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Abstract

We focus on the problem of Personalized Feder-1

ated Continual Learning (PFCL): a group of dis-2

tributed clients, each with a sequence of local tasks3

on arbitrary data distributions, collaborate through4

a central server to train a personalized model at5

each client, with the model expected to achieve6

good performance on all local tasks. We propose7

a novel PFCL framework called Federated Mem-8

ory Strengthening (FedMeS) to address the chal-9

lenges of client drift and catastrophic forgetting.10

In FedMeS, each client stores samples from pre-11

vious tasks using a small amount of local mem-12

ory, and leverages this information to both 1) cal-13

ibrate gradient updates in local training; and 2) per-14

form KNN-based Gaussian inference to facilitate15

local inference. FedMeS is designed to be task-16

oblivious, such that the same inference process is17

applied to samples from all tasks to achieve good18

performance. FedMeS is analyzed theoretically19

and evaluated experimentally. It is shown to out-20

perform all baselines in average accuracy and for-21

getting rate, over various combinations of datasets,22

task distributions, and client numbers.23

1 Introduction24

Federated learning (FL) [McMahan et al., 2017] is an emerg-25

ing distributed learning framework that allows for collabora-26

tive training of a model across multiple clients while keeping27

their raw data locally stored. A typical FL process involves28

local training on each client and global model aggregation on29

a cloud server, with only model updates or gradients being30

shared between clients and server.31

Data collected from different clients in an FL system of-32

ten have drastically different distributions. As seen in Figure33

1(a), this can lead to model parameter divergence and client34

drift [Venkatesha et al., 2022], causing potentially poor per-35

formance for certain clients. The conventional way of train-36

ing a single model is insufficient to fit all the non-IID data,37

and a personalized model needs to be trained for each partic-38

ipating client [Huang et al., 2021; Fallah et al., 2020], which39

is known as personalized FL.40

Another key characteristic in real-world FL systems is 41

that clients are continuously collecting new data (new task) 42

which may exhibit different distributions from previous local 43

data (tasks). Hence, it would be preferable to train a local 44

model that is able to achieve consistently good performance 45

in all local tasks. In an FL system, the problem is solved 46

by federated continual learning (FCL) [Yao and Sun, 2020; 47

Shoham et al., 2019; Yoon et al., 2021]. The phenomenon of 48

a model failing to perform well on previously trained tasks 49

is called catastrophic forgetting [Kirkpatrick et al., 2017], 50

which is illustrated in Figure. 1(b). 51

Figure 1: (a) Illustration of the model parameter divergence with
non-IID datasets. (b) Illustration of catastrophic forgetting. (c) An
overview of a PFCL system in IIoT scenario.

