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Abstract

This paper presents an investigation into machine
learning techniques for violence detection in videos
and their adaptation to a federated learning con-
text. The study includes experiments with spatio-
temporal features extracted from benchmark video
datasets, comparison of different methods, and pro-
posal of a modified version of the ”Flow-Gated”
architecture called ”Diff-Gated.” Additionally, var-
ious machine learning techniques, including super-
convergence and transfer learning, are explored,
and a method for adapting centralized datasets to
a federated learning context is developed. The re-
search achieves better accuracy results compared to
state-of-the-art models by training the best violence
detection model in a federated learning context.

1 Introduction

Violence detection can be used in many contexts: soccer
stadiums, surveillance cameras, video sharing services, etc.
Moreover, humans aren’t able to detect violence on this scale
because of the huge quantity of data involved. In the context
of a CCTV center such AI can be used to inform the authori-
ties and permit to intervene faster [Youssef et al., 2021].

Federated learning can play a crucial role in ensuring
data privacy and security for violence detection in surveil-
lance videos, especially in compliance with GDPR regula-
tions [EU, 2016]. By keeping the training data and machine
learning model on the devices where it was collected, the
risk of sensitive information being intercepted on the network
can be avoided [Gosselin et al., 2022]. Moreover, feder-
ated learning can leverage techniques like differential privacy
[Hu et al., 2020] to protect individual privacy and reduce the
risk of model reverse-engineering [Cheng et al., 2020]. This
approach can be particularly useful in contexts such as CCTV
centers, where timely detection of violence can inform au-
thorities and help to intervene faster.

The ethical implications tied to the use of machine
learning for violence detection in surveillance contexts
are significant. Potential issues range from infringe-
ments of privacy rights [Crawford and Schultz, 2013]

to biases in the algorithm, potentially leading to dis-
criminatory outcomes [Zou and Schiebinger, 2018],

[Buolamwini and Gebru, 2018]. These systems, while
technologically innovative, need to be used judiciously
to avoid misuse and ensure fairness and transparency
[Mittelstadt et al., 2016], [Greene et al., 2019]. They should
not replace human judgement, but act as supportive tools
for security personnel. Thus, it becomes critical to foster
responsible AI practices, placing paramount importance on
individual privacy and fairness.

In this paper, we propose a deep learning architecture for
violence detection that can be effectively trained using fed-
erated learning, with memory efficiency and reduced training
time as key considerations. By exploring the use of spatio-
temporal features and machine learning techniques such as
super-convergence and transfer learning, we achieve better
accuracy results compared to state-of-the-art models. Our ap-
proach can pave the way for privacy-preserving and efficient
violence detection in a range of real-world scenarios.

2 Related work

In this section, we explore two important topics in the field of
data science: violence detection and federated learning.

2.1 Violence Detection

Violence detection is a sub-field of action recognition that
consists of detecting specific actions in videos. The detec-
tion of violence or fight scenes has been an active research
field for a long time. Classical methods for violence detec-
tion used hand-crafted features, such as ViF (Violent Flow)
[Hassner et al., 2012], which detects changes in optical flow,
and OViF (Oriented Violent Flow) [Gao et al., 2016], an im-
provement of ViF that makes better use of the orientation
information of optical flows. Optical flow is the apparent
changes in the pixels of two consecutive images of a video.

More recently, deep learning methods have been devel-
oped, achieving better results and requiring less process-
ing than classical methods, allowing the model to learn the
violence patterns. To do this, several architectures have
been experimented with over time. One method is to use
3D CNNs [Ding et al., 2014], which applies convolutions to
videos. This method has improved over time, such as in
[Li et al., 2019], which applies the concepts of DenseNet
[Huang et al., 2017] to improve the model’s performance and
reduce the number of parameters.

http://arxiv.org/submit/4981476/pdf


Another deep learning method is to use Conv-LSTM cells
[Shi et al., 2015] and a traditional CNN. LSTM aggregates
the features extracted by the CNN on the frames of the video
to obtain temporal information. This is what is done by
[Sudhakaran and Lanz, 2017].

[Cheng et al., 2021] proposed using two input channels in-
stead of one corresponding to the video frames. The addi-
tional channel is the optical flow, which helps the model focus
on the areas where there is movement and possibly violence.

