
Abstract 

This paper introduces a TEE based (using Intel 
SGX) cross-silo trustworthy federated learning in-
frastructure, which is an excellent pipeline protec-
tion including runtime environment and all data (in-
put/output/intermedia data) protection in all parties. 
It is shown that our implemented infrastructure in 
TEE is both efficient and flexible. In our imple-
mented infrastructure, AI frameworks are running 
on libOS Gramine, in order to minimize the change 
of the applications. This implemented infrastructure 
can be modified and adopted for commercial usage 
(please contact author to get codes under NDA). 

1 Introduction 

Federated Learning (FL) [McMahan and Ramage, 2017] pro-
posed by Google is devised to train machine learning 
(ML)/deep learning (DL) models without requiring data shar-
ing. However, it still has a few challenges. 

Firstly, it cannot always guarantee the privacy of user data 
due to the existence of a malicious user who purposely tries 
to steal the data from other users.  [Bagdasaryan et al., 2020, 
Sun et al., 2020, Wang et al., 2020, Xie et al., 2019] install 
backdoors to the FL model during the model parameter com-
munication, and the resulting model will make an incorrect 
prediction with specific input data. [Tolpegin et al., 2020, 
Zhou et al., 2021, Fang et al., 2020, Zhang et al., 2019] study 
poisoning attack to the FL model by using poisoning training 
data and poisoning model. Another type of attack to ML 
model, named inference attack is investigated in [Nasr et al., 
2019, Gao et al. 2021], including membership inference at-
tack and category inference attack. [Luo et al. 2021] conducts 
a feature inference attack to vertical FL model using genera-
tive networks. [Li et al. 2021] studies a general framework 
improving both the fairness and robustness of the FL model 
against poisoning attack. For backdoor and inference attack, 
methods based on clipping and smoothing on model parame-
ters [Xie et al., 2021], feedback [Sebastien et al., 2021], 
model clustering weight clipping [Nguyen et al., 2021] and 
mixing neural network layers [Antoine et al., 2021] are pro-
posed. Other important techniques used in FL are differential 
privacy and homomorphic encryption [Liu et al., 2021, Liu et 

al., 2020, Wei et al., 2020, Stacey et al., 2020, Liu and Yang 
et al., 2020]. 
 
Secondly, the accuracy and efficiency of the pure software-
based approaches needs to be improved. The more secure we 
want; the heavier the workload is. The pure software-based 
approaches have a much higher computation cost compared 
to the plain text computation [Naehrig et al., 2011]. The usage 
of noise in differential privacy also has an adverse effect on 
the accuracy of the model. So, FL accuracy and efficiency are 
practical issues to industry projects. 

1.1 Related work on TEE 

In addition to the above software-based approaches, privacy-
preserving FL leveraging trusted execution environments 
(TEEs) has been proposed recently. TEE is a secure hardware 
technique for confidential computing on untrusted environ-
ment. One well-known application of TEE technique is Intel® 
Software Guard Extensions (Intel® SGX). SGX is an Intel 
technology for application developers seeking to protect code 
and data selected from disclosure or modification. It allows 
user-level code to allocate private regions of memory, called 
enclaves, which are designed to be protected from processes 
even running at higher privilege levels.  
[Mo et al., 2021] proposes a practical framework based on 
greedy layer-wise training and aggregation on SGX, over-
coming the constraints posed by the limited TEE memory. 
[Zhang et al., 2021] provides a scalable collaborative learning 
system in untrusted infrastructures by distributing the train-
ing across multiple SGX enclaves. To protect the gradient 
during the training, [Fumiyuki et al., 2021] studies a new 
scheme for differentially private FL. It uses SGX to ensure 
secure model aggregation on an untrusted server, and the 
transfer of gradients of models are encrypted. [Zhang et al., 
2021] adopts a random grouping algorithm on SGX against 
the side-channel attack and reduces the probability that the 
adversaries obtain the gradient information. Other TEE-
based approaches for privacy-preserving FL are proposed in 
[Eugene et al., 2021, Quoc et al., 2021]. OpenFL [Reina et 
al., 2021] only uses TEE/SGX for running programs so far 
but not to verify each other with attestation. 
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1.2 Our work 