In practical FL systems, the data and task heterogeneity of- 52

ten exist both across clients and over time on a single client. 53

For instance, as shown in Figure 1(c), in a IIoT scenario, mul- 54

tiple factories manufacturing different products would like to 55

use FL for training defect detection models collaboratively. 56

Other than the difference between the types of products, each 57

factory may experience change of tasks over time due to e.g., 58

change of recipe and upgrade of the production line. Aim- 59

ing to address the challenges of client drift and catastrophic 60

forgetting simultaneously, in the paper we focus on the per- 61

sonalized federated continual learning (PFCL) problem. In a 62

PFCL system, each client observes a stream of arbitrarily dif- 63



ferent tasks, and would like to collaborate through the server64

to train a personalized model, which performs well on all lo-65

cal tasks.66

While there have been prior attempts at tackling the FCL67

problem, like FedWeIT [Yoon et al., 2021], where task-68

generic and task-specific knowledge are shared across clients69

to decompose the model parameters. However, as demon-70

strated in [Venkatesha et al., 2022], FedWeIT struggles to71

handle the issue of client drift caused by data heterogeneity72

and does not address the scalability of tasks.73

In this paper, we propose a novel federated learning74

PFCL framework called Federated Memory Strengthening75

(FedMeS). FedMeS utilize small amount of local memory76

at each client to store information about previous tasks, and77

leverage this memory to assist both the training and infer-78

ence processes. During training process, the gradients are79

constantly calibrated against the data samples from previ-80

ous tasks to avoid catastrophic forgetting. A newly designed81

regularization term adjusted by a loss-based parameter is82

used to facilitate the training of personalized models using83

information from the global model. In the inference pro-84

cess, FedMeS directly leverages the memory information in85

training process to perform KNN-based Gaussian inference,86

further strengthening the model’s personalization capability.87

Moreover, FedMeS exhibits a major advantage in being task-88

oblivious, meaning that the inference process for test samples89

from all tasks is identical, and all are expected to achieve high90

performance.91

Through extensive experiments with various dataset com-92

binations, task constructions, task distributions, and client93

numbers, we show that FedMeS uniformly outperforms all94

baselines in terms of accuracy metrics and forgetting rate.95

These results highlight the potential of FedMeS for real-96

world applications and as a basis for future research in the97

area of PFCL.98

2 Related Work99

2.1 Personalized Federated Learning100

A lot of work has been done in personalized FL. A simple101

idea is by deploying a global model and fine tuning param-102

eters through gradient descent on local clients [Cheng et al.,103

2021; Yu et al., 2020b; Zhang et al., 2022]. Meta-learning104

based FL methods realize model personalization through hy-105

perparameters [Khodak et al., 2019]. PerKNN [Marfoq et al.,106

2022] is a special case, where embeddings of training samples107

are stored for local memorization for KNN-based Gaussian108

inference. The mainstream design is to interpolate a global109

model and one local model per client, and the task-specific110

models are learned both globally and locally [Achituve et al.,111

2021; Shen et al., 2020]. Like using regularization terms on112

proximal models to help construct personalized information113

[Li et al., 2021; Marfoq et al., 2021].114

2.2 Continual Learning115

Memory replay methods are widely used in continual learn-116

ing (CL) to maintain prediction accuracies of past tasks. Gen-117

erally speaking, a memory buffer is used to store previous118

data which are replayed while learning a new task to allevi- 119

ate forgetting [Wang et al., 2022; Shim et al., 2021]. Ex- 120

perience replay (ER) jointly optimizes the network param- 121

eters by interleaving the previous task exemplars with cur- 122

rent task data [Riemer et al., 2018; Isele and Cosgun, 2018]. 123

An alternative solution is by constrained optimization. GEM 124

[Lopez-Paz and Ranzato, 2017] and A-GEM [Chaudhry et al., 125

2018] leverage episodic memory to compute previous task 126

gradients to constrain the current update step. Besides replay 127

methods, regularization-based methods [Yu et al., 2020a; 128

Shi et al., 2021] and parameter isolation methods [De Lange 129

et al., 2021] have also been proposed for CL. 130

Federated Continual Learning. Although a lot of work 131

has been done in CL, just a few works have tried to use CL 132

in a federated setting. Besides the FedWeIT, other meth- 133

ods, like LFedCon2 [Casado et al., 2020], use traditional 134

classifiers instead of DNN and propose an algorithm dealing 135

with a concept drift based on ensemble retraining. FLwF and 136

FLwF-2T [Usmanova et al., 2021] use a distillation-based 137

approach dealing with catastrophic forgetting in FL scenario 138

and focus on the class-incremental learning scenario. 139

3 Problem Definition 140

We consider an FL system that consists of m clients and a 141

central server. Over time, each client k (k = 1, . . . ,m) con- 142

tinually receives private datasets from a sequence of T ma- 143

chine learning tasks. For each task t (t = 1, . . . , T ), the cor- 144

responding dataset at client k is denoted as Dt
k. We focus on 145

a general non-IID case, where Dt
k is drawn from some prob- 146

ability distribution Pt
k, and no particular relationships for Pt

k 147

across k and t are assumed. 148

The conventional FL problem corresponds to a single-task 149

scenario. For a particular task t, the following objective func- 150

tion is optimized over the global model w 151

min
w
G(F1(w;Dt

1), . . . , Fm(w;Dt
m)), (1)

where Fk(·) is a local objective for client k over current 152

dataset Dt
k, and G(·) is an aggregation function. In [McMa- 153

han et al., 2017], G =
∑m

i=1 pkFk(w,Dt
k) is chosen as a 154

weighted sum with
∑

pk = 1. 155

When task changes over time on each client, the client in- 156

tends to obtain an evolving local model which maintains good 157

performance on all its previous tasks. Motivated by this need, 158

we introduce the concept of continual learning [Chaudhry et 159

al., 2018] into the personalized FL framework, and formally 160

define the personalized federated continual learning (PFCL) 161

problem. Specifically, for client k (k = 1, ...,m) with a se- 162

quence of local datasets (D1
k, ...,DT

k ), the personalized model 163

wt
k for task t (t = 1, ..., T ) is obtained through 164

min
wt

k

Gk(w
t
k;w

∗) = L
(
wt

k;Dt
k

)
+

λ

2

∥∥wt
k −w∗∥∥2

s.t. w∗ ∈ argmin
w

G
(
L(w;Dt

1), ...,L(w;Dt
m)