2.2 Federated Learning

Data governance has become an important consideration in
violence detection research, particularly with regards to the
ethical and legal implications of video data privacy following
the implementation of the GDPR [EU, 2016]. In response,
federated learning has emerged as a promising approach for
training data science models without centralized data stor-
age, with several algorithms such as FederatedAveraging
[McMahan et al., 2017], FedProx [Li et al., 2020b], MIME
[Karimireddy et al., 2021], and FEDOPT [Reddi et al., 2020]

proposed for this purpose.
In this paper, we adopt FederatedAveraging

[McMahan et al., 2017], a technique that allows each
client to train a local model with their own data. The
resulting models are then averaged to train a global model
that is sent back to the clients after each round. FederatedAv-
eraging has been demonstrated to be well-suited to Non-IID
(independent and identically distributed) data distributions in
[McMahan et al., 2017].

Relatedly, [Silva et al., 2022] work in 2022 also leveraged
federated learning for violence detection in videos, using var-
ious pre-trained convolutional neural networks on the AIRT-
Lab Dataset and finding the best performance with MobileNet
architecture, showcasing a high accuracy of 99.4% with only
a marginal loss when compared to non-federated learning set-
tings.

3 Methodology

In this subsection, we present the architectures of the models
used for violence detection and how we adapted these models
for the federated learning context. Our objective is to achieve
state-of-the-art or higher accuracy while being resource and
time-efficient since these models are intended to be deployed
and trained in CCTV centers, which typically have less pow-
erful computers than research environments. We also de-
scribe the methodology we used to develop and optimize our
violence detection model, which involved addressing the lim-
itations of classical classifiers using transfer learning, early
stopping, and One-Cycle training. Additionally, we explore
multi-channel input models using both optical flow and frame
differences, and detail the specific model architectures we
used to achieve better performance while reducing compu-
tation time. Overall, this section provides a comprehensive
overview of our approach to developing a robust and efficient
violence detection model.

3.1 Limitation of Classical Classifiers
[Sernani et al., 2021] utilized a pre-trained model on the
Sports-1M dataset [Tran et al., 2015] for feature extraction

(see Figure 1) and employed an SVM classifier to classify
videos as violent or non-violent.

We explored different classification methods for violence
detection and evaluated their performance. In particular, we
tested decision tree and random forest classifiers using a pre-
trained model to extract video features. We optimized the hy-
perparameters of both classifiers using grid search and trained
them on the extracted features. Despite being marginally
faster than the SVM classifier, the decision tree and random
forest classifiers did not meet our needs in terms of speed and
accuracy on our dataset. For instance, it took around 5 min-
utes to extract features from 300 videos of 5 seconds in 30 fps
and low resolution, followed by 10 seconds for the classifier
training, which is not efficient for our use case.

This experimentation revealed that classical classification
methods on extracted features for violence detection are not
well-suited for real-time applications.

3.2 Transfer Learning and Early Stopping

To improve training efficiency, it was essential to explore var-
ious transfer learning architectures.

[Sernani et al., 2021] utilized a transfer learning architec-
ture consisting of six pre-trained layers, with two fully con-
nected layers of 4096 and 512 neurons respectively, and a
final output layer (see Figure 2).

We tried many different architectures, from starting the
transfer learning one layer earlier, to adding multiple training
layers, each layer containing from 256 to 4096 neurons. The
goal being to get a better training time or ROC curve than the
model used in the previous paper, therefore, the time to beat
was 12min30s and the AUC was 0,987. Through trial and
error, we obtained results ranging from 8 minutes of train-
ing time and an AUC of 0.941 to 17 minutes and and AUC
of 0.991. We noticed that the more neurons we used on the
before last layer, the faster the network converged, but at the
same time, the worse the accuracy became. However, these
results are not what we need since they are slower and less ac-
curate than what a random forest classifier is able to produce
(Table 1). The aim being to get the most efficient training
possible due to material constraints in a federated context, we
want to reduce training time as much as possible, which leads
us to the next section.

3.3 Transfer Learning and One-Cycle Training

To reduce training time without sacrificing results, we aimed
to accelerate the convergence of our networks. We used
a technique called cyclical learning rates, introduced by
[Smith, 2017], which involves gradually increasing the learn-
ing rate from a very low value to a high value and then de-
creasing it back to the starting value. This technique can help
speed up convergence.

The super-convergence [Smith and Topin, 2019] uses a
single cycle of cyclical learning with optimal learning rates
to train a model for a few epochs. This method is called One-
Cycle training. In order to find these lower and higher bounds
of learning rates, we trained the model for one single epoch
with a learning rate gradually rising from 1e

−15 to 1 and plot-
ted the loss on a graph as the Y-axis with the learning rate as
the X-axis. The minimum and maximum learning rates were



Figure 1: Structure of the feature extraction architecture [Sernani et al., 2021]

Figure 2: Structure of the transfer learning architecture [Sernani et al., 2021]

respectively located after a sharp drop and before a sharp rise
in loss. We used this method to reduce training time while
maintaining high accuracy and ROC curves with an Area Un-
der Curve of over 0.96.

