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Abstract
Vertical federated learning (VFL) is attracting
much attention because it enables cross-silo data
cooperation in a privacy-preserving manner. While
most research works in VFL focus on linear and
tree models, deep models (e.g., neural networks)
are not well studied in VFL. In this paper, we focus
on SplitNN, a well-known neural network frame-
work in VFL, and identify a trade-off between
data security and model performance in SplitNN.
Briefly, SplitNN trains the model by exchanging
gradients and transformed data. On the one hand,
SplitNN suffers from the loss of model perfor-
mance since multiply parties jointly train the model
using transformed data instead of raw data, and a
large amount of low-level feature information is
discarded. On the other hand, a naive solution of
increasing the model performance through aggre-
gating at lower layers in SplitNN (i.e., the data is
less transformed and more low-level feature is pre-
served) makes raw data vulnerable to inference at-
tacks. To mitigate the above trade-off, we propose
a new neural network protocol in VFL called Se-
curity Forward Aggregation (SFA). It changes the
way of aggregating the transformed data and adopts
removable masks to protect the raw data. Experi-
ment results show that networks with SFA achieve
both data security and high model performance.

1 Introduction
Federated learning (FL) [Kairouz et al., 2021] is a new
paradigm of collaborative machine learning with privacy
preservation, and it could be categorized into several cate-
gories according to different data partition scenarios [Yang et
al., 2019]. Among them, vertical federated learning (VFL)
is defined as the scenario in which multiple participants hold
the same entities but different features. Existing work has
explored various types of VFL models, such as logistic re-
gression [Hardy et al., 2017; Zhang et al., 2021] and decision
trees [Cheng et al., 2021a]. However, the neural network is
not well studied in the VFL scenario. Specifically, there is lit-
tle analysis of data security and model performance in com-
plex models like neural networks.
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Figure 1: Split neural network in VFL

Split neural network (SplitNN) [Vepakomma et al., 2018]
is a framework able for neural networks in VFL. As shown in
Fig.1, the whole network is partitioned into a top model and
several bottom models. Each VFL participant keeps a bot-
tom model for transforming its raw data, and the transformed
data are passed to the top model at the cut layer to make the
prediction in each forward process. However, exchanging the
transformed data between participants result in a trade-off be-
tween data security and model performance in SplitNN.

On the one hand, using the transformed data instead of the
raw data for prediction will result in a loss of model per-
formance because the transformed data contains only a part
of the information in the raw data. According to the analy-
sis in [Mahendran and Vedaldi, 2015], a significant amount
of low-level feature information is discarded while the raw
data passes through the layers. This discarding information
happens while the raw data passes through the bottom mod-
els of SplitNN, and it also transforms data from fine grain
to coarse grain. For example, using the term ”cheap baby
products” to represent a classic cotton diaper from a famous
brand. However, this transformation increases the difficulty
of the model’s prediction because the model cannot capture
the interaction between the discarded information, just like



the classic ”beer and diaper” relationship in data mining. A
person who buys beer may be interested in diapers, but it’s
hard to say that a person who buys a drink will be interested
in baby products. When two participants in SplitNN possess
feature information like beer and diapers, low-level feature
interaction loss happens, and it will decrease the model’s per-
formance.

On the other hand, the transformed data which are sent di-
rectly to the active party leaks information about the raw data.
The passive party’s raw data will be vulnerable to inference
attacks if the transformed data contains too much informa-
tion about it. As a result, it is inappropriate to increase the
amount of information in the transformed data to improve the
model’s performance. Thus, we identify this trade-off, as the
transformed data influences both the model performance and
data security. It is impossible to achieve high model perfor-
mance and high data security simultaneously in SplitNN.

Motivated by the above problem, we propose a method to
mitigate this trade-off between data security and model per-
formance. We consider that the direct exposure of the trans-
formed data is improper, and the data protection by control-
ling the amount of information in the transformed data is haz-
ardous. To this end, we proposed a Secure forward aggrega-
tion (SFA) protocol that can securely aggregate the bottom
models’ output without exposing the individual output from
the bottom model. We modify the aggregation method at the
cut layer and provide a removable mask to protect the pas-
sive party’s transformed data and ensure raw data security.
With SFA, we mitigate the trade-off and can achieve lossless
performance compared to the centralized model with high se-
curity.

