
Towards Federated Long-Tailed Learning

Zihan Chen1,2∗ , Songshang Liu1∗ , Hualiang Wang1 , Howard H. Yang1 ,
Tony Q.S. Quek2 and Zuozhu Liu1†

1ZJU-UIUC Institute, Zhejiang University, China
2Singapore University of Technology and Design, Singapore

zihan chen@mymail.sutd.edu.sg, songshang.17@intl.zju.edu.cn, hualiang wang@zju.edu.cn,
haoyang@intl.zju.edu.cn, tonyquek@sutd.edu.sg, zuozhuliu@intl.zju.edu.cn.

Abstract
Data privacy and class imbalance are the norm
rather than the exception in many machine learn-
ing tasks. Recent attempts have been launched to,
on one side, address the problem of learning from
pervasive private data, and on the other side, learn
from long-tailed data. However, both assumptions
might hold in practical applications, while an effec-
tive method to simultaneously alleviate both issues
is yet under development. In this paper, we focus
on learning with long-tailed (LT) data distributions
under the context of the popular privacy-preserved
federated learning (FL) framework. We character-
ize three scenarios with different local or global
long-tailed data distributions in the FL framework,
and highlight the corresponding challenges. The
preliminary results under different scenarios reveal
that substantial future work are of high necessity
to better resolve the characterized federated long-
tailed learning tasks.

1 Introduction
Federated learning (FL) has garnered increasing attentions
from both academia and industries, as it provides an approach
for multiple clients to collaboratively train a machine learn-
ing model without exposing their private data [McMahan et
al., 2017; Bonawitz et al., 2019]. This privacy-preserving
feature has prevailed FL in a broad range of applications
such as the healthcare, finance, and recommendation systems
[Andreux et al., 2020; Yang et al., 2020]. The data stem
from different sources often exhibits a high level of hetero-
geneity, e.g., non-IID distribution and/or imbalance in the
size, which impedes the FL performance [Li et al., 2020;
Wang et al., 2021]. Although several methods have been pro-
posed to circumvent this issue by tackling the drift and incon-
sistency between the server and clients [Wang et al., 2020a;
Karimireddy et al., 2020], the impacts from long-tailed data
distribution, which is an extreme case of data heterogeneity
and widely exists in the real world data (e.g., healthcare and
user behaviors data [Kang et al., 2019; Shang et al., 2022]),
has yet been understood.
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Figure 1: A comparison between the balanced, imbalanced, and
long-tailed data distributions over a dataset with 7 classes. (A) is
the balanced data distribution. (B) is the imbalanced data distribu-
tion. (C) is the long-tailed data distribution.

Unlike data heterogeneity in the general sense, long-tailed
distribution has a severely skewed shape in the distribution
curve. To better illustrate this phenomenon, we provide a
pictorial example in Figure 1. We differentiate the term long-
tailed distribution from the category of imbalanced distribu-
tion in this figure as well as the rest of this paper to empha-
size its unique role. Using Figure 1, we can easily conclude
that that in the presence of long-tailed data, training an un-
biased classification model is generally challenging since the
most of training data is concentrated in a few classes (i.e.,
the head classes) while the other classes (i.e., the tail classes)
have very few samples. And it has been shown in [Kang et
al., 2019] that conventional deep learning models admit a sig-
nificant performance degradation on real-world data that has
a long-tailed distribution. In response, several schemes have
been proposed to address such an extreme class imbalance is-
sue. These methods are commonly known as the long-tailed
learning, established via the particular means of re-balancing
[Zhang et al., 2021], re-weighting [Lin et al., 2017], and
transfer learning techniques [Yin et al., 2019]. Recently,
decoupled representation and classification learning scheme
[Kang et al., 2019] is investigated to effectively complement
the conventional approaches (e.g., class-balanced sampling
[Wang et al., 2020b] and distribution-aware loss [Lin et al.,
2017]).