We, then, experimented with various architectures by vary-
ing the number of layers, number of neurons, and starting
layer for transfer learning. We found that training time evened
out completely, and that lighter architectures starting from the
seventh layer tended to produce better results. Therefore, we
chose an architecture with 1024 neurons on the seventh layer
and a final fully connected layer (see Figure 2). This approach
allows for faster training times than feature extraction meth-
ods while maintaining similar accuracy.

3.4 Multi-Channel Input Models using Optical
Flow

We experimented with multi-input models, including the
Flow-Gated architecture proposed by [Cheng et al., 2021],
which has a lightweight design (272,690 parameters) and uses
both RGB frames and optical flow inputs to identify areas of
movement and potential violence (see Figure 3). The model
consists of four blocks, including the RGB and Optical Flow
Channels, a Merging Block, and a Fully Connected Layer,
with all 3D CNN blocks using depth-wise separable convolu-
tions from MobileNet [Howard et al., 2017] and Pseudo-3D
Residual Networks [Qiu et al., 2017] to reduce parameters
without sacrificing performance. However, the time required
to compute optical flow is a significant drawback, with an av-
erage computation time of 9 seconds for a 5-second, 30fps
video, making it unsuitable for near real-time violence detec-
tion and minimizing learning time.

3.5 Multi-Channel Input Models using Frame
Differences

To reduce computation time required for calculating optical
flow, we opted to use frame differences instead, as demon-

strated in [Islam et al., 2021]. This method requires signif-
icantly less computation time (0.065 seconds compared to 9
seconds for optical flow) and also reduces the number of input
channels required. Unlike optical flow, which also provides
direction of movement, frame differences only detect changes
in the image.

We retained the original Flow-Gated model architecture
and modified the optical flow channel to use frame differ-
ences. We also added more dropout to the fully connected
layer to prevent overfitting. This modified architecture, which
we named ”Diff-Gated”, is lightweight (272,546 parameters)
and achieves better results than the original Flow-Gated net-
work, as shown in Table 6. These changes have reduced pre-
processing and training time while improving accuracy.

4 Experiment

In this section, we describe the experiments we conducted to
develop and optimize our violence detection model. We begin
by explaining our choice of dataset and the setup we used for
our experiments. We then discuss how we adapted the dataset
to the federated learning context and the challenges we faced.
In the next section, we present our results for training previ-
ously tested models in a federated setting.

4.1 Dataset Selection

Various datasets exist for violence detection, such as
the Movies dataset [Bermejo Nievas et al., 2011] consist-
ing of fight scenes from movies or the Hockey Fight
dataset [Bermejo Nievas et al., 2011] composed of fights
from hockey games. However, these datasets have specific
video contexts and may not represent real-life situations.
To choose the most relevant dataset, we looked for CCTV
footage of real-life physical violence situations with a sig-
nificant number of videos and that have been used in other
studies.



Figure 3: Structure of the flow gated architecture [Cheng et al., 2021]

We selected the RWF-2000 dataset [Cheng et al., 2021],
consisting of 2000 videos from various sources of CCTV
cameras, with 1000 violent videos and 1000 non-violent
videos. All videos are 5 seconds long and filmed at
30 fps. To ensure the reliability of our models in mul-
tiple situations, we also used three other datasets: the
crowd violence dataset [Hassner et al., 2012], the AIRTLab
dataset [Bianculli et al., 2020], and the hockey fights dataset
[Bermejo Nievas et al., 2011].

However, training the RWF-2000 dataset required a signif-
icant amount of RAM, even with high-memory resources like
Google Colab (83.5GB RAM). To avoid memory issues, we
limited ourselves to using 300 to 400 videos for training.

4.2 Experimental Setup: Hardware and Software

All our experiments were conducted using Google Colab. For
the non-federated models, we used a high-RAM setup and a
standard GPU (Tesla T4). For the federated model exper-
iments, we used a high-RAM setup with a premium GPU
(Nvidia V100 or A100), as the power and RAM associated
with a premium GPU were necessary for federated learning.
We needed to simulate multiple clients and a server on a sin-
gle machine to create a federated learning environment.

Given the novelty of our engagement with Google Colab
and video classification, coupled with the challenging time-
line, our primary focus was directed towards other pivotal
aspects of the project. Consequently, the optimization of
memory usage presents an area for further exploration and
improvement.