)
L
(
wt

k;Mt
k

)
≤ L

(
wt−1

k ;Mt
k

) (2)

Here L(w;D) is the empirical loss of w on dataset D.Mt
k ⊂ 165⋃t−1

i=1 Di
k is the episodic memory on client k storing samples 166



Figure 2: Overall workflow of FedMeS. Local episodic memory is utilized in both the training and inference processes.

from all previous tasks (i.e., task 1 to t − 1). Each client167

reserves an equal amount of memory to store some samples168

from each task. When learning the first task, M1
k = ∅. Ev-169

ery time when client k finishes learning task t, examples are170

randomly sampled fromDt
k and stored in the allocated space.171

The newly stored examples, together with currentMt
k, con-172

stituteMt+1
k as the episodic memory used for next task. The173

constraint L (wt
k;Mt

k) ≤ L
(
wt−1

k ;Mt
k

)
ensures that the174

model obtained from the new task t has a lower loss than175

the previous model over the samples of past datasets. This ef-176

fectively alleviates the forgetting of previous tasks on current177

models.178

4 FedMeS179

We propose an algorithm called Federated Memory180

Strengthening (FedMeS) to solve the PFCL problem defined181

in (2). The key idea of FedMeS is to flexibly use the lo-182

cal memory on the samples of previous tasks in both the local183

training and inference processes. In training process, the local184

memory is used for gradient correction to avoid catastrophic185

forgetting; in inference process, a KNN algorithm based on186

the representations of local samples helps to improve the ac-187

curacy of the personalized model. The overall workflow of188

FedMeS is illustrated in Figure 2.189

4.1 Training Process of FedMeS190

As in a conventional FL setting, the training of task t (t =191

1, . . . , T ) proceeds over multiple global iterations between192

the server and the clients. In each global iteration, the server193

broadcasts the global model w to the clients, waits for clients194

to upload personalized models wt
k, and aggregates them to195

update the global model w← 1
m

∑m
k=1 w

t
k.196

During local training process, each client k needs to run197

multiple local iterations to update wt
k. We focus on describing198

parameter updates in a single local iteration.199

As shown in (2), PFCL is a constraint minimizing problem, 200

for which traditional Stochastic Gradient Descent does not 201

directly apply. As shown in [Lopez-Paz and Ranzato, 2017], 202

the constraint L (wt
k;Mt

k) ≤ L
(
wt−1

k ;Mt
k

)
is equivalent to 203

the following condition on the inner product of gradients on 204

the current and previous tasks: 205〈
∇L

(
wt

k;Dt
k

)
,∇L

(
wt

k;Mt
k

)〉
≥ 0. (3)

By this transformation, it is not necessary to store the old 206

parameters wt−1
k and compute loss onMt

k in every iteration; 207

only the inner product needs to be computed and compared. 208

If the inequality in (3) is satisfied, it means that the updates on 209

current task t and the local memory are roughly in the same 210

direction, so the optimization on current task would not neg- 211

atively impact the performance of past tasks, and it is safe to 212

update the model along the gradient of current task as follows, 213

for some learning rate η1: 214

wt
k = wt

k − η1
(
∇L(wt

k;Dt
k) + λ∥wt

k −w∥
)
. (4)

When (3) does not hold, client k first adjusts its local 215

weights wt
k to avoid forgetting, through the following gra- 216

dient correction step, for some learning rate η2: 217

wt
k = wt

k − η2

(
∇L(wt

k;Dt
k)

− ∇L(w
t
k;Dt

k)
⊤∇L(wt

k;Mt
k)

∇L(wt
k;Mt

k)
⊤∇L(wt

k;Mt
k)
∇L(wt

k;Mt
k)

) (5)