The main contributions of this paper are summarized as
follows:

• We evaluate the trade-off between the model perfor-
mance and the security of raw data in SplitNN in vertical
federated learning.

• We present a Secure forward aggregation protocol to
protect the participant’s transformed data while being
lossless. With SFA, we can mitigate this trade-off and
achieve both good model performance and high data se-
curity in neural networks in VFL.

2 Motivation
In this section, we first introduce splitNN, one of the most
popular frameworks of neural networks in VFL. While not-
ing the special designs for VFL in this architecture, we also
analyze the trade-off between data security and model perfor-
mance.

2.1 Background: SplitNN in VFL
As shown in Fig.1, splitNN is a distributed network struc-
ture in VFL that support multiparty settings. The participants
of SplitNN are categorized into the active party (participant
with labels) and the passive party (participant without labels).
Each passive party holds one bottom model for local data
transformation. The active party holds both a bottom model
and a top model and uses the top model to make predictions
with the transformed data from all participants.
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Figure 2: Performance-security trade-off in splitNN

The forward process of SplitNN consists of three steps: 1)
participants use their bottom models to transform the data,
2) passive parties send the transformed data to the active
party, and 3) the active party will concatenate these trans-
formed data, applies activation functions and feed it into the
top model to get the prediction results. The layer which con-
catenates these transformed data is also called the cut layer.
In the backward process, the active party will first update the
top model normally and calculate the gradients of the embed-
dings. Then it will send the gradients of these embeddings to
their owners to update their bottom models.

2.2 Trade-Off of SplitNN
The participant’s raw data security is a primary concern in
vertical federated learning. In SplitNN, one substantial in-
formation leakage is the transformed data directly sent to the
active party. Those transformed data do not contain all raw
data information because some low-level information is lost
during the forward propagation. However, there is still a cor-
relation between the transformed and original data. When the
active party of SplitNN applies inference attacks like [Luo et
al., 2021] to dig out the correlation, the raw data is able to be
approximated.

Indeed, discarding more information from the transformed
data is a way to improve data security in SplitNN. Increas-
ing the number of layers in the bottom model is a feasible
way to fulfill this. A higher bottom model will increase the
complexity of the transformation and discard more low-level
feature information from the transformed data, making raw
data hard to reconstruct. However, the discarded low-level
feature information in the transformed data is crucial to the
model’s performance. It contributes to the model perfor-
mance in low-order feature interactions between participants.
The connections between the bottom models are used to cap-
ture these low-level feature interactions, but they are missing
in SplitNN.

Therefore, to further measure the relationship between data
security and model performance in SplitNN, we use the gen-
erative regression network (GRN) in [Luo et al., 2021] to at-



tack the SplitNN and generate approximation data to get close
to the raw data. As shown in Fig.2, the approximation data
of GRN is far from the raw data when the number of layers
in the bottom model is high, but the model performance drop
significantly(i.e., 3%). The model’s performance is the best
when there is only one layer in the bottom model. However,
the restored data is closest to the raw data in this case, and
the MSE between the approximation data and the raw data
is only 0.055. Model performance and raw data security be-
come the two ends of the scale in SplitNN. As a result, we
urgently need a method to mitigate this trade-off.

3 Secure Forward Aggregation
3.1 Overview
In this section, we propose a novel protocol called Secure
Forward aggregation (SFA) to protect the transformed data of
the passive parties. It provides removable masks to passive
parties, and the masks do not introduce noise into the com-
putation of the model. SFA protocol is used at the topmost
layer for the bottom models of all participants. It securely ag-
gregates the bottom models’ output values without exposing
their true values using a summation operation with masks. In
the mask generation of SFA, we securely share a part of the
transformed data from the active party using homomorphic
encryption and send it to the passive party. The shared result
will be the mask that protects the passive party’s output, and
homomorphic encryption ensures that the active party knows
nothing about the value of the mask. Therefore, the mask
effectively protects the passive party’s raw data without in-
troducing noise into the training.