4.3 Data Preparation for Federated Learning:
Adapting Traditional Datasets

The datasets we have chosen for violence detection consist of
videos labelled either ”violent” or ”non-violent”. However,
in a federated learning context, multiple ”clients” are needed,
each simulating a different data source. This presents a chal-
lenge, as traditional datasets are not designed for federated
learning.

To address this challenge, we propose and develop a
method to simulate a federated-learning ready dataset from a
traditional one. Our method involves a stratified split, which
means that each video is associated with one and only one
client, and each client has approximately the same number of

violent and non-violent videos. This ensures that the data dis-
tribution is balanced across the different clients and reduces
the risk of Non-IID data, making it easier to train a model.

Our proposed method offers several advantages. Firstly,
it enables us to use traditional datasets for federated learn-
ing. Secondly, it helps to prevent the failure of models due to
Non-IID data distribution. Lastly, it provides a more realistic
representation of the data distribution in real-world scenarios,
where different data sources may have varying proportions of
violent and non-violent videos.

4.4 Federated Learning with Previously Tested
Models

We focused on training only one of our models in a federated
context. Our choice was the model presented in 3.3 because
it had the best accuracy/training time ratio while reducing the
number of parameters.

We experimented with two frameworks: TensorFlow Fed-
erated [TensorFlow, 2019] and Flower [Beutel et al., 2020].
While achieving an accuracy of over 80% with TensorFlow
Federated is extremely time-consuming, we found it easier to
do so with Flower. As a result, we decided to focus our efforts
on Flower.

Although we were satisfied with our metrics using Flower,
we encountered issues because no memory was freed between
training rounds. Despite this, we were able to successfully
train the model presented in 3.3 using the FederatedAverag-
ing algorithm [McMahan et al., 2017].

We observed the following:

• When training on a random sample of data sources each
round, our metrics were slightly lower than those ob-
tained outside of a federated context. We consider this
result expected because the model was trained on fewer
data per round.

• When training on every data source each round, the ac-
curacy was higher than that obtained outside of a fed-
erated context. We believe this is due to the multiple
rounds of training, corresponding to multiple complete
training cycles, instead of two epochs used for training
using the One-Cycle method.

In conclusion, we were able to successfully adapt our non-
federated models to a federated learning context using the



Classifier Accuracy Training time

C3D + SVM(fc7) 99.8% 23s
C3D + Decision Trees(fc7) 83.9% 10s
C3D + Random Forest (fc7) 99.5% 10s
C3D + Decision Trees(fc6) 85.9% 10s
C3D + Random Forest(fc6) 99.5% 10s

Table 1: Accuracy and training times of the extraction feature meth-
ods on 300 videos of the RWF-2000 dataset.

Flower framework. We were able to train the model presented
in Section 3.3 using the FederatedAveraging algorithm. Al-
though we faced some challenges due to memory size issues
in a federated context, we were still able to achieve good met-
rics for our federated model. Our results show that training
on a random sample of data sources each round resulted in
slightly lower accuracy, while training on every data source
each round resulted in higher accuracy compared to training
outside of a federated context. These findings suggest that
federated learning has the potential to improve violence de-
tection models while preserving privacy, and could be further
explored in future work.

5 Results

In this section, we present the results of our experiments on
violence detection in videos using deep learning techniques.
We first compare the accuracies of different classifiers follow-
ing feature extraction on three hundred videos of the RWF-
2000 database. We also report the preprocessing times of
different datasets, which are influenced by video framerate,
resolution, and length. Next, we provide the results of our
proposed model trained on four different datasets, with dif-
ferent numbers of epochs and maximum learning rates. We
also compare the accuracy and computation time of our Diff-
Gated model with the original Flow-Gated architecture on the
RWF-2000 dataset. Finally, we show the validation accuracy
of our federated learning model on the RWF-2000 dataset for
each round of training.

5.1 Classifiers Comparison

Table 1 presents the accuracy and training times of various
classifiers using the C3D model and different feature ex-
traction methods on 300 videos of the RWF-2000 dataset
[Cheng et al., 2021]. The feature extraction process takes ap-
proximately five minutes, which needs to be added to the
training time to determine the overall time required for gen-
erating a classifier.