This gradient correction occurs within the local weights and 218

does not involve global weights (the reason why we do not 219

need term λ∥wt
k −w∥ in (5)). 220

We note that only one of (4) and (5) would be exe- 221

cuted in every local training iteration: we update the gradi- 222

ents based on the local objective function in (2) only when 223

(3) holds, which means that the gradient update does not 224

lead to catastrophic forgetting. When (3) is not satisfied, 225

as demonstrated in [Chaudhry et al., 2018], updating wt
k 226



according to (5) multiple times allows the inner product227

⟨∇L (wt
k;Dt

k) ,∇L (wt
k;Mt

k)⟩ (which is < 0 currently) to228

gradually approach and eventually exceed zero.229

In FedMeS, rather than fixing regularization parameter λ,230

we propose a loss-based approach for dynamically adjusting231

λ. Specifically, we set the value of λ as:232

λ = 2 · sigmoid
(

1

L(w,Dt
k)

)
(6)

Intuitively, when L(w,Dt
k) is relatively large, it means the233

global model w performs poorly on the current task of client234

k, and the personalized model wt
k should deviate from the235

global model by decreasing λ. On the other hand, a small236

L(w,Dt
k) would encourage wt

k to approach the global model237

w which correspond to a lager λ. Here the sigmoid function238

is used to limit the value of λ within [0, 2].239

4.2 Inference Process of FedMeS240

As shown in Figure 2, FedMeS utilizes local memory not241

only to mitigate catastrophic forgetting during training, but242

also to improve the inference performance on test samples.243

Specifically, to perform an inference task after learning task244

t, a client k first generates a set of representation-label pairs245

(R-L pairs) from the current local memory as246 {(
Pwt

k

(
mi

k

)
, ymi

k

)
:
(
mi

k, ymi
k

)
∈Mt

k

}
(7)

Here mi
k, i = 1, . . . , |Mt

k|, is the input of the i-th sample247

inMt
k, and ymi

k
is its label.248

Function Pwt
k
(mi

k) generates an embedding representation249

of mi
k, which for example, could be the output of the last250

convolutional layer in the case of CNNs, or the output of an251

arbitary self-attention layer in the case of transformers. Then,252

for a test sample x (from unknown task), we first find the K253

nearest neighbors of x from the formed R-L pairs:254

K(K)(x) =
{(

Pwt
k
(mj

k), ymj
k

)
: 1 ≤ j ≤ K

}
(8)

which satisfy255

dist(Pwt
k
(x),Pwt

k
(mj

k))≤dist(Pwt
k
(x),Pwt

k
(mj+1

k )) (9)

Here dist(·, ·) could be any distance metric, and in FedMeS256

the Euclidean distance is used. Denote bwt
k
(x) as the local es-257

timate of the conditional probability PMt
k
(y|x), where PMt

k
258

is the probability distribution of Mt
k. Then the K nearest259

neighbours found in K(K)(x) are used to compute [bwt
k
(x)]y260

with a Gaussian kernel:261

[bwt
k
(x)]y∝

K∑
j=1

1y=y
m

j
k

×

exp{−dist(Pwt
k
(x), Pwt

k
(mj

k))}

(10)

Finally, the FedMeS prediction result of x on client k is ob-262

tain by the following distribution263

FedMeSk(x) ≜ θk · bwt
k
(x) + (1− θk)hwt

k
(x). (11)