Different from methods like secure aggregation [Bonawitz
et al., 2017], secure forward aggregation can protect the pas-
sive party’s input in the aggregate output even in the two-
party scene. In SFA, we use a weight mask generated by the
passive party and sent to the active party under homomorphic
encryption to produce masks for the transformed data. The
weight mask is seen as a part of the weight of the topmost
layer of the active party’s bottom model and is also used to
prohibit the active party from knowing the actual output of its
bottom model. Therefore, the active party cannot recover the
passive party’s input from the aggregated result. Moreover,
SFA could be applied to multi-participant scenarios, allowing
all passive parties to keep masks to protect their transformed
data. With SFA, we can aggregate the transformed data se-
curely regardless of the information it contains. Therefore,
the trade-off between model and security is moderate, and we
can train a model that both performs well and protects raw
data perfectly.

3.2 Aggregation Method
We sum the transformed data from the bottom models in SFA
instead of concatenating them in SplitNN. The first reason is
that the concatenate operation exposes the transformed data
directly, increasing the difficulty of data protection. More-
over, the concatenate operation treats each neuron indepen-
dently, but sum will not. So, the feature interaction will not
be captured at the cut layer. Therefore, concatenation oper-
ation at the cut layer will indirectly increase the loss of data
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Figure 3: Secure Forward Aggregation in two party scene

information by passing the transformed data through another
layer for capturing feature interaction. As a result, we change
the aggregation method at the cut layer from concatenating
operation to a summation operation.

3.3 Training with Weight Mask
The algorithm of the Secure Forward Aggregation protocol
is shown in algorithm1. During the initialization stage, one
passive party will generate a weight mask (Wmask in algo-
rithm1) and send it to the active party as a part of the weights
in the topmost layer of the bottom model. This weight mask
will be encrypted by Paillier homomorphic encryption [Pail-
lier, 1999] and sent to the active party. This weight mask will
never be decrypted, and it will be used to generate masks for
passive parties without letting the active party know.

Fig.3 shows the forward process and steps of secure for-
ward aggregation in a two-party setting. A and P0 are the
active and passive parties; Xa and Xp0 here are the raw data
or the values output from hidden units; WA and WB here
are (part of) the weight of the topmost layer of the bottom
model, [Wmask] is the weight mask, and [·] represents ho-
momorphic encryption. In the forward process of SFA, both
parties will calculate Za and Zp0

normally using WA,Xa and
WP0

,XP0
. Then, the active party will calculate [Mask] using

the encrypted value [Wmask]. Then, it will generate a random
matrix maskA and subtract it from the mask and send the re-
maining part [MaskP ] back to the passive party P0. Then,
P0 will decrypt the result and obtain its mask. After that, the
two parties add the mask onto their transformed data, and the
passive party P0 sends its masked transformed data to the ac-
tive party for aggregation. Finally, the active party will sum
these transformed data to obtain the final result Z.

Secure Forward Aggregation protocol can also protect the
transformed data in a multiparty setting. If there is extra
passive party other than party P0, party P0 will continue
share the masks to other passive parties, calculate MaskP0

=
MaskP −

∑n
i=1 MaskPi

and send the new mask MaskPi

to passive party Pi. In this way, the active party still knows



nothing about the masks.

3.4 Removable Mask on Transformed Data
Unlike methods that follow differential privacy to generate
noise to protect their intermediate result, the mask generated
in the SFA protocol is a part of the original output. Therefore,
the mask in SFA will not introduce noise to the aggregated
value. It is because we regard the encrypted Wmask as a part
of the weight for the active party, and the actual weight for
the last layer in the bottom model of the active party should
be WAtrue = Wmask + WA. It is clear to see that the final
output Z is the sum of the two party’s transformed data:

Z = ZA +

N∑
i=0

ZPi
= Za +MaskA +

N∑
i=0

(ZPi
+MaskPi

)

= (WA +Wmask)Xa +

N∑
i=0

WPi
XPi

= WAtrue
Xa +

N∑
i=0

WPi
XPi

(1)
We can see that WAtrueXa +

∑N
i=0 WPiXPi are the ag-

gregated result of all transformed data. The masks for pas-
sive parties are a part of WAtrue

Xa. They are generated by
the encrypted weight mask [Wmask] and shared using a ran-
dom matrix, and added back to the final aggregated result. In
the backward process, the participants calculate the gradient
normally, and all parties will add the gradients to the plaintext
weight. During the whole training process, Wmask is kept un-
changed. Therefore, we can consider it a noise initially added
to the model weights. As the model is updated continuously,
the impact of this noise will gradually fade away when doing
gradient descends and updating the weights of the plaintext
part.

