
Sketch to Skip and Select: Communication Efficient Federated Learning using
Locality Sensitive Hashing

Georgios Kollias , Theodoros Salonidis , Shiqiang Wang
IBM T. J. Watson Research Center

{gkollias, tsaloni, wangshiq}@us.ibm.com

Abstract
We introduce a novel approach for optimizing com-
munication efficiency in Federated Learning (FL).
The approach leverages sketching techniques in two
complementary strategies that exploit similarities
on the data transmitted during the FL training pro-
cess to identify opportunities for skipping expensive
communication of updated models in training it-
erations, and dynamically select subsets of clients
hosting diverse models. Our extensive experimen-
tal investigation on different models, datasets and
label distributions, shows that these strategies can
massively reduce downlink and uplink communi-
cation volumes by factors order of 100× or more
with minor degradation or even increase of the ac-
curacy of the trained model. Also, in contrast to
baselines, these strategies can escape suboptimal
descent paths and can yield smooth non-oscillatory
accuracy profiles for non-IID data distributions.

1 Introduction
Communication efficiency is a crucial issue in Federated
Learning (FL), especially when large deep learning models are
employed. Existing techniques for reducing the computation
and communication overhead of FL focus on selecting a small
fraction of clients in each FL training round or transmitting
compressed models instead of original models. However, most
of these techniques are either based on a simple randomized
procedure, such as random client selection [Bonawitz et al.,
2019], or approaches such as magnitude-based gradient com-
pression [Konečnỳ et al., 2016]. These methods do not take
data characteristics into account and ignore the fact that data
at clients are often non-independent and/or non-identically
distributed (non-IID). This causes issues such as low accuracy
or bias as useful data on certain clients tends to be largely
ignored by the FL training process. In addition, as we em-
pirically show in this paper, random client selection can also
cause instabilities in the convergence process for non-IID dis-
tributions.

Therefore, a largely open question is: how to design commu-
nication efficient FL training procedures that are data-aware
and can incorporate characteristics of non-IID data distribu-
tion? We address this problem in this paper. The core idea is

to compute sketches of useful information obtained during the
FL process, and use these sketches to determine when to share
the model parameter vector or the gradient between server and
clients and which clients to select. The benefit of this approach
is that the sketches capture important knowledge related to
data distributions and progress of local model updates, which
is not possible using existing techniques.

Our main contributions are as follows:
• We introduce a novel predicate that decides the proximity

of models hosted at different nodes of an FL system, in a
communication efficient way. The predicate is a commu-
nication skipping mechanism: if two remote models are
approximately “close” do not share them. We implement
this predicate based on Locality Sensitive Hashing (LSH)
sketching techniques.

• We propose and implement a new method for client se-
lection in FL that leverages sketching combined with
clustering.

• We integrate our techniques in an FL simulation frame-
work and evaluate their performance through exten-
sive training experiments over six configurations of real
datasets and data distributions and different parameters.
We observe massive (order 100×) downlink and uplink
communication savings over state of the art baselines
without classification accuracy degradation. In some
cases we obtain improvements in both accuracy and com-
munication. For some non-IID data distributions we
also demonstrate that in contrast to baselines, our client
selection method avoids convergence issues such as fluc-
tuations in accuracy during training.

2 Related Work
Communication efficiency is an extensively studied topic in
general distributed learning from a theoretical point of view.
It has also been addressed in applications such as distributed
learning for data centers and more recently in the context of
FL. In this section, we will focus on techniques that have been
applied to FL context and are most related to this paper.

Local updating methods. Local updating methods aim to
reduce the total number of communication rounds by doing
more computations. The most commonly used method for FL
is Federated Averaging (FedAvg) [McMahan et al., 2017], a
method based on averaging local stochastic gradient descent



(SGD) updates. FedAvg reduces communication overhead by
doing multiple local SGD updates in parallel per communica-
tion round. FedProx improves upon FedAvg for the case of
heterogeneous data [Li et al., 2020]. The number of FedAvg
SGD updates in these techniques is typically fixed and not
adaptive to changing data. This can create divergence issues
(if set too high) or high communication overhead (if set too
low). The work of [Wang et al., 2019] proposes adaptive
techniques for deciding the number of local SGD updates and
frequency of communication to server. However, it does not
exploit data similarities between clients and server and across
clients.