Here hwt
k

is the personalized local model parameterized by 264

wt
k, and θk ∈ (0, 1) is a hyperparameter which can be tuned 265

through a local validation or cross-validation. 266

Remark 1. As proved in [Khandelwal et al., 2019], aug- 267

menting the model inference with a memorization mechanism 268

(KNN in this case) helps to improve the performance. In 269

[Marfoq et al., 2022], local memorization through KNN has 270

been applied to improve the accuracies of local models in 271

personalized FL, for a single task. FedMeS extends the ap- 272

plication of this technique on episodic memorization over an 273

arbitrary sequence of tasks, via utilizing a subset of samples 274

from each task. Also, this inference enhancement of FedMeS 275

comes for free, as this memory is readily available from the 276

preceeding training process. 277

Remark 2. Another major advantage of FedMeS is that it 278

is task-oblivious. That is, the same inference process is ap- 279

plied for all test samples, and no prior knowledge is needed 280

about which task the sample belongs to. This also reflects 281

the robustness of FedMeS: regardless of the original task, a 282

good inference performance is always guaranteed by a uni- 283

fied FedMeS inference process. This is, however, not the case 284

for other task-incremental learning CL methods like in [De- 285

lange et al., 2021]. 286

4.3 Convergence Analysis 287

In this section, we analyze the convergence performance of 288

FedMeS. All proofs are omitted due to page limit. Follow- 289

ing assumptions are made to facilitate the analysis. For each 290

communication round r on client k when solving task t, de- 291

note w
(r)
k ,w(r) respectively as the value of wt

k,w at round 292

r. 293

Assumption 1. The loss function L(w(r)
k ) is c-strongly con- 294

vex and L-smooth for k = 1, ...,m. 295

Assumption 2. The expectation of stochastic gradients of the 296

loss function L(w(r)
k ) is uniformly bounded at all devices and 297

all iterations, i.e.: 298

E[∥∇L
(
w

(r)
k , ξrk

)
∥2] ≤ σ2 (12)

299
Assumption 3. The global model converges with rate g(r), 300

i.e., there exists g(r) such that limr→∞g(r) = 0, E[∥w(r) − 301

w∗∥2] ≤ g(r). 302

First, we discuss the situation where the constraint 303

L(wt
k;Mt

k) ≤ L(w
t−1
k ;Mt

k) in (2) is not satisfied, which 304

corresponds to ⟨∇L(wt
k;Dt

k),∇L(wt
k;Mt

k)⟩ < 0 in our al- 305

gorithm. Under this circumstance, FedMeS starts to execute 306

(5) to perform gradient correction. We denote the iteration in- 307

dex of repeating (5) as s(s = 1, 2, ...), and g(w
(s)
k , ξsk) as the 308

stochastic gradient of L(w(s)
k ;Mt

k) at iteration s. Following 309

First and second moment limits assumptions in [Bottou et al., 310

2018], we make two assumptions below, 311

Assumption 4. There exists scalars µG ≥ µ > 0 such that 312

for all s ∈ N, 313



Figure 3: (a - d) Average accuracy and Average forgetting rate among all clients in all learned tasks at x-th task on Split CIFAR-100 with
10 clients and 20 clients. (e - h) Average accuracy and Average forgetting rate among all clients in all learned tasks at x-th task on Split
MiniImageNet with 10 clients and 20 clients.

∇L
(
w

(s)
k ;Mt

k

)⊤
Eξsk

[g
(
w

(s)
k , ξsk

)
] ≥

µ∥∇L
(
w

(s)
k ;Mt

k

)
∥22,

∥Eξsk
[g
(
w

(s)
k , ξsk

)
]∥2 ≤ µG∥∇L

(
w

(s)
k ;Mt

k

)
∥2

(13)

314 Assumption 5. There exists scalars M ≥ 0 and MV ≥ 0315

such that, for all s ∈ N,316

Vξsk
[g(w

(s)
k , ξsk)] ≤M +MV ∥∇L(w(s)

k ;Mt
k)∥22 (14)

317 Theorem 6. Under the assumptions above and with the up-318

dating rule of (5), when s ≥ 2, we have,319

E[L(w(s)
k ;Mt

k)− L(w∗
k;Mt

k)] ≤
LM

2c2µ2
(15)

