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Abstract

This article seeks for a distributed learning solu-
tion for the visual transformer (ViT) architectures.
Compared to convolutional neural network (CNN)
architectures, ViTs often have larger model sizes
and are computationally expensive, making feder-
ated learning (FL) ill-suited. Split learning (SL)
can detour this problem by splitting a model and
communicating the hidden representations at the
split-layer, also known as smashed data. Notwith-
standing, the smashed data of ViT are as large as and
as similar as the input data, negating the communi-
cation efficiency of SL while violating data privacy.
To resolve these issues, we propose a new form of
CutSmashed data by randomly punching and com-
pressing the original smashed data, and develop a
novel SL framework for ViT, coined CutMixSL. Cut-
MixSL communicates CutSmashed data, thereby
reducing communication costs and privacy leakage.
Furthermore, CutMixSL inherently involves the Cut-
Mix data augmentation, improving accuracy and
scalability. Simulations corroborate that CutMixSL
outperforms other baselines including parallelized
SL and SplitFed that integrates FL with SL.

1 Introduction

Transformer architectures have revolutionized various applica-
tion domains in deep learning, ranging from natural language
processing (NLP) [Vaswani e al., 2017] to speech recogni-
tion [Karita et al., 2019]. Fueled by this success, recently
there has been another paradigm shift in computer vision (CV)
where the visual transformer (ViT) architecture has broken
the performance record set by the de facto standard convolu-
tional neural network (CNN) architectures [Dosovitskiy et al.,
2020al. The core idea of ViT is to divide each input image
sample into multiple patches as in the tokens in NLP, and to
process the patches in parallel using the attention mechanism
of Transformer. This process is in contrast to that of CNN
which processes only neighboring pixels in sequence using
the convolutional operations.

While the existing studies focus mostly on centralized ViT
operations [Han er al., 2022], in this article we delve into
the problem of distributed learning with ViTs that are often
computationally expensive, and require more training samples
than CNNs [Khan et al., 2021; Han et al., 2022]. In the
recent literature of distributed learning, federated learning
(FL) is one promising solution that enables training a global
model across edge devices such as phones, cameras, and the
Internet of Things (IoT) devices [Li er al., 2020]. The key
idea is periodically averaging model parameters across edge
devices or clients through a parameter server, without directly
exchanging private data. However, model averaging requires
every client to store and communicate the entire model, so is
ill-suited for ViT due to its large model size.

Alternatively, each client can store only a fraction of the en-
tire model, and offload the remaining segment onto the server
under a model-split architecture [Gupta and Raskar, 2018].
Split learning (SL) follows this model-split parallelism, and
at the split-layer, each client uploads the hidden layer activa-
tions in the forward propagation (FP), also known as smashed
data, and downloads gradients in the back propagation (BP)
[Vepakomma et al., 2018]. Unfortunately, as opposed to
CNN'’s smashed data spatially distorted by convolution op-
erations, ViT’s smashed data wihtout convolution look similar
to their input data [yuan2021tokens], which may leak a non-
negligible amount of private information on raw data to the
server. Furthermore, ViT often lacks pooling layers, so the
smashed data sizes are as large as the input data, negating the
communication efficiency of SL.

To resolve the aforementioned issues, inspired from the Cuz-
Mix data augmentation technique [Yun et al., 2019], we pro-
pose a new type of CutSmashed data, and thereby develop a
novel split learning framework for ViTs, coined CutMixSL. In
CutMixSL, each client constructs the CutSmashed data by ran-
domly masking the patches of the original smashed data. For
instance, Fig. 1 illustrates two clients locally constructing the
CutSmashed data by applying the mutually exclusive masks
010110 and 101001 to their original smashed data, respec-
tively. Here, to guarantee the mutual exclusiveness and the
subsequent operations, a common pseudo random generator is
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Figure 1: Schematic illustrations of: (a) parallel split learning (SL), (b) SplitFed (SFL), and (c) CutMixSL.

shared by all clients and the server, without sharing raw data.
Then, the mixer at the server adds these uploaded CutSmashed
data, resulting in CutMix data (i.e., with the mask 111111)
that continues FP in the server and the rest of SL operations.