FL training using model compression. There exist sev-
eral approaches which perform FL training using compressed
model parameters or gradients in order to reduce communi-
cation overhead, at the potential expense of accuracy. These
schemes use different compression techniques such as forcing
the updating models to be sparse and low-rank or perform-
ing quantization with structured random rotations [Konečnỳ
et al., 2016]. In [Li et al., 2019], Li et. al. proposed
DiffSketch which compresses transmitted messages via
sketches to achieve communication efficiency and privacy ben-
efits. For independent and identically distributed (IID) MNIST
data with a large number of clients, they show high commu-
nication benefits, but these come at the expense of accuracy.
Most approaches reduce overhead on the uplink direction from
clients to server. The work in [Caldas et al., 2018] uses lossy
compression and dropout to reduce server-to-device downlink
communication. In FetchSGD [Rothchild et al., 2020] the
clients sketch their gradients using Count Sketch [Charikar et
al., 2002],which is a randomized data structure, before trans-
mitting to the server. In [Chen et al., 2021] they similarly
leverage count sketches for compression but under distributed
differential privacy (DP) via secure aggregation (SecAgg).

Our approach significantly differs from the above ap-
proaches. It does not perform FL training based on com-
pressed model parameters. Instead, it uses a special type
of sketches based on LSH to decide on client selection and
transmission of non-compressed model parameters. Thus, the
goal is to minimize communications while using the necessary
non-compressed data to maintain high accuracy by exploiting
data similarities during the training process. In addition the
above approaches typically demonstrate communication re-
duction but may yield significant accuracy loss. In contrast,
our approach can yield massive communication overhead re-
duction (up to 100×) for non-IID distributions with minimal
or zero accuracy loss. Our approach is also based on a generic
sender/receiver predicate and is directly applicable to both
uplink and downlink directions. It is also orthogonal to the
existing compression-based training schemes and can be used
in conjunction with them for further communication gains, if
desirable.

Client selection methods. Client selection methods seek
to reduce the number of participating clients. FedAvg uses
random selection [Bonawitz et al., 2019] which is used pre-
dominantly in FL settings in practice. There exist also
works which select subset of clients based on device re-
source requirements [Wang et al., 2020; Jin et al., 2020;
Nishio and Yonetani, 2019]. These techniques do not con-

sider data characteristics. The investigation in [Fraboni et al.,
2021] proposes a data-aware client selection approach that is
similar to ours at a high level. This approach involves hierar-
chical clustering of the clients based on a similarity metric on
the gradients and sampling from these clusters. However, it
incurs massive communication overhead during the clustering
step because it requires all clients to send to the server their
gradients (which have the same high dimensionality of model
parameters). In contrast, in our sketch-to-select ap-
proach we use sketches of the model parameters which incur
very low communication overhead in the clustering step. In
addition, our sketch-to-skip strategy reduces commu-
nication overhead on both uplink and downlink by skipping
client model updates to server and server global model trans-
mission to the clients, respectively.

3 Methods
We leverage sketching techniques for informing our decisions
of when to communicate model parameters and which clients
to compute with. In particular, we vectorize the learning
parameter tensors of a local model snapshot during training
and compute a locality sensitive hash of the concatenation
of vectors. For a locality sensitive hashing function h(·) and
starting vectors a⃗ and b⃗, their hashes h(⃗a) and h(⃗b) are also
vectors of reduced size, with the interesting property that they
are close with high probability if a⃗ and b⃗ are close. This
property motivates us to consider using such “short” hashes
instead of the full model parameter tensors, when we need to
decide whether two models, hosted at distributed agents, are
approximately close (i.e. “similar”) or not: agents compute,
exchange and compare their “short” model hashes and then
decide whether to communicate and share the actual models.
This is a communication efficient, model proximity predicate
and we use its Boolean output in two types of strategies:

1. Sketch-to-Skip skip sending the model snapshot, at exe-
cution points FL would normally send, when the predi-
cate indicates that the model snapshot at the receiver side
is “close”.