320 Using Theorem 6, as long as the constraint L (wt
k;Mt

k) ≤321

L
(
wt−1

k ;Mt
k

)
is violated, the updating rule of (5) on wk en-322

sures that L(wt
k;Mt

k) converges to its local optimum. There-323

fore, after a certain number of iterations L (wt
k;Mt

k) would324

be less than L
(
wt−1

k ;Mt
k

)
with high probability, satisfying325

the constraint again.326

Then, we analyze the situation where the inequality con-327

straint of L (wt
k;Mt

k) ≤ L
(
wt−1

k ;Mt
k

)
is satisfied on client328

k. In this case, the PFCL objective for FedMeS can be sim-329

plified as (2). As is proved in Theorem 1 in [Li et al., 2021]330

for (2), the following theorem holds.331

Theorem 7. With Assumptions 1, 2 and 3, there exists a332

constant C such that for λ ∈ R, wr
k converges to w∗

k :=333

argminwt
k
Gk (w

t
k;w

∗) with rate Cg(r).334

By Theorem 6, even if the violation of L (wt
k;Mt

k) ≤335

L
(
wt−1

k ;Mt
k

)
unfortunately occurs, as we only optimize on336

Dt
k and neglect Mt

k under the rule of (4), the off-track wk337

can always be corrected to meet the constraint. By Theorem338

7, the local model wt
k would enjoy the same convergence rate339

with the global model w with a constant multiple gap when340

L (wt
k;Mt

k) ≤ L
(
wt−1

k ;Mt
k

)
is satisfied. To sum up, while341

the gradient correction in (5) may occur several times during342

the training, the corrected local model would always converge343

to its optimum.344

5 Experiments 345

5.1 Setup 346

Datasets and models. We select five commonly used pub- 347

lic datasets: CIFAR-100 [Krizhevsky et al., 2009], EM- 348

INIST (Extended-MNIST) [Cohen et al., 2017], CORe50 349

[Lomonaco and Maltoni, 2017], MiniImageNet-100 [Vinyals 350

et al., 2016] and TinyImageNet-200 [Le and Yang, 2015]. For 351

the purpose of PFCL evaluation, following the dataset split- 352

ting method proposed in [Rebuffi et al., 2017] we split these 353

datasets into multiple tasks forming four cross-class datasets: 354

Split CIFAR-100: CIFAR-100 consists of 100 classes, we 355

split them into 10 tasks with 10 classes each. Split EM- 356

INIST: We utilize 60 of the 62 categories in the original 357

dataset, and split them into 10 tasks with 6 classes each. A 358

total of 120,000 imagines are used. Split CORe50: CORe50 359

is specifically designed for assessing continual learning tech- 360

niques and has 50 objects collected in 11 different sessions. 361

We naturally split it into 11 tasks with 50 classes each. Split 362

MiniImageNet: MiniImageNet-100 is commonly used in 363

few-shot learning benchmarks, which consists of 50,000 data 364

points and 10,000 testing points from 100 classes. We split 365

this dataset into 10 tasks with 10 classes each. 366

Besides, we also design the cross-domain datasets to 367

evaluate the cross domain performance for FedMeS. Fu- 368

sion Tasks-40: This benchmark combines images from 369

three distinct datasets: CIFAR-100, MiniImageNet-100, and 370

TinyImageNet-200, resulting in a total of 400 classes. These 371

classes are then divided into 40 non-IID tasks, with each task 372

comprising 10 disjoint classes from the other tasks. This 373

dataset is substantial, with 200,000 images from the three het- 374

erogeneous datasets. 375

We use 6-layer CNNs for the Split CIFAR-100 and Split 376

CORe50, 2-layer CNNs for the Split EMINIST, and ResNet- 377

18 [He et al., 2016] for Split MiniImageNet and Fusion 378

Tasks-40. For the task and dataset distributions, each client 379

is assigned a unique task sequence, in which each task con- 380

sists of randomly selected subset of 2-5 classes, with the goal 381

of ensuring data heterogeneity. 382



Table 1: Acc ALL(Acc) and average forgetting rate (FR) over all clients and all learned tasks.

DATASETS SPLIT CIFAR-100 SPLIT EMNIST
CLIENT NUMBER 10 20 10 20
METHODS ACC FR ACC FR ACC FR ACC FR
FEDAVG .249 ±.02 .35 ±.05 .263 ±.03 .29 ±.03 .450 ±.02 .49 ±.02 .465 ±.03 .48 ±.02
DITTO .219 ±.02 .37 ±.03 .221 ±.02 .38 ±.06 .388 ±.03 .71 ±.04 .381 ±.02 .72 ±.03
FEDREP .415 ±.04 .13 ±.02 .425 ±.06 .13 ±.02 .723 ±.04 .23 ±.04 .723 ±.06 .24 ±.06
FEDAGEM .351 ±.04 .14 ±.03 .398 ±.05 .14 ±.03 .817 ±.04 .09 ±.05 .828 ±.04 .16 ±.04
FEDWEIT .421 ±.05 .06 ±.03 .432 ±.05 .08 ±.03 .867 ±.03 .03 ±.01 .857 ±.03 .03 ±.02
FEDMES .530 ±.05 .06 ±.01 .533 ±.04 .06 ±.02 .935 ±.01 .01 ±.01 .964 ±.01 .01 ±.01
DATASETS SPLIT CORE50 SPLIT MINIIMAGENET
CLIENT NUMBER 10 20 10 20
METHODS ACC FR ACC FR ACC FR ACC FR
FEDAVG .303 ±.01 .60 ±.02 .311 ±.01 .59 ±.02 .271 ±.02 .51 ±.04 .262 ±.02 .39 ±.05
DITTO .266 ±.01 .79 ±.02 .267 ±.01 .81 ±.03 .264 ±.03 .49 ±.05 .265 ±.01 .51 ±.04
FEDREP .547 ±.03 .34 ±.02 .551 ±.04 .35 ±.03 .410 ±.03 .30 ±.05 .388 ±.03 .24 ±.02
FEDAGEM .731 ±.04 .18 ±.03 .741 ±.04 .20 ±.03 .504 ±.05 .18 ±.03 .477 ±.05 .17 ±.05
FEDWEIT .595 ±.04 .17 ±.04 .589 ±.05 .19 ±.04 .319 ±.04 .17 ±.03 .343 ±.04 .15 ±.03
FEDMES .877 ±.04 .04 ±.01 .891 ±.04 .03 ±.01 .645 ±.05 .08 ±.02 .659 ±.03 .08 ±.02
Metrics. There are mainly two kinds of metrics considered383