We implemented a TEE based Cross-silo Trustworthy Feder-
ated Learning Infrastructure to help address the above two 
challenges based on SGX. As SGX enclave size of the 3rd Gen 
Xeon Scalable processor increased up to 1TB, we can re-de-
sign the FL infrastructure for FL workload. 
Firstly, the implemented FL infrastructure protects the whole 
pipeline. All the data and programs are under TEE protection 
even when it is in runtime environment. Unlike other imple-
mentations with TEE/SGX SDK, lib OS Gramine is used to 
help minimize the change of applications in the infrastruc-
ture. The complex software like popular AI frameworks Ten-
sorFlow or PyTroch etc. can run on TEE/SGX with defining 
manifest files only in this way. Meanwhile, all enclaves do 
remote/local attestation to prove themselves which prevents 
malicious or even malicious-collude to data/programs in en-
claves on the fly. SGX has an integrity check of the loaded 
data/programs, so the infrastructure is more trustworthy. 
Within our FL infrastructure, a trusted third party is NOT 
needed as descripted in Section 2. A logical but protected ag-
gregator by TEE can be deployed to any party.  
Secondly, the efficiency of the implemented infrastructure is 
very high. The efficiency defined as TEE/SGX runtime vs 
plain text runtime is usually >50% and could be as high as 
80~90% which is much higher than purely software-based 
solutions and it will be discussed in detail in Section 3.  
As our target is to build an industry reference infrastructure, 
a simple Key Management Service (KMS) is also embedded 
with a GUI interface which is sufficient to most general ap-
plications. All operations are logged and trackable. This data 
can be saved in a secure environment like blockchain. Mean-
while, this TEE-based infrastructure could be used for many 
works of multiple party collaborations other than FL. 

2 Trustworthy Federated Learning with SGX 

 
In this section, we introduce the infrastructure to enable trust-
worthy federated learning over multiple organizations with 
the help of SGX technology, so that the data providers can 
secure their data from illegal use.  
The federated learning cluster is composed of two types of 
workers, governor workers and compute workers, both se-
cured by SGX, which are distributed over each organization, 
see Figure 1. The governor worker is to attest the compute 
workers within the local organization as well as governor 
workers across the other organizations and manage the se-
cured communications across the compute workers (of dif-
ferent organizations). The compute worker is to run the core 
business, namely the federated learning process. Throughout 
this paper, the compute worker is run within Gramine libOS, 
where we can run the regular application within the SGX en-
clave with little efforts. The governor worker can be run 
within the Gramine or be developed with SGX SDK. 
The remainder of this section is organized as follows. Section 
2.1 will introduce the remote attestation process of the gov-
ernor worker, Section 2.2 will describe the startup of compute 

worker, and Section 2.3 will provide introduction to the fed-
erated learning process. 

Figure 1 Confidential Collaborative ML Framework 
 

2.1 The remote attestation process  

 
Once a governor worker is started up, it should perform a bi-
directional peer-to-peer remote attestation with the governor 
workers from the other organizations. In consequence, the 
governor workers from all the organizations form a trusted 
cluster. 
 
To be concrete, when a governor worker gets started, it 
should upload its metadata to the storage service. Here a stor-
age service can be any kind service which can be accessed by 
all the organizations. In our infrastructure, we use the Fabric 
block chain as a storage service, so that we do not rely on any 
other third party. The metadata may contain the following in-
formation: 

• the organization id; 
• the id of the governor worker; 
• the randomly generated encryption and verification 

keys of the governor worker; 
• the SGX report structure of the governor worker; 
• the address of the governor worker. 

 
After uploading the metadata to the storage service, the gov-
ernor worker will pull the list of governor workers of the 
other organizations from the storage service and perform the 
peer-to-peer attestation one by one. The detail of the attesta-
tion process is given in Algorithm 1. 