3.5 Security Analysis
This subsection discusses the security of Secure Forward Ag-
gregation in a semi-honest setting, which is the standard se-
curity assumption in federated learning. We show that the
transformed data are well protected in the Secure Forward
Layer, and the passive parties cannot infer the data from the
active party.

Passive Party’s Data Security
In the SFA protocol, the transformed data Zpi

for passive
party B is protected by a mask MaskPi . The active party
will only obtain the masked result, and it cannot distinguish
the mask and the transformed data from the masked result.
Even though it knows that Mask is a transformation of Xb,
there are infinite eligible values of Mask. Therefore, it is in-
sufficient to infer the exact value of mask MaskP or MaskPi

and to further infer the passive party’s raw data.

Active Party’s Data Security
The active party’s transformed data is secure because they are
not sent outside. Though the passive party knows that Mask
is a transformation of Xb, it knows nothing about the random

Algorithm 1 Secure forward aggregation
Participants Settings: Active party A, Passive party P0,
({Pi|i = 1 . . . n} for other passive party in multiparty scene)
Input: Batch of raw data or embedding from hidden units
hold by participants of VFL: Xa,Xp0

(Xpi
for other passive

parties),
Output: Aggregated result Z
Initialization

1: Active party A generates weight matrix WA, Passive
party P0 generates weight matrix WP0

. (If there are other
passive parties, they generate their own weight matrix
Wpi )

2: Party P0 generates HE key pair {skb, pkb}. Generate
weight matrix Wmask , encrypt it using skb and send the
encrypted result [Wmask] to party A.

Forward process
1: All parties obtain the next batch of data (or hidden units

value from the layer below)
2: Party A calculates Za = WAXa and [Mask] =

[Wmask]Xa, Party P0 calculates Zp0
= WP0

XP0
. (Other

passive parties calculate Zpi
= WPi

XPi
)

3: Party A generates random matrix MaskA, calculate
[MaskP ] = [Mask] − [MaskA] and send it to party
P0.

4: Party P0 decrypt [MaskP ]. (If there are other passive
parties, P0 generates random matrix MaskPi and send
it to party Pi and calculate: MaskP0

= MaskP −∑n
i MaskPi

)
5: Party A calculates ZA = Za +MaskA, Party P0 calcu-

lates ZP0
= Zp0

+MaskP0
and send it to party A (other

passive parties calculate ZPi
= Zpi

+MaskPi
and send

it to party A)
Backward process

1: Active party send the upper gradient to each participants
2: All participants use this gradient to update their bottom

model. [Wmask] in party A is kept unchanged.

generated MaskA. Therefore, the passive party cannot in-
fer Mask to perform further inference attacks, and the active
party’s data security is ensured.

3.6 Mitigate Trade-off using SFA
We have already shown that SFA ensures the security of the
transformed data. Therefore, we can keep a shallow bot-
tom model for better performance. When there is only one
fully-connected layer in the bottom model, and the aggre-
gate method is changed from concatenation to summation,
the structure of the model is the same as the centralized neu-
ral network. Therefore, the performance degradation caused
by the model architecture no longer exists.

Though the weight mask also impacts training, with rea-
sonable settings, the initialized weights of the weight mask
will not significantly impact the final results of the model.
We initialize the weight mask using a uniform distribution
bounded by 2/

√
in features and encrypt it, then send it to

the active party. The weight generation of this weight mask
follows [LeCun et al., 2012], and it reduces the impact of the



Datasets Sector News20 Amazon FMNIST

Datasize 9619 18, 846 100, 000 60, 000
Features 55, 197 173, 762 257 784
Labels 105 20 2 10

Table 1: Datasets descriptions

Datasets Sector News20 Amazon

Centralized 91.28±0.39 83.63±0.27 77.46±0.10

SplitNN 86.43±0.51 79.76±0.68 72.86±0.07

SFA-NN(ours) 90.86±0.30 83.86±0.32 77.44±0.10

Table 2: model performance on different datasets (ACC)

weight mask of model training and the final performance.