in this paper following [Chaudhry et al., 2018].384

• Average Accuracy: We apply four different kinds of385

average accuracy to evaluate the performance, we define386

the averaged accuracy of client k among all learned t387

tasks after the training of task t: Ak,t = 1
t

∑t
i=1a

k
t,i as388

accuracy of client k at task t, where akt,i (i < t) is the389

test accuracy of task i after the training of task t in client390

k; averaged accuracy of client k after training all T tasks391

Acc Clientk = 1
T

∑T
i=1Ak,i; average accuracy among392

all m clients at t-th task: Acc Taskt = 1
m

∑m
j=1Aj,t;393

average accuracy among all m clients in all learned T394

tasks after completing the training process of all tasks:395

Acc ALL = 1
m

1
T

∑m
j=1

∑T
i=1Aj,t.396

• Forgetting rate: The forgetting rate is the averaged397

disparity between minimum task accuracy during con-398

tinuous training, it can measure the performance pre-399

venting catastrophic forgetting. For the forgetting rate400

F k
t of client k at t-th task, it is defined as F k

t =401
1

t−1

∑t−1
i=1 maxj∈{1,...,t−1}(a

k
j,i − akt,i).402

Baselines. Since there is no particular algorithm for PFCL403

problems, we compare our proposed FedMeS with other per-404

sonalized FL and FCL techniques.405

• FedAvg: A classical FL method which the server406

aggregates the models for all clients according to a407

weighted averaging of model parameters in each clients.408

• Ditto: A simple personalized FL method that utilizes a409

regularization term addressing the accuracy, robustness410

and fairness in FL while optimizing communication ef-411

ficiency.412

• FedRep: A personalized FL method that learns a di-413

vided model with global representation and personalized414

heads. Only the global representation is communicated415

between the server and clients, while each client adapts416

its personalized head locally.417

• FedAGEM: This can be seen as a simple federated con-418

tinual learning method that combines the conventional419

A-GEM method with FedAvg, achieved by applying 420

A-GEM as the local training process on the client side. 421

• FedWeIT: state-of-the-art FCL approach based on pa- 422

rameter isolation, which uses masks to divide the model 423

parameter into base parameters and task-adaptive pa- 424

rameters. The server averages the base parameters and 425

broadcasts the task-adaptive parameters from all clients. 426

Each client then trains all the task-adaptive parameters 427

with the new task’s weights based on a regularized ob- 428

jective. 429

All the experiments were conducted using PyTorch version 430

1.9 on a single machine equipped with two Intel Xeon 6226R 431

CPUs, 384GB of memory, and four NVIDIA 3090 GPUs. 432

The operating system utilized was Ubuntu 20.04.4. Each ex- 433

periment is repeated for 5 times. The averages and standard 434

deviations of the above metrics are reported. 435

5.2 Results 436

Cross-class Performance 437

Tables 1 presents Acc ALL and forgetting rate in four cross- 438

class datasets. For every cross-class datasets, our proposed 439

FedMeS method outperforms all baselines in terms of aver- 440

age accuracy forgetting rate. It is observed that FedWeIT ex- 441

perienced a significant decline in performance when applied 442

to the Split MiniImageNet. This is primarily due to its re- 443

quirement of modifying the model structure to decompose the 444

model parameters individually. Specifically, the downsample 445

layers in ResNet-18 contain a relatively small number of es- 446

sential parameters, and decomposing these layers negatively 447

impacted the model’s accuracy. Additionally, this modifica- 448

tion process significantly increases the complexity of imple- 449

mentation. In contrast, FedMeS does not require such mod- 450

ifications, thus highlighting another advantage of FedMeS 451

in terms of efficient implementation. Figure 3 and Figure 4 452

respectively presents the Acc Task and Acc Client for the 453