However, these existing solutions are primarily dedicated
to the centralized learning (CL) and cannot be directly ex-



tended to the FL settings. Specifically, due to the distributed
nature of the local data, it is much more difficult to train an
unbiased model with the existence of long-tailed data in FL
systems. Additionally, the limited local dataset sizes of the
local clients as well as the inherent data heterogeneity in FL
also constrain the applicability of the approaches developed
in the scenarios of CL [Yoon et al., 2020].

We refer to the FL task with long-tailed data as the feder-
ated long-tailed learning. Note that long-tailed data distri-
bution may exist in both the local and global level, leading
to different challenges during the training procedure. Partic-
ularly, the long-tailed data distribution presents an obvious
characteristic on the head and tail over different classes (See
Figure 1 (C)). In FL systems, different clients could have
different long-tailed properties and the overall (global) data
distribution would also be balanced or imbalanced in differ-
ent networks. The distribution of the real-world datasets is
closely related to the user habits and geo-locations, such as
the image recognition datasets of the natural specifies (e.g.,
iNaturalist [Van Horn et al., 2018]) and the landmarks (e.g.,
Google Landmarks [Weyand et al., 2020]). Such datasets
would have a strongly geographical-dominated long-tailed
distribution, and more importantly, images from different
clients (in different locations) would present different dis-
tributional statistics. It would be more challenging to train
models with good generalization on different local long-tailed
data distributions than the single-distribution case.

Motivated by the aforementioned issues and the intrinsic
properties of federated long-tail learning, the present paper
gives a comprehensive analysis to the effect of long-tailed
data on both the local and global level of FL, as well as the
consequent challenges. In addition, numerical results in dif-
ferent settings are also provided to demonstrate the influence
of long-tailed data distribution. Based on this, several future
trends and open research opportunities are also discussed.

2 Problem Formulation of Federated
Long-Tailed Learning

In this section, we will systematically characterize the Fed-
erated Long-Tailed (F-LT) learning problem, with the main
difference lies at the distributions of the local data in each
FL client and the aggregated global data distributions. The
challenges under each setting are also discussed in detail.

2.1 Local and global data distribution
Consider an FL system with N clients and an M -class visual
recognition dataset for classification problems, where Dk rep-
resents the local dataset for client k. Let nk denote the size of
the local dataset for client k (i.e., |Dk|), and n

(i)
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number of data samples of class i in Dk, i.e., nk =
∑M
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k .
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denotes the ratio of the j-th class over the corre-

sponding local dataset size of client k.

Note that in a typical FL system, the global server does not
hold any data. To better capture the overall data distribution
from the system level, we define the global data distribution
as the distribution of the aggregated dataset from all clients in
the system, which is denoted by
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where |D| =
∑N

k=1 nk is the total number of samples in the
FL system.

Based on these two length-M vectors pk and pG, we
can illustrate and analyze the distributional statistics of the
long-tailed data from both the local and global perspectives.
Specifically, the metric imbalance factor (IF) [Zhou et al.,
2020; Kang et al., 2019] could be used to measure the degree
of long-tailed data distribution. Given the local data distribu-
tion vector, the local imbalance factor for client k is calcu-
lated by

IF(k)
L =

maxj{n(j)
k }

mins{n(s)
k }

. (3)

Similarly, the global imbalance factor shall be denoted as

IFG =
maxj{

∑N
i=1 n

(j)
i }

mins{
∑N

i=1 n
(s)
i }

. (4)

2.2 Local and global long-tailed data distribution
Note that either IF(k)

L or IFG would be a large number in real-
world datasets, which indicates that the long-tailed data dis-
tribution may exist in either the local side or global side. For
example, the local medical image datasets in hospitals in a
big city might follow long-tailed local distributions, while the
aggregated city-level global dataset might be long-tailed or
non long-tailed. Therefore, considering the relations and dif-
ferences between the local and global data distributions, we
would categorize the federated long-tailed learning tasks into
the following three types:

• Type 1: Both the local and global data distribution
follow the same long-tailed distribution. In a homoge-
neous network, local data from all the clients follow the
same distribution. In such a case, if the local data dis-
tribution has the long-tail characteristic, then the global
data distribution would also be an identical long-tailed
distribution.