 
Figure 2 Horizontal federated learning 

 



2.2 The startup of the compute worker 

 
All the compute workers within one organization are man-
aged by the local governor worker. Once a compute worker 
is started, it should register itself to the governor worker. To 
achieve this, the compute worker should send the metadata 
detailed in Section 2.1 to the governor worker, and then a bi-
directional peer-to-peer attestation is performed between the 
governor worker and the compute worker. If the registration 
succeeds, the governor worker should upload the metadata of 
the compute worker to the storage service, so that the other 
organizations can be aware of it. 
 
Note that the attestations among the compute workers are not 
needed. Since the compute worker trusts the governor 
worker, it should also trust the other compute workers at-
tested by the governor worker. By this method, we can add 
and remove the compute workers within the cluster easily. 
All we need to do is to update the list of attested compute 
workers within the governor worker. Moreover, since the en-
cryption keys and verifications keys are generated randomly, 
and protected by SGX, we can update the keys of the SGX 
workers without the help of Certificate Authority (CA) when 
those keys are expired. 
 
The communications among the SGX workers can be con-
ducted over untrusted network. The randomly generated keys 
of the SGX workers help protect privacy. 
 
The compute workers within the same organization can talk 
to one another directly. However, when two compute workers 
from different organizations want to talk, the packets should 

be redirected by the governor workers. Thus, the governor 
workers act as virtual routers of the network. To be specific, 
each packet should be attached with the work id of the com-
pute worker. When the local governor worker receives the 
packet, it will check the corresponding governor worker of 
the destinate compute worker and redirect the packet. 

2.3 The process of federated learning 

 
In this subsection, we provide an infrastructure to deploy the 
horizontal federated learning process over the cluster de-
picted in Figure 1. Note that this does not mean our infra-
structure can only be used for horizontal federated learning. 
In fact, the Gramine libOS has provided us unlimited possi-
bility, and we can run all kinds of machine learning tasks 
within it. 
 
We provide a decentralized federated learning protocol in this 
subsection, which means that the aggregator can be selected 
randomly from the joined compute workers, so that we do not 
rely on any trusted third party. The whole procedure can be 
divided into the following steps. 
 
1. Create a workflow. When some organizations want to do 
a federated learning job, the administrator of one organization 
should create a workflow by the governor worker, and then 
the governor worker will reveal it to the other governor work-
ers. Afterwards, the administrator from each organization 
adds the corresponding compute workers to the workflow.  
 
2. Select an aggregator. Now the compute workers within 
the workflow can talk to one another by the method intro-
duced in Section 2.2. Before they really do learning job, they 
should select an aggregator first. In our demo, the aggregator 
is selected by the workflow owner manually. However, we 
can select the aggregator by a random way. For example, 
each compute worker can generate a random number, and the 
one with the minimal random number can be chosen as the 
aggregator. Since the binary of the compute worker is well 
verified by remote attestation, this simple random method is 
secure enough.  Once the aggregator is selected, the other 
compute workers will be regarded as collaborators, see Fig-
ure 2. 
 
3. Start the learning job. Once the aggregator is selected, 
the process of the following learning job is straightforward. 
The other compute workers will act as collaborators, and they 
compute the gradients of the neural network based on the lo-
cal datasets and sent the gradients to aggregators to iterate the 
global neural network. 
 