4 Experiment
In the experiment sections, extensive experiments are done to
show how SFA can mitigate the trade-off between data secu-
rity and model performance.

4.1 Experiment Setting
We use a neural network structure with six fully-connected
layers to illustrate the performance of SFA on neural net-
works in VFL. We select SplitNN and a centralized model
(all data are integrated for modeling) to compare a neural
network with SFA (SFA-NN). We also fixed the number of
hidden units of each layer for fair comparison and ran the
experiment of model performance for ten trials to reduce ran-
domness in training.

We fix the dropout to 0.3, batch size to 256, and apply
batch normalization to train the model for 50 epochs in de-
fault. Then, we select the best learning rate from {1e−1, 1e−
2, 1e− 3, 1e− 4, . . . } with zero regularization coefficient for
all experiments. The default participant number of VFL is set
to two, and the features are partitioned equally for each par-
ticipant. The bottom model height is set to 5 for SplitNN and
1 for SFA-NN in default for a fair comparison with the same
level of security.

4.2 Dataset
We use four classification datasets to demonstrate the perfor-
mance problem and the trade-off in SplitNN: Sector [Chang
and Lin, 2011], news20 [Lang, 1995], Amazon electronic 1

and Fashion MNIST (FMNIST) [Xiao et al., 2017] dataset.
We preprocessed these data to meet the requirement of the

experiments of SplitNN. We used the TF-IDF algorithm to
transform the news20 data into a sparse matrix for training.
We use a trained Deep Interest network [Zhou et al., 2018]
to preprocess and transform 100,000 items in the Amazon
electronic data into embeddings of 257 and treat them as data
in model training. FMNIST is the dataset we demonstrate the
security concerns in SplitNN, so we normalize the ranges of
all feature values in it into (0, 1) as [Luo et al., 2021] for
better demonstration.

1http://jmcauley.ucsd.edu/data/amazon/

The detailed descriptions of the data set after preprocessing
are shown in table 1.

Figure 4: Model performance in multiparty settings

4.3 Performance of SFA
We experiment and compare the performance of SplitNN and
SFA-NN to show that our proposed method achieves good
performance in high security. We also use the Centralized
model in this experiment, which refers to a model with a
standard neural network structure trained by pooling all data
together in a non-federal learning setting. Because the per-
formance of federated learning models should be as close as
possible to the model performance in the non-federal settings
[Yang et al., 2019], we use it as the target of SFA-NN to eval-
uate its performance. This baseline can precisely reflect the
ability of SFA-NN to reduce the performance gap between
neural networks in VFL and centralized neural networks.

Model Performance under Two-Party Setting
Table.2 shows the experiment result of SFA-NN in the two-
party setting. The performance of SFA-NN is close to the
centralized model and is significantly better than SplitNN.
Although the weight mask of SFA impacts the model’s train-
ing, it will not have a significant impact on the final perfor-
mance of the model. The performance gap between SFA-
NN and the centralized model is small, and for comparison,
SplitNN’s performance is low on these tasks, and SFA-NN’s
performance is significantly better than SplitNN.

Model Performance under Multiparty Setting
One of the reasons that SplitNN has gained popularity is that
it supports multiparty training conveniently. Pessimistically,
the more participants there are, the more feature partitions
between participants will result in more low-level feature in-
teraction loss. Thus, a severe model performance decrease
will happen in the multiparty scenario of SplitNN. As shown
in Fig.4, the model performance drops dramatically on the
News20 dataset when the number of participants increases.
But there is no such performance loss in SFA-NN, which
shows that our method is effective in multiparty settings.

http://jmcauley.ucsd.edu/data/amazon/


4.4 Trade-off between Security and Model
Performance

In this experiment, we fix the total number of network layers
and the number of neurons in each hidden layer. We then ad-
just the height of the cut layer and the height of the bottom
model to observe the performance of the model and the secu-
rity of the raw data. (the height of the top model decreases
with the increase of the height of the bottom model and vice
versa)

Fig.5(a) shows the model performance on the News20
dataset with the bottom model of different heights. When the
height of the bottom model increase, the model performance
of SplitNN drops gradually. SFA-NN also suffers from this
performance loss. Though the summation operation for ag-
gregation at the cut layer improves the model performance,
the model performance of SFA-NN is only similar to SplitNN
with one less layer in the bottom model. The performance
problem due to the discarded information has not been fun-
damentally solved. This experiment shows the damage that
excessive discarding of low-level information brings to the
model performance. Reducing the number of layers will be
an intuitive solution for those seeking higher model perfor-
mance, but this brings threats to the raw data.