• Type 2: Global data distribution is long-tailed, while
local data distributions are diverse, and not necessar-
ily long-tailed. Local data of different clients in a het-
erogeneous network would be typically non-IID, where
the pattern of the local data distribution would be rarely
identical. Given a global long-tailed data distribution,
the local data distributions of different clients could be
long-tailed, imbalanced or balanced.

• Type 3: All or a subset of local clients have long-
tailed data distributions, but the global data follows a
non long-tailed distribution (e.g., balanced distribu-
tion over all classes). In the case that the global data



Figure 2: An example of the data distributions for the summarized three types in a 20-clients FL system. The first row is the global data
distribution in the corresponding type, with a colorbar in the right indicating the number of data samples in each class. Each sub-colorbox
represents the number of data samples of each class across all clients.

Global data distribution Local data distributions Objective of learning tasks Datasets

Long-tailed
Identical long-tailed Long-tailed datasets
distributions Learn a good global model (e.g., CIFAR-10-LT)
Long-tailed/ Imbalance/ Long-tailed datasets
Balanced distibution Learn multiple good local models (e.g., CIFAR-10-LT)

Non long-tailed Diversified long-tailed Balanced datasets
distributions Learn multiple good local models (e.g., CIFAR-10)

Table 1: A taxonomy of long-tailed data distribution in FL. The objectives and potential datasets for the corresponding cases in federated
long-tail learning are also provided.

distribution is non long-tailed, the pattern of the local
long-tailed data distributions of different clients would
be diverse (i.e., different clients are supposed to keep
different head and tail classes.).

Incorporating the data heterogeneity (i.e., the non-IID and
imbalanced dataset size), the overall three cases represent all
possible scenarios of long-tailed data in a typical FL system.
As illustrated in Figure 2, we provide an example of the sum-
marized three types for better visualization of the local and
global distributions in federated long-tailed learning.

2.3 Objective of learning tasks and potential
approaches

With the existence of long-tailed data distributions in FL sys-
tems, different cases would bring different challenges to the
distributed learning process. We will discuss the character-
ized three types one by one respectively.

In the first type of long-tailed data distribution, local and
global data distributions share the same statistical character-
istics. A single well-trained global model has the potential to
be well generalized over the local data from different clients
in FL systems. As the long-tailed distributions of all clients
are the same, one classifier trained for long-tailed data could
be applicable for all clients. Nevertheless, potential issues
may arise due to the limited local dataset sizes.

In the remaining two types, a single distribution could not
cover all possible distributions of the clients in the FL sys-

tem. Conventional approaches for long-tail learning for a sin-
gle long-tailed distribution may fail to tackle such diversity
issues. We shall consider different learning objectives for dif-
ferent cases of local and global data distributions. Specifi-
cally, different local clients could have vastly diverse distri-
butions (e.g., long-tailed and non long-tailed), and the global
and local data distributions would be different. Thus, it is nec-
essary to train multiple models to address such discrepancies
of data distributions.

Recall that, in the context of the personalized federated
learning (PFL) [Tan et al., 2022], personalized models for
each client are trained, as one global model cannot be well
generalized to diverse local clients. It would be natural to
regard PFL as a key ingredient to tackle such diverse data
distribution issues in these two scenarios. For example,
a popular solution of PFL is to decouple the local model
into base layers and personalization layers [Arivazhagan et
al., 2019]. Recent works in the centralized long-tail learn-
ing demonstrate that decoupling the representation learn-
ing and classifier learning with a re-adjustment on classifier
could effectively improve the performance [Kang et al., 2019;
Zhou et al., 2020]. Such similar decoupling approaches on
model parameters would intuitively make PFL approaches to
complement the federated long-tail learning.