5.2 Establishing Baseline Model Performance for
Subsequent Comparisons

Although using decision trees instead of a SVM can save
some time in training, the amount of time needed to extract
features makes it not worthwhile to pursue this avenue in
our context [Sernani et al., 2021]. The preprocessing times
shown in table 2 are influenced by several factors, such as the
frame rate, resolution, and length of the videos used in the
datasets. For instance, the Hockey Fights dataset takes less

Dataset # videos ≈ preprocessing time

AIRTLab 350 3m30s
Crowd Violence 246 36s
Hockey Fights 1000 1m08s
RWF-2000 (400 videos) 400 2m36s

Table 2: Number of videos per dataset and their approximate pre-
processing time.

C3DFC w/ Early Stopping Accuracy ROC AUC

AIRTLab 95.6% 0.9894
Crowd Violence 99.0% 0.9994
Hockey Fights 96.6% 0.9931
RWF-2000 (400 videos) 94.7% 0.9922

Table 3: Results of the model proposed by [Sernani et al., 2021] on
different datasets.

time to process because each video lasts only one second, is
filmed at around 30fps, and has a resolution of 360p. On
the other hand, the AIRTlab dataset has longer videos, with a
duration of five seconds, filmed at 30fps and a resolution of
1080p.

The results presented in Table 3 can be used as a baseline
for comparison with the subsequent models. It is important to
note that the model used is the one presented in section 3.2,
with 512 neurons on its penultimate dense layer.

5.3 Model Performance across Datasets and
Configurations

The tables 4 and 5 display the results of training our model on
four different databases, with the penultimate layer utilizing
1024 neurons.

C3DFC w/ One-Cycle Training ACC ROC AUC

AIRTLab 3m11s 91.0% 0.9972
Crowd Violence 59s 98.4% 0.9994
Hockey Fights 1m35s 94.8% 0.9828
RWF-2000 (400 videos) 3m03s 94.9% 0.9875

Table 4: Results of our model trained for 2 epochs on four different
datasets using super-convergence and a maximum learning rate of
50e

−2. The table shows the training time in minutes, the accuracy
(ACC), and the receiver operating characteristic area under the curve
(ROC AUC) achieved on each dataset. The model has 1024 neurons
in the penultimate layer.

The table 6 shows us the accuracy of the multi-channel
models we have experimented with during this research on
the complete RWF-2000 dataset [Cheng et al., 2021].

Our proposed model, referred to as Diff-Gated, achieves
higher accuracy while reducing computation in comparison
to the original Flow-Gated architecture [Cheng et al., 2021].
Table 7 presents the validation accuracy of our federated
model for each round of training on 400 videos from the
RWF-2000 dataset. Round 0 accuracy corresponds to the val-



C3DFC w/ One-Cycle Training Acc ROC AUC

AIRTLab 1m45 89.8% 0.9437
Crowd Violence 32s 97.2% 0.9627
Hockey Fights 59s 94.8% 0.9755
RWF-2000 (400 videos) 1m52s 90.4% 0.9669

Table 5: Results of our model using super-convergence and 1 epoch

of training and a maximum learning rate of 60e−2.

Context Flow-gated Diff-Gated

Accuracy 87.25% 89.75%
Training time 5h30 5h00
Processing time for a video 9s 0.065s

Table 6: Accuracy, training time, and processing time of our multi-
channel input models on the RWF-2000 dataset.

Round 0 1 2 3 4

Accuracy 50.40% 94.84% 97.72% 98.80% 99.60%

Table 7: Accuracy table of our federated model for each round

idation accuracy of the model before the first round of train-
ing.

6 Conclusion

In this paper, we present an innovative examination of ma-
chine learning models for violence detection in videos, with a
particular emphasis on Federated Learning and our proposed
Diff-Gated architecture. We not only maintain or improve
upon the accuracy of conventional methods but also reduce
training times, enhancing model usability in practical appli-
cations.

Our work incorporated super-convergence for transfer
learning and explored diverse classifiers for extracting spatio-
temporal features from videos. Through modifications to the
Flow-gated architecture proposed by [Cheng et al., 2021], we
were able to boost accuracy and cut down training and prepro-
cessing time.

Moreover, we introduced a method for adapting centralized
datasets to a federated learning context, using it to train our
violence detection model. Despite demonstrating that deep
learning models can be effectively trained using federated
learning, we note the resource-intensive nature of federated
learning, particularly with video data.

While our research has made significant strides, the chal-
lenges inherent in federated learning, such as dealing with
Non-IID and unevenly distributed data, cannot be overlooked
[Li et al., 2020a]. Our future efforts will aim at exploring dif-
ferent federated learning strategies and studying the impact of
unbalanced client data.

Despite these challenges, our work provides valuable in-
sights for researchers and practitioners alike, underlining the
potential of Federated Learning and other novel techniques in

violence detection and other real-world applications.
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