To evaluate the information leakage of the transformed
data, we train models using FMNIST datasets to 88% accu-
racy with the length of the transformed data set to 256. Then,
we use the generative regression network(GRN) [Luo et al.,
2021] to attack the bottom model and reconstruct the raw data
using the test dataset. GRN is the network to generate approx-
imation data to approximate the passive party’s raw data. We
take the active party’s data features and the passive party’s
transform data as the input to train the model. We train the
GRN by minimizing the Mean Square Error(MSE) between
the real transformed data and the transformed result of the ap-
proximation data. Because the transformed data zp0

are not
known by the active party in SFA-NN, we use two masked
outputs, ZP (attack-1) and ZP + maskA (attack-2), to sub-
stitute the transformed data, and the protections of these two
attacks are MaskP0

and Mask respectively. We also use ran-
dom values between 0-1 as a baseline of the attack to evaluate
the attack method’s performance and show the effectiveness
of SFA’s protection.

Fig.5(b) shows the attack result on the transformed data,
and the MSE metric indicates the distance of the attack re-
sults from the raw data. We can see that the attack is effective
on the transformed data when the number of layers in the bot-
tom model is low. When the layer number increase, the effect
of the attack decrease, but the model performance gets lower.
However, the attack is ineffective when SFA is used. GRN
cannot achieve a good approximation of raw data even if the
bottom model has only one layer. In fact, the MSE distance of
the approximation data always gets larger as the training pro-
ceeds when the two attack methods act on the SFA, suggest-
ing that the attack on transformed data with SFA is infeasible.
In conclusion, SFA can protect the raw data with low bottom
model layers. We can use SFA to gather the information from
multiple participants at a low layer of the neural network and
improve the model’s performance.
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Figure 5: Trade-off between data security and model performance

5 Related Work
FDML [Hu et al., 2019] is another framework that supports
neural networks in feature-partition settings with privacy-
preservation. In FDML, each participant has an independent
local model, and the final predictions of the model are ob-
tained by summing the outputs of all local models. How-
ever, there is no direct connection between the local models
of FDML, so it also suffers from a similar performance loss
in SplitNN. This performance loss is also reflected in their
experiments on neural networks.

Moreover, due to the design assumption that labels are
shared among participants in FDML, researchers seldom fo-
cus on label security in this framework. In fact, the gradient
at the top layer of FDML exposes the labels directly [Fu et
al., 2022]. Leakage of data labels is unacceptable for vertical
federal learning. Therefore, we do not include it as a baseline
in VFL.

6 Conclusion
This paper proposes a Secure Forward Aggregation protocol
to mitigate the trade-off between model performance and data
security in SplitNN in VFL. This protocol provides remov-
able masks to protect the transformed data in SplitNN and
aggregates the information from different parties better. Ex-
perimental results show that we achieve almost the same per-
formance as the centralized model, and we can keep the raw
data safe and resistant to attacks using SFA. We effectively
mitigate the trade-off between model performance and data
security in neural networks in VFL.

This work still has some limitations. On the one hand, SFA
introduces partial homomorphic encryption to perform secure
computations, increasing the computational effort. Neverthe-
less, there are ways to reduce time consumption. For ex-
ample, we can reduce the multiplication calculation of the
same ciphertext weight masks and plaintext data and accel-
erate computation using parallelism and hardware[Cheng et
al., 2021b]. On the other, there is a lack of hyperparameters
analysis about the weight mask on model training and data
security. Also, the security analysis is limited to semi-honest
settings, but it is hard to ensure in a real-world scenario. We
will continue to improve this work from the perspective of
algorithm design and then conduct a comprehensive analy-
sis of the effectiveness of SFA. We will enhance this work in
the future to achieve good efficiency while keeping the data
security and model performance in neural networks in VFL.
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