From a more general explanation, the key idea of the PFL
is to find a good trade-off to balance the global shared knowl-
edge and the local task-specific knowledge for personalized



local training. Such a learning procedure could be applied
to learn unbiased long-tail classifiers with a good general-
izable representation. Moreover, multi-task learning (MTL)
[Smith et al., 2017], clustering [Ghosh et al., 2020] and trans-
fer learning approaches [Gao et al., 2019] could also have the
potential to be applied to cross-device long-tail learning in
FL, which shall be discussed later in detail (See Sec. 4).

3 Benchmarking the Federated Long-Tailed
Learning

To the best of our knowledge, the long-tailed learning in the
context of FL has been rarely explored. In this section, we
will give a summary on the datasets and the corresponding
federated partition approaches. Recent works on long-tail
learning in both centralized and federated scenarios will then
be discussed. At last, we would give a brief comparison on
the two typical long-tailed data settings.

3.1 Datasets and partition methods
Datasets In a centralized paradigm for visual recognition
tasks, there are mainly two types of dataset benchmarking for
long-tailed study. The first type is the long-tailed version of
image datasets modified with synthetic operation, such as ex-
ponential sampling (CIFAR10/100-LT [Cao et al., 2019]) and
Pareto sampling( ImageNet-LT [Liu et al., 2019], Places-LT
[Liu et al., 2019]). They are shaped/sampled from the ex-
isting balanced dataset and the degree of the long-tail could
be controlled with an arbitrary imbalance factor IFG. Second
type is the real-world large scale datasets with a highly im-
balanced label distribution, like iNaturalist [Van Horn et al.,
2018] and Google Landmarks [Weyand et al., 2020]. More
long-tailed datasets are used in some specific tasks, such as
object detection Lvis [Gupta et al., 2019], multi-label classi-
fication VOC-MLT [Wu et al., 2020] and COCO-MLT [Wu
et al., 2020].
Partition methods for long-tailed FL To create different
federated (distributed) datasets according to the different pat-
terns of local and global data distribution, different datasets
and sampling methods are required. Data distributions in
Type 1 could be realized by IID sampling on long-tailed
datasets. Similarly, Type 2 could be achieved by Dirichlet-
distribution [Hsu et al., 2019] based generation method on
the long-tailed datasets. Specifically, the degree of the long-
tail and the identicalness of local data distributions could be
controlled by the global imbalance factor IFG and the con-
centration parameter α respectively. And Type 3 could be
realized via the different long-tailed sampling (different head
and tail pattern) on the balanced datasets.

3.2 Approaches
Centralized long-tail learning In the centralized scenario,
long-tailed learning seeks to address the class imbalance in
training data. The most direct way is to rebalance the sam-
ples of different classes during the model training, such as
ROS and RUS [Zhang et al., 2021], Simple calibration [Wang
et al., 2020b] and dynamic curriculum learning [Wang et al.,
2019]. The balancing ideology could also be implemented in

re-weighting and remargining the loss function, such as Fo-
cal Loss [Lin et al., 2017], LDAM Loss [Cao et al., 2019].
These class rebalancing methods could improve the tail per-
formance at the expense of head performance.

To address the limitation of information shortage, some
studies focus on improving the tail performance by introduc-
ing additional information, such as transfer learning, meta
learning, and network architecture improvement. In trans-
fer learning, there have been methods FTL [Yin et al., 2019]
and LEAP [Liu et al., 2020] transferring the knowledge from
head classes to boost the performance in tail classes. In [Shu
et al., 2019], meta-learning is empirically proved to be ca-
pable of adaptively learning an explicit weighting function
directly from data, which guarantees robust deep learning in
front of training data bias. Recently, some studies design and
improve network architecture specific to long-tailed data. For
example, different types of classifiers are proposed to address
long-tailed problems, such as τ−norm classifier [Kang et al.,
2019] and Causal classifier [Tang et al., 2020].
Federated long-tail learning Yet, the only one related work
on federated long-tail learning [Shang et al., 2022] utilized
classifier re-training to re-adjust decision boundaries, where
the discussion is limited within the global long-tailed distribu-
tion with local heterogeneity. Methods for other types of local
and global data distribution remain to be further explored.

