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Abstract

The success of large pre-trained neural generative
conversation models benefits from publicly avail-
able datasets of various sources. However, some
high-quality datasets held by separated companies
and organizations are not exploited yet due to secu-
rity and privacy concerns. In this work, we demon-
strate a framework named FedAssistant to address
the above issue by training neural dialog systems in
a federated learning setting. Our framework can be
trained on multiple data owners with no raw data
leakage during the process of training and evaluat-
ing the models. Moreover, our proposed FedAssis-
tant with two-side modeling can be easily deployed
to any user of all data providers. In order to re-
duce the communication cost between data hold-
ers and the parameter server, FedAssistant further
implements Top-k gradient sparsification. We con-
duct quantitative experiments to evaluate the per-
formance of FedAssistant on various domains, and
our experiment shows that FedAssistant can obtain
lower perplexity on all testing data with acceptable
communication cost.

1 Introduction
Dialogue systems play an important role in daily life and are
widely used for recommendation, question answering, online
customer services, and social chatbots. There are mainly two
types of machine learning based dialogue systems: 1) ut-
terance retrieval models that select responses from a given
database and 2) neural generative language models that im-
provise their responses according to contexts. It is com-
monly believed that high-capacity generative language mod-
els trained on large datasets are the future trends for dialogue
generation related tasks. Large pre-trained language models,
especially GPT-2 [Radford et al., 2019], obtain excellent per-
formance on both task-oriented dialogue tasks [Ham et al.,
2020a; Budzianowski and Vulić, 2019a] and open-domain
chit-chat chatbots [Zhang et al., 2020].

*Equal contribution.
†Corresponding author.

Okay, I'll set up an 
appointment. First, can 
you give me your name?

User

User

User

Data Holder GPTs Fed Server GPT

Assistant

Assistant

Assistant

Hi, Can I get a Caramel 
Macchiato, please?

Sure, what size Caramel 
Macchiato would you like?

Hey can you order me some 
tickets to run the race?

Where would you like 
me get the tickets from?

I need to make an 
appointment with 
Intelligent Auto Solutions.

FedAvg
Parameter 

Server

Movie

Coffee

Repair

Gradients

Gradients

Gradients

Figure 1: Overview of FedAssistant framework. Here Movie, Coffee
and Repair are 3 examples of data holders.

Recently, Google proposed LaMDA [Thoppilan et al.,
2022] that incorporated knowledge grounding and prompts to
language models to achieve superb performance on both task-
oriented and chit-chat tasks. To train those language models,
various sources of publicly available datasets have been used.
However, for high-quality private datasets that are held by
individual companies, institutes, and organizations, current
language models still cannot have access to them due to the
data silos. This is caused by strict laws like the EU’s GDPR1

that forbid companies to share personal data without consent.
Moreover, even for sharing de-identified data, it is still pos-
sible to re-identify participants through data re-identification
with auxiliary data [Narayanan and Shmatikov, 2008]. There-
fore, owners of sensitive data like medical records are not
willing to share their raw data directly. On the other hand,
most data holders are also service providers and they indeed
have the incentive to share their data to improve their services
for users. For example, dialog models are able to answer
more comprehensive and complicated questions after training
on data from multiple knowledge domains. Hence, a better
method for training language models on multiple data own-
ers without revealing the raw data should be considered.

Federated machine learning [Yang et al., 2019] has been
proposed when training machine learning models with data
silos and the privacy of different sources should be preserved.

1https://gdpr-info.eu

https://gdpr-info.eu


Most federated machine learning frameworks utilize a central
server to perform variants of FedAvg Algorithm [Konečný
et al., 2016] that uses the weighted or unweighted average
of clients’ model parameters or gradients to update a global
model and then the global model sends the update back to
its corresponding clients. It is promising to consider train-
ing large pre-trained language models in a federated man-
ner, so that the raw data from multiple owners can be utilized
in dialogue agent while maintaining their data privacy at the
same time. However, there are three main problems to con-
sider. First, giant models typically consist of more than one
hundred million model parameters thus updating client and
global models iteratively is impractical due to huge commu-
nication costs. Second, the generative property of dialogue
neural models can also be a constraint for service users: to
produce a response with given context, the generative models
have to improvise word by word, which is time-consuming
for mobile users with limited computational resources. Third,
simply deploying dialogue neural models to service providers
may avoid the second problem, but it requires users to trans-
fer their plaintexts to the server. These texts may become a
potential threat to the users’ privacy since private information
can be mined from some sensitive content.