3 Evaluations 

In this section we present evaluation results of our infrastruc-
ture. We implemented 3 workloads within our infrastructure, 
i.e., ResNet Collaborative Machine Learning (ResNet CML), 
3D-Unet horizontal federated machine learning (3D-Unet 
FML), and Bert-Base horizontal federated machine learning 

Algorithm 1 Peer-to-peer remote attestation 

Input: worker_id  //the id of the peer worker 
Parameter: measures // the list of trusted measures 
Output: true if the attestation passes and false otherwise 
 
1:  Let nonce = randomly generated nonce; 
2: // Ask the peer worker to generate the SGX quote 
3:  Let quote = generate_quote(worker_id, nonce); 
4:  //check whether the quote is generated by hardware 
5:  if  verify_quote(quote) == false: 
6:      return false; 
7:  endif 
8:  Let worker = get_worker(worker_id); 
9:  // Calculate the report data  
10: Let report_data = generate_report_data( 
11:                                    worker, nonce); 
12: //check whether the calculated report data matches 
13: // the report data in sgx quote 
14: if  report_data != get_report_data(quote): 
15:     return false; 
16: endif 
17: if get_measure(quote) not in measures: 
18:     return false; 
19: endif 
20: return true; 



(Bert-Base FML). We evaluated the workloads in our infra-
structure from three perspectives: correctness, performance, 
and security. For correctness, we run ResNet CML on Linux 
system, in Gramine without SGX (Use Gramine in the fol-
lowing), and in Gramine with SGX (Use Gramine-SGX in the 
following)1 respectively to compare their final loss and accu-
racy. The executions either on Linux or in Gramine are in 
plaintext, while the execution in Gramine SGX is protected 
by hardware encryption. For performance, we measured the 
time cost of Resnet CML, 3D-Unet FML and Bert-Base FML 
in different environments. For security, we simulated the at-
tacks by grabbing the training status and model weights in the 
memory space of Bert-Base FML running in multiple parties. 

3.1 Implementation 

ResNet CML. In this workload, we simulate 2 parties with 2 
nodes, a data owner node, and a requester node. The data 
owner provides local dataset and the requester requests da-
taset from data owner to do ResNet training. The dataset is 
CIFAR-10 which consists of 60000 32x32 colored images in 
10 classes. In this workload, we use 10000 images of them to 
do the training with Batch size 32. We run the training until 
convergence. 
3D-Unet FML. In this workload, we simulate 3 parties with 
3 nodes, 2 collaborator nodes and an aggregator node. The 2 
collaborators have different training datasets in local, and the 
aggregator has a testing dataset in local. Each dataset contains 
100 622x529 3D colored images. The 2 collaborators do Unet 
local training first, then send the intermediate results to the 
aggregator, after that, the aggregator aggregates the results 
and replies them back to the 2 collaborators for update. This 
process is repeated for 10 rounds, batch size is 6 and the num-
ber of epochs is set to 5 for performance evaluation. 
Bert-Base FML. In this workload, we simulate 3 parties with 
3 nodes, 2 collaborator nodes and an aggregator node. This 
workload builds a model to deal with the named-entity recog-
nition task in Chinese Biomedical language understanding. 
Given a pre-trained schema, the task is to identify and extract 
entities from the given sentence and classify them into nine 
categories: disease, clinical manifestations, drugs, etc. The 
training dataset is CBLUE [Zhang, 2021] and we divided the 
dataset into two parts randomly so that 2 collaborators have 
different training datasets in local, and the aggregator has a 
testing dataset in local. The total dataset consists of 15000 
training sentences and 5000 validation sentences and 3000 
test sentences. Test data are only saved in the aggregator local 
to verify the training result. The training process is the same 
as 3D-Unet except the 2 collaborators load the pre-trained 
bert-base model [Cui Y, 2021]. This process is repeated for 
10 rounds, batch size is 16 and the number of epochs is set to 

 
1 Gramine can run the application in library OS alone or in li-

brary OS with SGX. 
2 Each VM has 4 vCPUs, 64GB memory, 40GB disk storage 

and 16GB EPC size, and is with OS Ubuntu 18.04 and Linux ker-

nel 5.11. 

5 for performance evaluation. During the local training pro-
cess, we simulated the attack to verify the effectiveness of 
protection.  