Nevertheless, in the presence of long-tailed data, the dis-
crepancies among local and global data distributions of differ-
ent clients in the FL system, could be possibly addressed by
the techniques in the federated optimization algorithm, such
as dynamic regularization [Acar et al., 2021], diverse client
scheduling [Cho et al., 2022] and adaptive aggregation. In
addition, as we discussed previously in Sec. 2.3, PFL could
be applied in federated long-tailed learning to find a balance
between the representation and the classification learning. We
shall give a detailed discussion on such explorations to boost
the performance of federated long-tailed learning in Sec. 4.

Based on the above discussion about the data distribution,
datasets and learning objectives, we summarize them into Ta-
ble 1. Note that, the case, where both the local and global data
distributions are non-long-tailed, is not listed in this table, as
this case is not within the scope of this paper.

3.3 Performance comparison
To better illustrate the impacts of the long-tail data distribu-
tion, we shall provide some numerical results with different
types of long-tailed data distribution in Tables 2 and 3. For
all the experiments, we consider a FL with 40 clients. And
the non-IID data partition is implemented by Dirichlet distri-
bution. Apart from the basedline FedAvg [McMahan et al.,
2017], the other three FL algorithms are FedProx [Li et al.,
2020], CReFF [Shang et al., 2022] and FedPer [Arivazhagan
et al., 2019], which are representative approaches to tackle
data heterogeneity, long-tailed data and personalization in FL
respectively.

Note that, the main purpose of this subsection is to analyze
the performance of the different FL methods with diverse data
settings to provide some possible insights to the design of the
federated long-tailed learning algorithm.



Non-LT (IFG = 1) IFG = 10 IFG = 50 IFG = 100

Data Setting
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

- α=1 α=0.5 - α=1 α=0.5 - α=1 α=0.5 - α=1 α=0.5
FedAvg 0.9331 0.9257 0.9151 0.8771 0.8661 0.8545 0.7871 0.7756 0.7465 0.7353 0.7253 0.6916
FedProx 0.9372 0.9290 0.9221 0.8741 0.8730 0.8545 0.7751 0.7499 0.7550 0.7105 0.7092 0.6935
CReFF 0.9432 0.9344 0.9262 0.8875 0.8661 0.8493 0.8035 0.7846 0.7264 0.7275 0.7051 0.6921
FedPer 0.9302 0.9214 0.9139 0.8783 0.8694 0.8643 0.7633 0.7503 0.7478 0.7318 0.7016 0.6964

Table 2: Test accuracies of various FL methods on CIFAR-10-LT with different federated data partitions (i.e., Type 2). Results on balanced
CIFAR-10 are also provided for reference and comparison.

Local Setting IFL = 10 IFL = 50 IFL = 100
FedAvg 0.8805 0.8391 0.8361
FedProx 0.8909 0.8551 0.8419
CReFF 0.8974 0.8646 0.8422
FedPer 0.8950 0.8561 0.8421

Table 3: Test accuracies on CIFAR-10 with different local long-
tailed distributions (i.e.,Type 3).

We choose two typical long-tailed data distributions in the
federated setting to evaluate the performance. In Table 2, we
give tha results on both the IID and non-IID data settings built
upon the global long-tailed dataset CIFAR-10-LT with differ-
ent imbalance factors 10, 50 and 100. For non-IID data par-
tition, we use Dirichlet distribution-based sampling method
with different concentration parameter α to control the de-
gree of data heterogeneity. To better demonstrate the impacts
of the long-tailed data distribution, we also include a group
of experiment results on the (balanced) CIFAR-10 for refer-
ence. In Table 3, results on CIFAR-10 are provided, where we
consider sample different long-tailed local data distributions
(i.e., different head-tail distribution) with the same imbalance
factor IFL. See Figure 2(C) for an overview.