To overcome the above problems, we propose a two-side
dialogue modeling framework based on the GPT-2 model,
FedAssistant, where only hidden states are required to trans-
fer between the two GPT-2 models with the FedAvg algo-
rithm. FedAssistant exploits the transformer architecture to
model next utterances where partial hidden states of the other
side can be regarded as contexts. Figure 1 depicts an example
of FedAssistant with three data holders: Movie, Coffee, Re-
pair and each of them owns the conversations between users
and assistants. Every data holder uses two GPT-2 models for
modeling users’ and assistants’ utterances separately and Fe-
dAvg is only performed for assistants’ GPT-2. As a result,
data holders can better obtain their own auto-response as-
sistants to further improve their services and users are able
to obtain replies without sending raw utterances through one
simple round of user side GPT-2 inference. In summary, we
highlight the following contributions of FedAssistant.

• FedAssistant can avoid plaintext transmission during
training and inference states. Only past keys and val-
ues of all transformer blocks are required as contexts for
response generation.

• FedAssistant views data holders as user service
providers and allows simple model deployment to their
users that do not need to generate explicit responses
word by word locally.

• Lastly, FedAssistant can perform well with the Top-k
gradient sparsification technique to reduce the commu-
nication cost.

2 Related Works
In this section, we first introduce the details of FedAvg algo-
rithm and approaches for gradient compression. Then several
works about task-oriented dialog agents are presented.

2.1 FedAvg and Gradient Compression
FedAvg [McMahan et al., 2017] combines local SGD
[Ketkar, 2017] on each client and model averaging on a
server, which makes the distributed modeling training un-
der federated learning setting applicable. Each client needs
to download an entire model and upload an updated model
again. The communication cost of this process could be very
high due to slow and unreliable network connections. To ad-
dress this problem, researches on gradient compression in dis-
tributed SGD have been proposed can be classified into two
streams, including unbiased estimate for gradients and biased
gradient compression.

Approaches of unbiased estimate for gradients include
Quantized SGD [Alistarh et al., 2017] and sparsification [Lin
et al., 2017]. The Quantized SGD aims to trade-off between
the communication cost and convergence guarantees. The
sparsification method maintains the unbiasedness of sparsi-
fied stochastic gradient by dropping some coordinates of the
gradient and amplify the remaining ones. However, the re-
quirement for these methods is too stringent for empirical ap-
plication.

Another direction is biased gradient compression that in-
cludes signSGD [Bernstein et al., 2018] and DGC sparsifica-
tion [Lin et al., 2017]. SignSGD utilizes the sign of stochastic
gradient to perform a 1-bit compressed communication be-
tween server and clients. Previous gradient sparsifications fo-
cus on reducing the size of transmitted gradients. [Strom,
2015; Aji and Heafield, 2017] proposed to send gradients or
absolute values of gradients larger than a constant threshold
and [Dryden et al., 2016] proposed to send a fixed portion
of gradients. Different from SignSGD, DGC sparsification
sends the magnitude of gradients greater than a threshold
while keep accumulating the local gradients in the meantime.

In this paper, we focus on the training of task-oriented di-
alog agents under the biased gradient estimate stream. To
simplify the communication process, we adopt a top-k spar-
sification strategy similar to the idea in [Dryden et al., 2016].
Each time the clients and server communicate with a fixed
proportion of gradients selected by magnitude.