2. Sketch-to-Select select a subset of computing clients that
host models that are not “close” to each other.

3.1 Sketch-based communication skipping:
Sketch-to-Skip

Our model proximity protocol uses a generic sender/receiver
predicate and unlike most existing FL communication effi-
ciency techniques, it can be applied to both uplink (clients
to server) and downlink (server to clients) directions. Also
it is a one-comparison protocol: projects and compares the
projections. It is also modular in the sense that alternative
sketching methods can be plugged-in: the work by [Datar et
al., 2004] is particularly relevant as they also minimize the
distortion in l2 norm.

Our model proximity predicate referred to as lsh in the
sequel, is based on randomized projections (sketching) of
flattened (i.e. vectorized and concatenated) model parameter
tensors. Let a⃗ and b⃗, with d elements each, be the flattened
tensors of the model paremeters at the perspective sender



and receiver sides, which we wish to compare. In lsh, the
sender generates k random vectors r⃗1, r⃗2, . . . , r⃗k, uniformly
sampled from (−1, 1) for given seed s and with d elements
each. The vectors are organized in a k × d projection matrix
that multiplies (projects) a⃗ to a k element vector h⃗a. The
sender sends the seed s and the sketching dimension k to
the receiver so that it can generate an identical projection
matrix, similarly compute a projection h⃗b of its b⃗ and send h⃗b

to the sender. Finally the sender computes the relative norm
difference of the two sketched vectors ∥h⃗a − h⃗b∥2/∥h⃗b∥2: if
this is smaller than the threshold parameter of this protocol,
then the sender skips sending its a⃗.

Communication savings. The potential for communica-
tions savings is very high. When the proximity protocol de-
cides that communication should be skipped (based on the
lsh threshold parameter) only the hash of size k will have
been sent instead of the full model of size d. As an example,
the models in our experiments have hundreds thousands of
parameters (d = 238, 510 parameters for the FCNN model
and d = 555, 178 for the CNN model). The proximity proto-
col uses a vector of dimension k = 100. This can potentially
yield dramatic communication savings of the order of k

d , i.e.
0.04% for FCNN and 0.02% for CNN when communication
is skipped. We will quantify this potential in the experiments
section.

Computation complexity. The computation of the hashes
involves two steps. At the beginning of training iterations,
at each client, a projection matrix is constructed which re-
quires O(dk) flops; this cost is amortized over all iterations.
Then, for each iteration, this matrix is used to project the
local model vector of size d at each agent, which also re-
quires O(dk) flops, since this is dense matrix vector multipli-
cation (matvec). The work by [Ailon and Chazelle, 2006;
Clarkson and Woodruff, 2017] can further reduce the com-
plexity in generating the projection matrix or projecting the
vectors, which according to [Konečnỳ et al., 2016] can be con-
sidered negligible compared to the computational complexity
of local SGD training iterations within FL.

3.2 Sketch-based client selection:
Sketch-to-Select

We introduce a “data-aware” scheme for client selection,
where “data” corresponds to sketches of flattened model pa-
rameter tensors across all clients. As the last stage in iterations
marked for updating the subset of selected clients (including c
out of all n clients available), all n clients sketch their flattened
model parameters and upload their resulting sketched vectors
to the server. Then the server clusters the n sketched vectors
into c clusters and randomly samples one vector per cluster.
Clients for which their sketched vector was sampled are added
to the new subset of selected clients.

The intention behind this scheme is the inclusion of clients
hosting as diverse model parameters as possible. Parameters
which are “close” will have their sketches being “close” and
thus most probably they will land in the same cluster. This also
means that selecting one representative model from each of c
clusters - for a budget of c selected clients total - maximizes
coverage of the distributed model parameter space distribution.

For sketching, we utilize the same type of randomized pro-
jection matrices as in lsh. We use ubiquitous Lloyd’s al-
gorithm [Lloyd, 1982] for clustering our n vectors (of k ele-
ments each, k the sketching dimension) into c clusters; also
k-means++ [Arthur and Vassilvitskii, 2007] for initializing
the coordinates of its c centroids. Interestingly, k-means++
has a analogous objective to what we are trying to do: build a
set of centroids that are as far as possible from each other. So
it becomes quite natural to use it for cluster initialization.

