting new data (new task) 42

which may exhibit different distributions from previous local 43

data (tasks). Hence, it would be preferable to train a local 44

model that is able to achieve consistently good performance 45

in all local tasks. In an FL system, the problem is solved 46

by federated continual learning (FCL) [Yao and Sun, 2020; 47

Shoham et al., 2019; Yoon et al., 2021]. The phenomenon of 48

a model failing to perform well on previously trained tasks 49

is called catastrophic forgetting [Kirkpatrick et al., 2017], 50

which is illustrated in Figure. 1(b). 51

Figure 1: (a) Illustration of the model parameter divergence with
non-IID datasets. (b) Illustration of catastrophic forgetting. (c) An
overview of a PFCL system in IIoT scenario.

In practical FL systems, the data and task heterogeneity of- 52

ten exist both across clients and over time on a single client. 53

For instance, as shown in Figure 1(c), in a IIoT scenario, mul- 54

tiple factories manufacturing different products would like to 55

use FL for training defect detection models collaboratively. 56

Other than the difference between the types of products, each 57

factory may experience change of tasks over time due to e.g., 58

change of recipe and upgrade of the production line. Aim- 59

ing to address the challenges of client drift and catastrophic 60

forgetting simultaneously, in the paper we focus on the per- 61

sonalized federated continual learning (PFCL) problem. In a 62

PFCL system, each client observes a stream of arbitrarily dif- 63



ferent tasks, and would like to collaborate through the server64

to train a personalized model, which performs well on all lo-65

cal tasks.66

While there have been prior attempts at tackling the FCL67

problem, like FedWeIT [Yoon et al., 2021], where task-68

generic and task-specific knowledge are shared across clients69

to decompose the model parameters. However, as demon-70

strated in [Venkatesha et al., 2022], FedWeIT struggles to71

handle the issue of client drift caused by data heterogeneity72

and does not address the scalability of tasks.73

In this paper, we propose a novel federated learning74

PFCL framework called Federated Memory Strengthening75

(FedMeS). FedMeS utilize small amount of local memory76

at each client to store information about previous tasks, and77

leverage this memory to assist both the training and infer-78

ence processes. During training process, the gradients are79

constantly calibrated against the data samples from previ-80

ous tasks to avoid catastrophic forgetting. A newly designed81

regularization term adjusted by a loss-based parameter is82

used to facilitate the training of personalized models using83

information from the global model. In the inference pro-84

cess, FedMeS directly leverages the memory information in85

training process to perform KNN-based Gaussian inference,86

further strengthening the model’s personalization capability.87

Moreover, FedMeS exhibits a major advantage in being task-88

oblivious, meaning that the inference process for test samples89

from all tasks is identical, and all are expected to achieve high90

performance.91

Through extensive experiments with various dataset com-92

binations, task constructions, task distributions, and client93

numbers, we show that FedMeS uniformly outperforms all94

baselines in terms of accuracy metrics and forgetting rate.95

These results highlight the potential of FedMeS for real-96

world applications and as a basis for future research in the97

area of PFCL.98

2 Related Work99

2.1 Personalized Federated Learning100

A lot of work has been done in personalized FL. A simple101

idea is by deploying a global model and fine tuning param-102

eters through gradient descent on local clients [Cheng et al.,103

2021; Yu et al., 2020b; Zhang et al., 2022]. Meta-learning104

based FL methods realize model personalization through hy-105

perparameters [Khodak et al., 2019]. PerKNN [Marfoq et al.,106

2022] is a special case, where embeddings of training samples107

are stored for local memorization for KNN-based Gaussian108

inference. The mainstream design is to interpolate a global109

model and one local model per client, and the task-specific110

models are learned both globally and locally [Achituve et al.,111

2021; Shen et al., 2020]. Like using regularization terms on112

proximal models to help construct personalized information113

[Li et al., 2021; Marfoq et al., 2021].114

2.2 Continual Learning115

Memory replay methods are widely used in continual learn-116

ing (CL) to maintain prediction accuracies of past tasks. Gen-117

erally speaking, a memory buffer is used to store previous118

data which are replayed while learning a new task to allevi- 119

ate forgetting [Wang et al., 2022; Shim et al., 2021]. Ex- 120

perience replay (ER) jointly optimizes the network param- 121

eters by interleaving the previous task exemplars with cur- 122

rent task data [Riemer et al., 2018; Isele and Cosgun, 2018]. 123

An alternative solution is by constrained optimization. GEM 124

[Lopez-Paz and Ranzato, 2017] and A-GEM [Chaudhry et al., 125

2018] leverage episodic memory to compute previous task 126

gradients to constrain the current update step. Besides replay 127

methods, regularization-based methods [Yu et al., 2020a; 128

Shi et al., 2021] and parameter isolation methods [De Lange 129

et al., 2021] have also been proposed for CL. 130

Federated Continual Learning. Although a lot of work 131

has been done in CL, just a few works have tried to use CL 132

in a federated setting. Besides the FedWeIT, other meth- 133

ods, like LFedCon2 [Casado et al., 2020], use traditional 134

classifiers instead of DNN and propose an algorithm dealing 135

with a concept drift based on ensemble retraining. FLwF and 136

FLwF-2T [Usmanova et al., 2021] use a distillation-based 137

approach dealing with catastrophic forgetting in FL scenario 138

and focus on the class-incremental learning scenario. 139

3 Problem Definition 140

We consider an FL system that consists of m clients and a 141

central server. Over time, each client k (k = 1; : : : ;m) con- 142

tinually receives private datasets from a sequence of T ma- 143

chine learning tasks. For each task t (t = 1; : : : ; T ), the cor- 144

responding dataset at client k is denoted as Dtk. We focus on 145

a general non-IID case, where Dtk is drawn from some prob- 146

ability distribution Ptk, and no particular relationships for Ptk 147

across k and t are assumed. 148

The conventional FL problem corresponds to a single-task 149

scenario. For a particular task t, the following objective func- 150

tion is optimized over the global model w 151

min
w
G(F1(w;Dt1); : : : ; Fm(w;Dtm)); (1)

where Fk(·) is a local objective for client k over current 152

dataset Dtk, and G(·) is an aggregation function. In [McMa- 153

han et al., 2017], G =
Pm
i=1 pkFk(w;Dtk) is chosen as a 154

weighted sum with
P
pk = 1. 155

When task changes over time on each client, the client in- 156

tends to obtain an evolving local model which maintains good 157

performance on all its previous tasks. Motivated by this need, 158

we introduce the concept of continual learning [Chaudhry et 159

al., 2018] into the personalized FL framework, and formally 160

define the personalized federated continual learning (PFCL) 161

problem. Specifically, for client k (k = 1; :::;m) with a se- 162

quence of local datasets (D1
k; :::;DTk ), the personalized model 163

wtk for task t (t = 1; :::; T ) is obtained through 164

min
wt

k

Gk(wtk; w�) = L
�
wtk;Dtk

�
+
�

2



wtk −w�


2

s.t. w� ∈ arg min
w

G
�
L(w;Dt1); :::;L(w;Dtm)

�
L
�
wtk;Mt

k

�
≤ L

�
wt�1
k ;Mt

k

� (2)

Here L(w;D) is the empirical loss of w on dataset D.Mt
k ⊂ 165St�1

i=1 Dik is the episodic memory on client k storing samples 166
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