2.2 Dialog Agent
Task-oriented dialog assistants are very common in real-
world now, such as Google Home, Apple Siri and Mi-
crosoft Cortana. Typically a traditional task-oriented dia-
log agent is built based on a pipeline architecture, including
four parts, a natural language understanding (NLU) module
[Sarikaya et al., 2014; Ravuri and Stolcke, 2016], a dialog
state tracking (DST) module [Henderson et al., 2013; Mrkšić
et al., 2015], a dialog policy module [Lipton et al., 2018;
Chen et al., 2018] and a natural language generation (NLG)
module [Wen et al., 2015]. The modules are built seperately
which does not require an overall optimized performance.

Different from previous methods, current studies attempt
to build end-to-end dialogue systems to complete the tasks
by employing transfer learning framework based on large
pre-trained language models [Madotto et al., 2018; Lei et
al., 2018]. [Wolf et al., 2019] incorporates a large-scale
pre-trained language model to build a chit-chat dialog sys-
tem. [Budzianowski and Vulić, 2019b] bypasses explicit pol-
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Figure 2: Two-side modeling of FedAssistant. For any data holder, the user-side GPT-2 and the assistant-side GPT-2 model utterances of users
and assistants, respectively. Keys and values of all transformer decoder blocks are transmitted as context for modeling the next utterance.
Therefore, no raw text is passed between the user side and the assistant side.

icy and language generation modules by employing a dia-
logue model that operates solely on text input. [Ham et al.,
2020b] leverages GPT-2 and trains the model following the
traditional dialog management pipeline. Recent researches
continue making significant progress on the task oriented
dialog benchmarks [Raffel et al., 2019; Yang et al., 2020;
Peng et al., 2021; Lee, 2021; Lu et al., 2021].

Our work follows the the idea in [Ham et al., 2020b] that
we also build an end-to-end dialog system by using GPT-2
model. The difference is that we aim to leverage multiple
data sources while keeping the data privacy under the feder-
ated setting. In order to realize this, we propose a two-side
modeling module of dialogue agent.

3 FedAssistant Framework
In this section, we present detailed descriptions of FedAssis-
tant. We first give the problem setup in Section 3.1. Then we
give a detailed model architecture explanation for two-side
modeling in Section 3.2. Finally, we will introduce federated
learning for assistant side models in Section 3.3.

3.1 Problem Formulation
We define the set of data holders as D = {D1, D2, ..., DN}
where N is total number of data holders. For each data holder
Di, it owns a dataset of conversations Ci = {c1i , c2i , ..., c

ni
i }

where ni refers to size of dataset of Di. Each conversation
consists of a sequence of utterances between its users and as-
sistants. Our goal is to train an auto-response assistant that
can chit-chat comprehensively for every data holder Di.

3.2 Two-side Modeling
To achieve the above goal, we propose FedAssistant, a two-
side modeling framework based on GPT-2 models without
revealing any utterances. For any data holder Di, it initializes
two GPT-2 models, classified as a user-side GPT-2 and an
assistant-side GPT-2, respectively. In practice, during infer-
ence, the auto-response assistant is responsible for answer-

ing users’ queries. Hence we only need to care about the
generation of the assistant-side GPT-2. For any conversation
cji of Di, the user-side GPT-2 only models the users ’ utter-
ances while the assistant-side GPT-2 is responsible for model-
ing utterances from the assistant during training or generating
replies based on the previous context during inference.

Conventionally, to train GPT-2 with multi-round utter-
ances, all previous utterances will be concatenated together
separated by <eos> tokens as context for training current ut-
terances with language modeling (LM) [Bengio et al., 2003].
Given current utterance U = {w0, w1, ..., w|U |−1} and previ-
ous context c, the objective of LM is to maximize the likeli-
hood over every word token of U :

L(U) =

|U |∑
i=1

log(P (wi|c, w0, w1, ..., wi−1)). (1)

Maximizing the likelihood L(U) is done by minimizing
the cross-entropy loss between generated probabilistic dis-
tribution and ground truth utterance U with teacher forcing
[Williams and Zipser, 1989]. In particular, GPT-2 consists of
a stack of transformer decoder blocks [Vaswani et al., 2017].
For any position with its query (q), and all positions’ keys
(K) and values (V ), the attention is computed by masking
the future positions, which can be formulated as:

Attention(q,K, V ) = Softmax
(

Mask(qK⊤)√
dk

)
V, (2)

where dk refers to the dimension of keys and queries.
FedAssistant applies conventional approaches for training

both user-side and assistant-side GPT-2. Moreover, FedAs-
sistant can further avoid the raw utterances transmission be-
tween the user-side and the assistant-side GPT-2, by exploit-
ing past keys and values of transformer blocks of GPT-2, as
illustrated in Figure 2. One key observation of FedAssistant
is that all previous keys and values are sufficient as context



for modeling the current utterance, since future keys and val-
ues are masked for transformer decoder blocks. For example,
to model the third utterance, keys and values of all word to-
kens of first and second utterances are required. This allows
FedAssistant to train its GPT-2 models by past keys and val-
ues transmission without revealing raw data. Moreover, it can
speed up GPT-2’s training and inference since the model does
not need to recompute previous unchanged contexts. To train
both GPT-2 models, in the beginning, the user-side GPT-2
models its first utterances U0 and sends its computed keys and
values to the assistant side as context c. Then the assistant-
side GPT-2 models the response U1 based on context c and
transmits keys and values of both U0 and U1 to the user-side
as the updated context. This process continues repeatedly un-
til all utterances are fed to the models, and each model up-
dates its own parameters through language modeling. If the
assistant-side starts the conversation, then the user-side mod-
els U0 and the training procedure is similar. Unlike previous
works that update GPT-2 by all utterances, FedAssistant re-
quires the user-side to train its model based only on users’
utterances while the assistant-side only updates its parame-
ters for assistants’ utterances. After training, the user-side
GPT-2 can be distributed to all users and its data holder holds
the assistant-side GPT-2.

The advantage of the proposed two-side modeling is ob-
vious. First, it requires no raw data transmission between
the user side and the assistant side, so sensitive conversations
are kept private. Second, unlike other GPT-2 implementa-
tions, users with limited resources don’t have to generate re-
sponse word by word locally and only one forward pass is re-
quired. The whole generation process is left to the assistant-
side GPT-2. Third, [Wu et al., 2021] showed that by using
alternating memory recurrence, lower perplexity and better
generation quality could be achieved. This suggests that two-
side modeling brings no harm to language models.

3.3 Federated Learning for the Assistant Side
To further enhance the generation performance of FedAssis-
tant, we perform FedAvg algorithm for all assistant-side GPT-
2 models with a parameter server. All data holders initialize
their user-side and assistant-side models with the same pa-
rameters (that can be pre-trained from a large corpus). After
training a batch of conversations, each data holder sends its
assistant-side update to the parameter server, and the server
averages the updates to update server parameters. Then the
updated server parameters will be sent back to all clients to
start a new round of training for each data holder. The train-
ing stops until certain epochs are reached.

However, FedAvg for GPT-2 can cause huge communica-
tion costs since GPT-2 usually consists of hundreds of mil-
lions of trainable parameters. For each round of FedAvg, the
parameter server needs to download previous weights and up-
load averaged new weights to all data holders. Thus, the pa-
rameter server bandwidth is likely to be the bottleneck for
federated learning. To reduce the communication cost for
the parameter transmissions, FedAssistant adapts top-k gra-
dient sparsification [Dryden et al., 2016] that is widely used
for distributed optimization algorithms. For every data holder
and parameter server, top-k gradient sparsification chooses k

Algorithm 1: FedAvg with top-k gradient sparsifica-
tion

Input: clients C1, ..., CN

Input: round b for local training
Input: the number of clients N
Input: optimization function SGD
Input: training steps m
Input: init parameters w = {w[0], w[1], ..., w[N − 1]}

1 G0 ← 0;
2 for t = 1 to m do
3 Gt

k ← Gt−1
k ;

4 for i = 1 to b do
5 Sample dialog data x from client k;
6 Gt

k ← Gt
k + 1

Nb∇f(x;wt);
7 end
8 for j = 1 to N do
9 Ĝt

k[j]← topk(Gt
k[j]);

10 end
11 All-reduce Gt

k : Gt ← 1
N

∑N
k=1 encoder(Ĝ

t
k);

12 Gt ← topk(Gt);
13 wt+1 ← SGD(wt, G

t);
14 end

largest magnitude gradients and only k of them are used for
FedAvg. Algorithm 1 describes federated learning with top-
k sparsification for FedAssistant. The gradient on the server
side is initialized as 0. In each iteration, top-k gradients are
selected on the client side for uploading to server and top-k
gradients are selected on the server side after averaging local
gradients for downloading to clients.