Split CIFAR-100 datasets. For every task FedMeS achieves 454

highest Acc Task and lowest forgetting rate, and for each 455

client FedMeS achieves the best Acc Client. According to 456

these results, we further make the following observations. 457

Catastrophic forgetting. Shown in Figure 3, catastrophic 458

forgetting causes serious limitation for FedAvg and Ditto, 459



as they do not incorporate previous task information in train-460

ing. As a result, their model accuracies are inferior to other461

methods with much higher forgetting rates. FedRep ex-462

hibits certain robustness against heterogeneity over tasks and463

clients. However, without a designed mechanism to address464

catastrophic forgetting, it still subjects to gradual decay in465

average accuracy as new tasks arrive. The isolation method466

of FedWeIT to obtain adaptive weights on the clients can-467

not well maintain the knowledge from the previous tasks, re-468

sulting in a lower accuracy than FedMeS in every dataset.469

FedMeS is less affected by catastrophic forgetting due to its470

use of episodic memory to replay knowledge from previous471

tasks.472

Client drift. FedAGEM and FedWeIT fail to effectively473

address data heterogeneity, resulting in inferior model perfor-474

mance compared to FedMeS. FedWeIT relies on the stored475

knowledge of all tasks at the server, which may dilute the im-476

pact of individual tasks of each client. In contrast, FedMeS477

achieves the highest accuracy in all settings thanks to its reli-478

able personalization mechanism and local inference process.479

The advantage of FedMeS in adapting client drift is more ev-480

ident from Figure 4, where FedMeS is shown to achieve the481

highest accuracy performance for all clients. Also, FedMeS482

has the narrowest shade area over all clients, indicating its483

ability to obtain consistent performance across all clients and484

all tasks.485

Figure 4: (a) and (b) Average accuracy of client x among all learned
tasks on Split CIFAR-100 with 10 clients and 20 clients. (c) and
(d) Average accuracy of client x among all learned tasks on Split
MiniImageNet with 10 clients and 20 clients. The shade area is the
accuracy range of tasks in each client.

Cross-domain Performance486

Figure 5 presents the averaged test accuracy of each client487

across all tasks in the Fusion Tasks-40 dataset. The results488

indicate that the proposed FedMeS method outperforms the489

FedWeIT method, with higher average accuracy and lower490

forgetting rate among all clients and tasks. The poor per-491

formance of certain clients has a significant impact on other492

clients, and the isolation method employed by FedWeIT to493

mitigate catastrophic forgetting proves to be ineffective in this494

experiment with a large number of tasks. In contrast, the pro-495

posed FedMeS method demonstrates consistent performance496

across all tasks and clients, providing strong evidence for497

its effectiveness in addressing the catastrophic forgetting and498

client drift issues in the PFCL problem.499

Figure 5: Averaged test accuracy of each client among all learned t
tasks after the training of task t on Fusion Tasks-40.

6 Conclusion 500

This paper has presented an in-depth examination of the chal- 501

lenges associated with catastrophic forgetting and client drift 502

in PFCL and proposed the FedMeS framework as a solution 503

to these issues. FedMeS levearges a small reference memory 504

in the local training process to replay knowledge from pre- 505

vious tasks to alleviate forgetting; and the same memory is 506

also used for the inference process by applying KNN-based 507

Gaussian inference to further improve model personalization 508

capability. We thoroughly analyzed the convergence behav- 509

ior of FedMeS, and performed extensive experiments over 510

various PFCL tasks. For all experiments, FedMeS uniformly 511

outperforms existing techniques in terms of prediction accu- 512

racy and forgetting rate. 513
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