For the client slection iterations, the computation complex-
ity for projecting is O(dk) flops per client; at server side,
Lloyd’s algorithm incurs an overhead of O(ncr) flops, where
r is the number of rounds for centroid updates. Also, the
communication complexity for uplink communication of the
sketches is O(nk).

3.3 Sketch to Skip and Select FL algorithm
The FedAvg FL training algorithm [McMahan et al., 2017]
consists of multiple rounds, where each round consists of the
following steps: Running SGD model updates locally at the
clients for E iterations. Then randomly selecting a subset of
the clients to upload their updated model parameters to the
server. The server aggregates the parameters of the clients by
taking their mean and sends the updated global model to all
clients.

Our Sketch to Skip and Select FL training algorithm is
shown in Algorithm 1. At a high level it is based on two
ideas for modifying FedAvg as follows.

The first idea is to perform model updates (uploading
local client models/aggregation/downloading global server
model) only if local client models are sufficiently different
than the global server model. This is achieved using the
sketch-to-skip strategy between server and clients, per-
forming skip if the model of all selected clients is close to the
global model at the server. When model updates are skipped,
no client selection takes place. This approach can be seen in
Algorithm 2.

The second idea is to use sketch-to-select data-
aware scheme instead of FedAvg random client selection:
Once the selected clients are able to upload their mod-
els, a new client selection can occur using our data-aware
sketch-to-select algorithm. This is performed by all
clients sending their model sketches to the server, the server
clustering clients based on the sketches, and then selecting
randomly a client from each cluster. The sketch-to-select strat-
egy takes into account the clients’ data heterogeneity issue as
opposed to the FedAvg random client selection strategy which
is oblivious to it. This approach can be seen in Algorithm 3.

More specifically, Algorithm 1 executes in multiple rounds
0, . . . , T − 1. Each round starts with the sketch-to-skip
Algorithm 2: the server sends the sketch of its global model
to the clients; the clients update their model parameters by
performing E local SGD steps, compare the updated model
sketches with the global model sketch and send to server the
outcome of the comparison; if all client models have not de-
viated from the global server model by more than δ, then the
server decides to skip the uplink update, aggregation and down-
link update steps (lines 13, 17, 21 in Algorithm 1, respectively)
and client selection step (line 19 in Algorithm 1).



Client selection (sketch-to-select Algorithm 3) oc-
curs at each j ∗ u-th round, where u is a parameter and
j = 0, 1, . . ., provided that skip does not occur on that round.

Algorithm 1 Sketch to Skip and Select FL

1: Input: number of all clients N , number of clusters C,
number of rounds T , number of local updates E, learning
rate η, skip step threshold δ, sketching dimension k, set of
client selection update steps UT = {0, u, 2u, . . . , ⌊Tu ⌋u}

2: At server:
3: Initialize model parameters w̄0 and set of selected clients
S0 = [N ]

4: Transmit w̄0 to all clients i ∈ S0
5: for t = 0, . . . , T − 1 do
6: Execute Sketch-to-Skip strategy (Algorithm 2)
7: At clients:
8: for each client i ∈ St in parallel do
9: Comment: skip received as in Algorithm 2

10: if value of skip received from server is True then
11: Skip this round t: continue to round t+ 1
12: else
13: Transmit local model wt

i to the server
14: end if
15: end for
16: Server update:
17: w̄t+1 ← 1

|St|
∑

i∈St
wt

i

18: if t ∈ UT then
19: Execute Sketch-to-Select strategy (Algo-

rithm 3)
20: end if
21: Server broadcast w̄t+1 to all clients
22: end for

4 Experiments
4.1 Experimental setup
Datasets and Data Distributions at Different Nodes. We ex-
periment with three datasets: the original MNIST (referred to
as MNIST-O) [LeCun et al., 1998], Fashion-MNIST (referred
to as MNIST-F) [Xiao et al., 2017] and CIFAR-10 [Krizhevsky,
2009]. We consider two different ways of distributing the data
into different nodes for each of the datasets. In Case 1, each
data sample is randomly assigned to a node, thus each node
has uniform (but not full) information. In Case 2, all the data
samples in each node have the same label1. This represents the
case where each node has non-uniform (non-IID) information,
because the entire dataset has samples with multiple different
labels.