4 Experiment
In this section, we present extensive comparative experiments
for our proposed FedAssistant framework. In Section 4.1, we
will introduce the setup for dataset and training. Then we will
compare FedAssistant with other 4 GPT-2 based model setup
in Section 4.2. Moreover, we will analyze how top-k gradi-
ent sparsification can affect the performance of FedAssistant
in Section 4.3. Finally, we give the communication cost for
FedAvg in Section 4.4.

4.1 Experimental Setup
Dataset. We evaluate our result on the Google Taskmaster-1
dataset [Byrne et al., 2019] which consists of woz-dialogues
and self-dialogues. Woz-dialogues are collected by record-
ing two paid workers’ conversations while self-dialogues are
written by a single worker imaging the conversations be-
tween two people. Taskmaster-1 includes conversations be-
tween users and assistants of six domains: ordering pizza
(Pizza), creating auto repair appointments (Repair), setting
up ride service (Ride), ordering movie tickets (Movie), order-
ing coffee drinks (Coffee) and making restaurant reservations
(Restaurant). We merge all conversations of woz-dialogues
and self-dialogues and separate them according to dialogues’
corresponding domains.



Repair Coffee Movie Restaurant Pizza Ride All

GPT local 10.10 10.23 9.72 12.62 9.59 9.87 22.16
GPT all 9.54⋆ 9.17⋆ 9.01⋆ 11.65⋆ 8.65⋆ 8.99⋆ 9.51⋆

FedA both 11.31 10.44 10.13 13.57 9.85 10.48 10.96
FedA 10.62 10.36 9.94 13.40 9.74 10.07 16.14

FedA freeze 104.77 16.24 14.81 20.29 14.92 14.99 28.70

Table 1: Evaluation results on the testing data. Perplexity (PPL) is used as the metric for evaluating the performance of six data holders. “All”
means using all the testing data to evaluate the overall performance and average the perplexity for all six data holders.

Training details. We treat each domain as one data holder
and randomly split the data for training, validation and test-
ing. Each domain has roughly 1,800 training dialogues, 200
validation and 200 testing dialogues. For model initializa-
tion, we use pre-trained DialoGPT-small (117M) [Zhang et
al., 2020] trained on Reddit data. The model performance
is evaluated by perplexity (PPL) for testing data. For opti-
mization, we use AdamW optimizer [Loshchilov and Hutter,
2019] and the learning rate is 3e-5 with linear warm-up and
decay. Each data holder trains its data for 10 epochs. We use
a single machine and warp each data holder with its own data
and FedAssistant into a class, so that every data holder can-
not access the data of others. For each data holder, 1 Nvidia
V100 is used to train its data.

4.2 Evaluation on Model Architecture
For our experiment, We consider the following model archi-
tectures:

GPT local: for each data holder, train one GPT-2 model
with its own training data locally.

GPT all: only train one GPT-2 model for all training data
of 6 data holders.

FedA both: for each data holder, train two-side modeling
GPT-2 models with its own training data and perform FedAvg
for both the user side and the assistant side.

FedA: for each data holder, train two-side modeling GPT-
2 models with its own training data and perform FedAvg for
the assistant side only.

FedA freeze: for each data holder, train two-side modeling
GPT-2 models with its own training data and perform FedAvg
for only the assistant. The parameters of the user-side GPT-2
are frozen.

Both GPT local and GPT all can be considered as base-
lines by comparing two-side modeling with conventional
modeling. FedA is the FedAssistant framework we propose
in Section 3. FedA both evaluates the performance for per-
forming FedAvg on the user side as well. FedA freeze freezes
the training parameters for the user side, hence users are not
required to update the user side model anymore. Intuitively,
this approach leads better transferability with poorer evalua-
tion results.