3.2 Experimental Setup 

We create several Virtual Machines (VM)2 with SGX feature 
enabled on one Xeon(R) Platinum 8358 CPU @ 2.60GHz 
host machine3. For ResNet CML, we use 2 VMs and for 3D-
Unet FML, we use 3 VMs. Both governor workers and com-
pute workers are running in docker containers4. SGX version 
is 2.15.1 and SGX Data Center Attestation Primitives (DCAP) 
version is 1.12.1.  

3.3 Results 

Correctness. As shown in Table 1, whether ResNet CML 
workload is running in plaintext, in Gramine without SGX, 
or in Gramine with SGX, the differences in the final loss and 
accuracy are very small. Therefore, our infrastructure will not 
cause much impact on the correctness of the workload results. 

Performance. Table 2 denotes the time cost of ResNet CML, 
3D-Unet FML and Bert-Base FML workloads when running 
in different environments. For Resnet CML, the efficiency of 
running in Gramine is about 81% of running in plaintext, and 
that of running in SGX is about 60% of running in plaintext. 
For 3D-Unet FML, the efficiency of running in Gramine is 
about 92% of running in plaintext, and that of running in SGX 
is about 74% of running in plaintext. For Bert-Base FML, the 

efficiency of running in Gramine is about 73% of running in 
plaintext, and that of running in SGX is about 61% of running 

3 The host has 128 CPU cores on 2 sockets, 256G memory, 

1TB disk storage and 64GB EPC size per socket, and is with OS 

CentOS 8.4 and Linux kernel 5.15. 
4 We use Avalon [Hyperledger 2020] with commitid cf762fd 

to implement governor worker and Gramine [C. che Tsai, et al 

2017] with version 1.1 to implement compute worker. Docker ver-

sion is 20.10.14 and docker-compose version is 1.24.1. 

Workload  

Environment 
Resnet 

CML 

3D-Unet 

FML 

Bert-Base 

FML 

Linux 51 65 126 

Gramine 63 71 172 

Gramine-SGX 86 88 207 

 

Table 2: Time cost (s) of workloads 

 

Workload loss  acc 

ResNet CML (Linux) 1.8927 0.3707 

ResNet CML (Gramine) 1.8926 0.3713 

ResNet CML (Gramine-SGX) 1.8914 0.3701 

 

Table 1: Loss and acc of Resnet CML 



in plaintext. Therefore, the efficiency of our infrastructure is 
higher than 50% as shown in Figure 3.  
Security. We dump the memory during the training process 
on the collaborator node and aggregator locally. When run-

ning in Gramine direct, all data like training status, training 
data, model weights, can be easily got from the dumped 
memory. While nothing will be exhibited when running in 
SGX.  

4 Conclusion 

We implemented a TEE based cross-silo trustworthy feder-
ated learning infrastructure. It has the following major ad-
vantages: 

1. An excellent pipeline protection; 
2. High efficiency. The efficiency of our tested work-

load is at least 50%; 
3. Easy deployed (docker supported/Setup GUI em-

bedded). 
 
So far, no federated learning infrastructure can be 100% se-
cure. If want to promote the security, more confidential com-
puting techniques could be used together. TEE based FL is 
not conflicted with other confidential computing techniques 
like MPC or HE etc. They can be combined to the infrastruc-
ture to generate a better solution for a dedicated task.  
 
The limitations of the implemented infrastructure are: 
1. Need CPU with SGX [McKeen 2013] features, i.e. 3rd gen 
Xeon SP or later; 
2. So far, the infrastructure does not support heterogeneous 
computing platform. 
 
Our future works include: 
1. Add disaster recovery module into our infrastructure to 
add/remove nodes with a primary node (like recovery from 
block chain etc.); 
2. So far, the implemented infrastructure does attestation 
when start. To be more secure, the infrastructure can add a 
timer to do attestation according to the customer settings. 
3. The overall performance could be further improved like 
the optimization of network communication. 
 

So far, the source codes and docker images of this infrastruc-
ture will be shared under NDA. Open source will be sched-
uled according to market’s feedback. A FL infrastructure 
demo video in Chinese can be viewed in https://ccechina.in-
tel.cn/air/LoadTest. 
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