Models. For MNIST-O and MNIST-F we train deep fully
connected neural network (FCNNs) and for CIFAR-10 deep
convolutional neural networks (CNNs).2 We use stochastic
gradient descent (SGD) for training FCNNs and CNNs. The

1When there are more labels than nodes, each node may have data
with more than one label, but the number of labels at each node is no
more than the total number of labels divided by the total number of
nodes rounded tothe next integer

2The FCNN has 3 layers with the following structure: 784× 300

Algorithm 2 Sketch-to-Skip strategy

1: At server:
2: h̄t ← Flatten and sketch global model w̄t; h̄t ∈ Rk

3: Transmit h̄t to all clients i ∈ St
4: At clients:
5: for each client i ∈ St in parallel do
6: w0

i,t ← w̄t

7: for j = 0, . . . , E − 1 do
8: gi(w

j
i,t)← ∇fi(w

j
i,t)

9: wj+1
i,t ← wj

i,t − ηgi(w
j
i,t)

10: end for
11: wt

i ← wE
i,t

12: h̄t
i ← Flatten and sketch local model wt

i ; h̄
t
i ∈ Rk

13: skipi ← False
14: if ∥h̄t

i − h̄t∥2/∥h̄t∥2 < δ then
15: skipi ← True
16: end if
17: Transmit skipi to server
18: end for
19: At Server:
20: skip← False
21: if skipi is True for all i ∈ St then
22: skip← True
23: end if
24: Transmit skip to all clients i ∈ St

loss function is cross-entropy on cascaded linear and non-
linear transforms [Goodfellow et al., 2016].

Training and Control Parameters. For local training at
each client, we use a static learning rate of η = 0.05 for
MNIST-O and MNIST-F and η = 0.01 for CIFAR-10. The
mini-batch size is B = 100. We train for T = 1000 rounds.
We simulate a client-server FL system of N = 50 clients
using synchronous E = 1 steps of distributed gradient de-
scent [Chen et al., 2016] and select C = 10 (out of the 50)
clients for the client selection runs. Selected clients are then
elected every u = 100 iterations (frequency of client selection)
for all applicable cases. For the sketching dimension k, we
use the values of 100 and 10 for sketch-based communication
skipping and client selection, respectively.

Comparison Baseline. We compare our methods against
FedAvg [McMahan et al., 2017] with the same training and
control parameters (η,E,B,T ,N ,C) as above.

Metrics. We collect downlink and uplink communication
volumes during training and the accuracy value at its end, for
all attempted combinations and setup parameters (proximity
primitives, thresholds and client selection intervals when in
client selection mode). Then we compute the percent relative
error 100 ∗ (x − y)/y% for the accuracy (where x is the
classification accuracy of our method and y of the comparison

Fully Connected → 300 × 10 Fully Connected → Softmax. The
CNN has 9 layers with the following structure [Tensorflow, 2020]:
5 × 5 × 32 Convolutional → 2 × 2 MaxPool → Local Response
Normalization → 5 × 5 × 32 Convolutional → Local Response
Normalization → 2 × 2 MaxPool → 2048 × 256 Fully connected
→ 256× 10 Fully connected → Softmax.



Algorithm 3 Sketch-to-Select strategy

1: At clients:
2: h̄t

i← All clients i ∈ [N ]\St flatten and sketch their local
models wi,t

3: All clients i ∈ [N ] transmit their local model sketches h̄t
i

to the server
4: At server:
5: Server computes clusters At := {At

1, . . . ,At
C} from h̄t

i,
i ∈ [N ] using Lloyd’s algorithm with k-means++ ini-
tialization

6: Server samples St ∈ [N ] by drawing one client from each
cluster At

i, i ∈ [C] uniformly at random
7: Server broadcasts w̄t+1 to sampled clients

baseline), also referred as accuracy increase and the percent
ratio 100 ∗ x/y for the downlink and uplink communication
volumes (where x refers to our method and y to the comparison
baseline), also referred to as overhead ratio3.