The evaluation result based on perplexity is shown in Ta-
ble 1. To test the generalized ability, we also consider testing
models based on all the testing data. GPT all has the best
performance over each data holder and all testing data, since
the model is trained on the conventional approach with all
the training data. GPT local achieves the second-best eval-
uation result on each data holder, however, there is an ob-

vious gap between the generalized ability on all testing data
and adaptability on individual domains. Also, by compar-
ing the gap between individual domains and all testing data,
we can conclude that the data distribution in each domain is
not identical. FedA both obtains the lowest perplexity among
all variants of FedAssistant for all testing data, which indi-
cates that performing FedAvg on the user-side indeed im-
proves FedAssistant’s generalization. However, performing
FedAvg for the user-side is not practical when the user-side
model is deployed to the users. Compared with GPT local,
FedAssistant has similar performance for individual testing
data and lower perplexity for all testing data. This justifies
that FedAssistant can perform well on local data while being
able to generalize via FedAvg. The perplexity of FedA feeze
on Repair is surprisingly high. We investigate the Repair data
and find that users’ phone numbers are frequently given for
some users’ utterances. Freezing parameters on the user side
can lead to high perplexity when modeling users’ utterances
with phone numbers. And by training the user-side, the ex-
ploding perplexity can be reduced.

Overall, the above experiments demonstrate that FedAs-
sistant can have competitive performance on individual data
holder with better generalized ability.

4.3 Evaluation on Top-k
Here we analyze the experiments on perplexity after apply-
ing top-k gradient sparsification for both both FedA freeze
and FedA. Top-k gradient sparsification can significantly re-
duce the communication cost while sacrificing most minor
updates. It is a trade-off to balance between utility and abil-
ity. We use No TopK to indicate FedAssistant without us-
ing Top-k gradient sparsification and No TopK freeze to de-
note FedA freeze without using Top-k gradient sparsification.
We consider optimizing top 9.75M ( 1

12 ), 4.68M ( 1
25 ), 2.34M

( 1
50 ), 1.17M ( 1

100 ) of transmitted gradients for both the user
side and the assistant side, namely, Top 1

12 , Top 1
25 , Top 1

50 and
Top 1

100 for FedAssistant. Roughly speaking, we are cutting
the transmitted gradients by half every time. We use the same
data split for all data holders.

Table 2 depicts the evaluation results. Not surprisingly,
FedAssistant without Top-k obtain the best performance for
individual domains and all testing data. For FedAssistant,
it is more robust towards Top-k gradient sparsification. As
updated gradients are reduced by half, testing perplexity in-
creases no more than 1 for most local data holders. Com-
pared with reduced cost, the minor decrease in perplexity
seems acceptable. However, for FedA freeze, the perfor-
mance drop is obvious: for Restaurant, perplexity increases



Repair Coffee Movie Restaurant Pizza Ride All

No TopK freeze 104.77 16.24 14.81 20.29 14.92 14.99 28.70
No TopK 10.62 10.36 9.94 13.40 9.74 10.07 16.14
No TopK A⋆ 9.06 7.91 8.42 11.61 7.68 7.81 10.66
Top 1

12 freeze 108.64 18.85 17.12 23.99 16.87 17.71 31.54
Top 1

12 11.79 11.27 10.93 14.87 10.54 11.11 19.05
Top 1

12 A⋆ 10.61 9.11 9.84 13.79 8.73 9.12 13.93
Top 1

25 freeze 111.13 20.45 18.69 26.55 18.28 19.37 33.40
Top 1

25 12.37 11.80 11.58 15.70 10.978 11.75 20.92
Top 1

25 A⋆ 11.45 9.81 10.72 15.07 9.31 9.92 16.27
Top 1

50 freeze 114.36 22.43 20.60 29.86 19.96 21.45 35.75
Top 1

50 12.92 12.28 12.18 16.66 11.41 12.48 22.82
Top 1

50 A⋆ 12.25 10.50 11.61 16.50 9.93 11.94 18.78
Top 1

100 freeze 118.66 24.98 23.07 34.13 22.16 24.13 38.79
Top 1

100 13.40 12.74 12.78 17.59 11.75 13.29 24.58
Top 1

100 A⋆ 13.00 11.14 12.48 17.94 10.40 11.76 21.21

Table 2: Evaluation results on overall perplexity of top-k gradient sparsification for FedAssistant freeze, FedAssistant and assistant side
models’ perplexity. Suffix ’ freeze’ is used for FedA freeze and ’ A’ is used for assistant side models’ perplexity of FedAssistant. Top 1