For the results in Tables 2 and 3, best test accuracies of all
algorithms present a descending sort pattern from the left to
right, as the degree of the long-tail and heterogeneity is in-
creasing. Interestingly, the federated optimization methods
FedProx outperforms FedAvg in the non-long-tailed setting,
while it tends to underperform with global long-tailed data in
some settings. As a specific method to tackle long-tailed data,
CReFF can achieve best results among all four algorithms in
most of settings, but it has lower accuracy performances than
FedProx with more heterogeneous data distribution. With re-
gard to the PFL methods, our preliminary results illustrate
that personalization method outperforms in most of the long-
tailed data settings, especially in settings of Table 3 (i.e., di-
verse local long-tailed distributions in Type 2).

The numerical results indicate that, PFL methods have the
potential to enhance the performance without any specialized
long-tailed learning techniques. More importantly, the pre-
liminary results also demonstrate the feasibility and possibil-
ity to re-purpose the federated optimization and PFL methods
with centralized long-tailed learning approaches in federated
scenarios.

4 Future Trends and Research Opportunities
Based on the above experimental results and discussions
of the federated long-tailed learning, we envision the fol-
lowing directions and opportunities towards the robust and
communication-efficient federated long-tailed learning algo-
rithms, architectures and analysis.

• Incorporate PFL ideas for better federated long-tail
learning. As a promising technique, PFL could possibly
boost the training performance of federated long-tailed
learning with centralized long-tailed learning methods.
How to balance the global shared knowledge with local
perosnalized knowledge could be incorporated into the
design of the representation learning and classification
architectures in federated long-tailed learning. More-
over, it would be promising to explore the incorporation
of the model-based and data-based PFL approaches [Tan
et al., 2022] with the long-tailed learning.

• Hierarchical FL architectures. In the presence of
diverse data distributions, we may consider to group
clients with similar long-tail distributional statistics into
clusters to jointly learn cluster-level personalized mod-
els or conduct cluster-level MTL [Sattler et al., 2020].
However, the design of a privacy-preserving clustering
method remains to be further investigated.

• Re-purpose of existing federated optimization meth-
ods. Local long-tailed data distribution could be re-
garded as an extremely imbalanced case of data hetero-
geneity. Hence, how to re-purpose the federated op-
timization algorithm in the presence of the long-tailed
data could be further explored. It would be another open
question to develop a heterogeneity-agnostic federated
optimization framework. Moreover, MTL-based long-
tailed learning could also be a potential approach to ad-
dress the heterogeneous long-tailed distributions in FL.

• Design better data partition/sampling schemes or
more representative datasets. In addition to the several
real-world long-tailed datasets, most of the current work
use the long-tailed version of the popular image datasets.
Although this method could use the pre-determined im-
balance factor IFG to control the imbalance, it would
also discard a large amount of samples when follow-
ing the widely-used exponential and Pareto sampling
methods. Therefore, the degradation of the performance
could also be partially attributed to the small dataset size,



especially for scenarios with a larger imbalance factor in
federated settings. How to mitigate such negative im-
pacts should be further investigated. Meanwhile, fu-
ture research could also leverage on real-world scenar-
ios, such as medical images or autonomous cars, to pro-
vide more representative and convincing federated long-
tailed learning dataset.

5 Concluding Remarks
In this paper, we introduce the federated long-tailed learn-
ing task, a general setting motivated by real-world applica-
tions but rarely studied in previous research. We character-
ize three types of F-LT learning settings with diverse local
and global long-tailed data distributions. The benchmark re-
sults with multiple federated learning architectures suggest
that substantial future work is needed for better F-LT. In ad-
dition, we highlight the potential techniques and possible tra-
jectories of research towards federated long-tailed learning
with real-world data.
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