4.2 Results
Figure 1 depicts the communication savings (overhead ratio)
vs. accuracy increase obtained with our proximity primitive
and client selection strategies, with respect to the FedAvg
with random client selection baseline, for various parameter
settings of our strategies on the 6 configurations. We observe
that for each configuration there exist several parameter set-
tings that yield very low uplink/downlink overhead ratios (10%
or much lower) and small negative (-5%) or positive accuracy
increase.

Figure 2 shows boxplot statistics for accuracy increase,
downlink and uplink overhead ratio for each configuration
in Figure 1. We observe that the median overhead ratio
across the six configurations ranges between [0.21%, 28.28%]
([476x, 3.5x] savings) for downlink and [0.57%, 31.25%]
([175x, 3.2x] savings) for uplink communication. Median
accuracy increase ranges between [−6.47%, 34.22%] across
the 6 configurations. For example, in CIFAR-10 Case 2 config-
uration, the median overhead ratio (across all lsh parameter
settings we used) for downlink is 0.21% (476x savings) and for
uplink 0.57% (175x savings) while median accuracy increase
is 5.6%.

Figure 3 compares the accuracy profiles of our approach
for a selected parameter set and FedAvg with random client
selection baseline for each of the 6 configurations. In 5/6
configurations our approach yields higher accuracy and in
CIFAR-10, Case 1 it is tracking closely the baseline accuracy.
A few more interesting observations are in place.

Our approach exhibits a step-wise accuracy evolution.
This is due to skipping sharing model parameters during some
iterations until the models become different enough to resume
sharing. Essentially the number of steps equals the number of

3A positive (negative) accuracy increase means that our method
attains better (worse) accuracy than the baseline, by the indicated
percent, so the more positive the better. Similarly 1%, 5%, 10%,
50% overhead ratio values correspond to 100×, 20×, 10×, 2× com-
munication savings compared to baseline, respectively: the smaller
the better, with the baseline at 100%.

40 30 20 10 0 10 20 30 40 50
% Accuracy increase

100

101

%
 D

ow
nl

in
k 

ov
er

he
ad

 ra
tio

% Accuracy increase and downlink overhead ratio
 over FedAvg, random client selection

MNIST-O, Case 1
MNIST-O, Case 2
MNIST-F, Case 1
MNIST-F, Case 2
CIFAR-10, Case 1
CIFAR-10, Case 2

40 30 20 10 0 10 20 30 40 50
% Accuracy increase

100

101

%
 U

pl
in

k 
ov

er
he

ad
 ra

tio

% Accuracy increase and uplink overhead ratio
 over FedAvg, random client selection

MNIST-O, Case 1
MNIST-O, Case 2
MNIST-F, Case 1
MNIST-F, Case 2
CIFAR-10, Case 1
CIFAR-10, Case 2

Figure 1: Overhead ratio for downlink (top panel) and uplink (bottom
panel) communication (vertical axis) vs accuracy increase (horizontal
axis). Baseline is FedAvg with random client selection.

total iterations minus the number of iterations where commu-
nication was skipped.

Random client selection accuracy profiles are “oscilla-
tory” for Case 2 distribution (Figure 3, bottom row.) Ran-
dom client selection will select clients without taking into
account the latent affinity in the local models for some of
the labels. In contrast, our client selection will group affine
clients and select a single representative from the group, thus
ensuring that affine clients will not be selected for the same
selection interval (in the limit: avoid repetition of samples)
and save their spot for inclusion of models that are not close
(in the limit: include new samples). Therefore, our sketch-
based client selection results in stable accuracy profiles for
these cases and this reflects the crucial role of clustering as a
mechanism to diversify.

MNIST-F gets significant accuracy boost in addition to
communication savings (middle panes in Figure 3.) Effec-
tively, sketching seems to be providing a mechanism to escape
suboptimal descent paths during training for some datasets.