12
,

1
25

, 1
50

, 1
100

gradient sparsifications are used for all three settings as well as no top-k. “All” indicates all the testing data is used to evaluate
the overall performance and the result is averaged.

from 20.3 to 34.1. For all testing data, when the fraction of
updated gradients is larger than 50, both models fail to out-
perform GPT local. This implies that top-k gradient sparsi-
fication with a ratio larger than 1

50 might be a proper choice
for FedAssistant. By comparing FedAssistant models with
different Top-k ratios, we show that FedAssistant tends to be
more robust towards top-k gradient sparsification.

Evaluation on the assistant side. According to the prob-
lem setting of FedAssistant, data holders are more interested
in the assistant side for providing better services. Intuitively,
FedAvg on the assistant side should improve the generalized
ability of the assistant-side GPT-2. To better evaluate how
FedAssistant performs, it is crucial to analyze the perplexity
only on the assistant-side models.

Table 2 also includes the assistant side’s perplexity for
FedAssistant, named with suffix “ A”. Compared with the
perplexity of all utterances on FedAssistant and FedA freeze,
assistant side models achieve the best performance for all top-
k and no top-k settings except the minor increase (∼0.4) on
the Restaurant with Top 1

100 . By comparing overall perplex-
ity with assistant side utterances’ perplexity, it shows that
FedAssistant is able to better improve the assistant-side mod-
els and hence the FedAvg algorithm contributes to the im-
provement of the assistant side. Moreover, for all testing data,
FedAvg can bring significant improvement for the assistant
side, even the top 1

50 gradient sparsification can achieve lower
perplexity than GPT local for all testing data.

The above comparison experiment shows the effectiveness
of FedAvg on the assistant side with lower perplexity for both
top-k and no top-k scenarios.

4.4 Communication Cost
The communication cost is acceptable for every data holder.
When we apply top-k gradient sparsification for 2% param-
eters (Top 1

50 ), the communication cost for any data holder

of each round of FedAvg is around 18 Mb. This cost makes
federated learning feasible for training large pre-trained lan-
guage models.

5 Conclusion and Future Work
In this work, we present FedAssistant, a well-performed and
federated two-side modeling framework for neural dialogue
models. First, we exploit the past keys and values of trans-
former decoder blocks to avoid raw data leakage for both
training and evaluation. Then we implement a two-side mod-
eling architecture to model utterances according to the roles
of speakers separately and distributedly. What’s more, we
apply FedAvg algorithm to further enhance the generalized
ability of the assistant-side models for better customer ser-
vices. To address the high communication cost for uploading
and download parameters, we implement top-k gradient spar-
sification for our FedAvg algorithm. We conduct extensive
comparison experiments to demonstrate the effectiveness of
both two-side modeling and FedAvg with top-k gradient spar-
sification.

However, certain problems still remain. The first prob-
lem is related to federated learning with the non-IID prob-
lem of various domains. As the experiment shows, after Fe-
dAvg, though FedAssistant can obtain better performance on
all testing data, it cannot obtain improvement over its local
data. Another problem comes from FedA freeze, which has
more transferability than FedAssistant for all users and is
more promising in practice. In our experiment, for the Repair
data, FedA freeze with exploded perplexity exemplifies the
problem. In the future, we plan to apply a more dedicated and
frozen pre-training method for every user-side model while
improving the FedAvg algorithm to address the non-IID prob-
lem. We will also try to distill the model with fewer trainable
parameters and apply quantization with less computational
precision to further reduce the communication cost.
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