5 Conclusions
Sketching has been used in FL to compress model represen-
tations prior to sending, with the intention to directly mix the
compressed representation into the computation of the model
update at the receiving side [Konečnỳ et al., 2016]. In our
work, different sketches based on locality sensitive hashing



M
NI

ST
-O

, C
as

e 
1

M
NI

ST
-O

, C
as

e 
2

M
NI

ST
-F

, C
as

e 
1

M
NI

ST
-F

, C
as

e 
2

CI
FA

R-
10

, C
as

e 
1

CI
FA

R-
10

, C
as

e 
2

Dataset, Distribution

40

20

0

20

40
%

 A
cc

ur
ac

y 
in

cr
ea

se

% Accuracy increase over FedAvg,
 random client selection

M
NI

ST
-O

, C
as

e 
1

M
NI

ST
-O

, C
as

e 
2

M
NI

ST
-F

, C
as

e 
1

M
NI

ST
-F

, C
as

e 
2

CI
FA

R-
10

, C
as

e 
1

CI
FA

R-
10

, C
as

e 
2

Dataset, Distribution

0

20

40

%
 D

ow
nl

in
k 

ov
er

he
ad

 ra
tio

% Downlink overhead ratio,
 random client selection

M
NI

ST
-O

, C
as

e 
1

M
NI

ST
-O

, C
as

e 
2

M
NI

ST
-F

, C
as

e 
1

M
NI

ST
-F

, C
as

e 
2

CI
FA

R-
10

, C
as

e 
1

CI
FA

R-
10

, C
as

e 
2

Dataset, Distribution

0

10

20

30

40

%
 U

pl
in

k 
ov

er
he

ad
 ra

tio

% Uplink overhead ratio,
 random client selection

Figure 2: Box plots for accuracy increase (left panel) and overhead ratio for downlink (middle panel) and uplink (right panel) communication
for various dataset and distribution combinations as in Figure 1. Baseline is FedAvg with random client selection.

0 200 400 600 800 1000
Number of iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST-O: Case 1, Client Selection

0 200 400 600 800 1000
Number of iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

MNIST-F: Case 1, Client Selection

0 200 400 600 800 1000
Number of iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

CIFAR-10: Case 1, Client Selection

fedavg_random_selection
lsh

0 200 400 600 800 1000
Number of iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

MNIST-O: Case 2, Client Selection

0 200 400 600 800 1000
Number of iterations

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

MNIST-F: Case 2, Client Selection

0 200 400 600 800 1000
Number of iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

CIFAR-10: Case 2, Client Selection

fedavg_random_selection
lsh

Figure 3: Classification accuracy with client selection: Case 1 (top row); Case 2 (bottom row).

are used in completely orthogonal and indirect ways: to decide
whether communicating the model should occur in the first
place and which clients to engage in the computation. We
have empirically demonstrated that this approach can mas-
sively reduce downlink and uplink communication volumes
by factors order of 100× or more with minor degradation or
even increase of the accuracy of the trained model. We also
empirically identified cases where, in contrast to the baseline,
our strategies provide a mechanism to escape suboptimal de-
scent paths and can yield smooth accuracy profiles for non-IID
data distributions.



References
[Ailon and Chazelle, 2006] Nir Ailon and Bernard Chazelle.

Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, pages
557–563, 2006.

[Arthur and Vassilvitskii, 2007] David Arthur and Sergei Vas-
silvitskii. k-means++: the advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 1027–1035. Society
for Industrial and Applied Mathematics, 2007.

[Bonawitz et al., 2019] Keith Bonawitz, Hubert Eichner,
Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano
Mazzocchi, H Brendan McMahan, et al. Towards federated
learning at scale: System design. In Systems and Machine
Learning (SysML) Conference, 2019.

[Caldas et al., 2018] Sebastian Caldas, Jakub Konečny,
H Brendan McMahan, and Ameet Talwalkar. Expanding
the reach of federated learning by reducing client resource
requirements. arXiv preprint arXiv:1812.07210, 2018.

[Charikar et al., 2002] Moses Charikar, Kevin Chen, and
Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Lan-
guages, and Programming, pages 693–703. Springer, 2002.

[Chen et al., 2016] Jianmin Chen, Rajat Monga, Samy Ben-
gio, and Rafal Jozefowicz. Revisiting distributed syn-
chronous sgd. In International Conference on Learning
Representations Workshop Track, 2016.

[Chen et al., 2021] Wei-Ning Chen, Christopher A
Choquette-Choo, and Peter Kairouz. Communica-
tion efficient federated learning with secure aggregation
and differential privacy. In NeurIPS 2021 Workshop
Privacy in Machine Learning, 2021.

[Clarkson and Woodruff, 2017] Kenneth L Clarkson and
David P Woodruff. Low-rank approximation and regres-
sion in input sparsity time. Journal of the ACM (JACM),
63(6):1–45, 2017.

[Datar et al., 2004] Mayur Datar, Nicole Immorlica, Piotr In-
dyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of
the twentieth annual symposium on Computational geome-
try, pages 253–262, 2004.

[Fraboni et al., 2021] Y. Fraboni, R. Vidal, L. Kameni, and
M. Lorenzi. Clustered sampling: Low-variance and im-
proved representativity for clients selection in federated
learning. In Proc. International Conference on Machine
Learning, 18–24 Jul 2021.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

[Jin et al., 2020] Yibo Jin, Lei Jiao, Zhuzhong Qian, Sheng
Zhang, Sanglu Lu, and Xiaoliang Wang. Resource-efficient
and convergence-preserving online participant selection in

federated learning. In IEEE International Conference on
Distributed Computing Systems (ICDCS), 2020.

[Konečnỳ et al., 2016] Jakub Konečnỳ, H Brendan McMa-
han, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improv-
ing communication efficiency. In NeurIPS Workshop on
Private Multi-Party Machine Learning, 2016.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical report, Univer-
sity of Toronto, 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua Ben-
gio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[Li et al., 2019] Tian Li, Zaoxing Liu, Vyas Sekar, and Vir-
ginia Smith. Privacy for free: Communication-efficient
learning with differential privacy using sketches. arXiv
preprint arXiv:1911.00972, 2019.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Fed-
erated optimization in heterogeneous networks. In Machine
Learning and Systems (MLSys) Conference, 2020.

[Lloyd, 1982] Stuart Lloyd. Least squares quantization in
pcm. IEEE transactions on information theory, 28(2):129–
137, 1982.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from
decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282, 2017.

[Nishio and Yonetani, 2019] Takayuki Nishio and Ryo Yone-
tani. Client selection for federated learning with hetero-
geneous resources in mobile edge. In IEEE International
Conference on Communications (ICC), pages 1–7, 2019.

[Rothchild et al., 2020] Daniel Rothchild, Ashwinee Panda,
Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braver-
man, Joseph Gonzalez, and Raman Arora. Fetchsgd:
Communication-efficient federated learning with sketching.
In International Conference on Machine Learning, pages
8253–8265. PMLR, 2020.

[Tensorflow, 2020] Tensorflow. Con-
volutional neural network (cnn).
https://www.tensorflow.org/tutorials/images/cnn, 2020.
Online.

[Wang et al., 2019] Shiqiang Wang, Tiffany Tuor, Theodoros
Salonidis, Kin K Leung, Christian Makaya, Ting He, and
Kevin Chan. Adaptive federated learning in resource con-
strained edge computing systems. IEEE Journal on Se-
lected Areas in Communications, 37(6):1205–1221, 2019.

[Wang et al., 2020] Hao Wang, Zakhary Kaplan, Di Niu, and
Baochun Li. Optimizing federated learning on non-iid
data with reinforcement learning. In IEEE Conference
on Computer Communications (INFOCOM), pages 1698–
1707, 2020.



[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland Voll-
graf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.


	Introduction
	Related Work
	Methods
	Sketch-based communication skipping: Sketch-to-Skip
	Sketch-based client selection: Sketch-to-Select
	Sketch to Skip and Select FL algorithm

	Experiments
	Experimental setup
	Results

	Conclusions