The multi-fold benefit of CutMixSL is summarized as follows.

* First, the clients in CutMixSL can only upload non-zero
masked CutSmashed data, reducing privacy leakage.

* Second, CutMix data plays its original role as data aug-
mentation complementing ViT’s lack of useful inductive
bias as opposed to CNNGs, thereby improving accuracy.

 Lastly, CutMixSL is free from the standard paralell SL’s
imbalance problem between the server-side and client-
side model updates, achieving scalability in temrs of the
accuracy increasing with the number of clients.

¢ Simulations show that in CIFAR-10 classification, Cut-
MixSL reduces the privacy leakage (measured by recon-
struction mean-squared errors) by around 8 X, decreases
uplink communication payload sizes by 20 — 50%, and
improves accuracy by up to 18.5% while achieving scal-
ability up to (at least) 10 clients.

2 Related works

FL and SL are two popular distributed collaborative machine
learning techniques keeping data within the data custodian
without raw data sharing, considered as privacy-by-design
techniques [Park et al., 2021al. FL has scalable performance
with the number of clients [Koneény et al., 2015], however,
it has a limitation to only handle models of small size be-
cause of the constraints of memory, computing, and com-
munication resources of the clients [Koneény et al., 2016].
On the other hand, SL is considered as an enabler to exploit
models of large size through splitting model into two seg-
ments that the sever and clients hold [Gupta and Raskar, 2018;
Vepakomma er al., 2018]. SplitFed (SFL) [Thapa et al., 2020]
is the first hybrid of FL and SL to achieve advantages from
both, and its generalized version is proposed [Gao et al., 2021]

introducing groups on the server-side. Nevertheless, an addi-
tional communication payload is appended despite of its better
generalization capability. [Xiao ef al., 2021], and [Oh et al.,
2022] address mixing activations during FP to deal with data
privacy leakage, and scalability.

Transformer utilizes attention mechanisms to extract intrinsic
features [Vaswani et al., 2017], and is first applied to the
field of natural language processing. BERT [Devlin er al.,
2018], and GPT-3 [Brown et al., 2020] are popular examples
of trasnformer-based models in NLP tasks. Another line of
works of transformer-based models are found in computer
vision (CV) tasks. One of representative transformer model in
the CV domain is ViT [Dosovitskiy er al., 2020b] applying a
pure transformer directly to sequences of images patches to
classify the full image, and transformers have been utilized
in a variety of other vision tasks [Carion et al., 2020; Zheng
et al., 2021]. [Park et al., 2021b] proposed a split learning
architecture with a vision transformer to diagnose COVID-
19 infection by utilizing a transformer’s robustness on task-
agnostic training and its decomposable configuration. [Qu ez
al., 2021] has analyzed the performance of ViT in federated
learning for data heterogeneity. From a different perspective,
[Hong e al., 2021] proposed a federated dynamic transformer
to deal with problems of utilizing transformer models in a Text
to Speech (TTS) task.

3 Token-based Split Learning for ViT

In this paper, a novel split learning based on patches where
transformers operate is proposed to solve the issue of heavy
communication payload and data privacy leakage problem.
We describe components of the proposed learning algorithm
in order of training sequence. The overall procedure of the
proposed is visualized as Figure lc.

3.1 CutSmashed data for Communication
Efficiency and Privacy Enhancement

To increase a communication efficiency, and to resolve the
data privacy leakage problem, we pay attention to the way how



transformers address data. Transformers divide data into multi-
ple separate tokens and process the entire range of sequence in
parallel. In this sense, we instinctively expect that cutting off
a certain amount of patches of smashed data at random could
reduce communication cost and strengthen the data privacy
since adversaries are not able to regenerate the untransmitted
region at the expense of performance. This partially uploaded
smashed data is labelled as CutSmashed Data. CutSmashed
data conceal its information by random removal of patches.
While SL requires to upload the entire smashed data of each
client to the server, our proposed does not need to upload the
whole smashed data from each client.

Let there exist n clients with asetof C = {1,2,--- ,n} and a
single server. (x;,y;) denotes a batch of raw data-label tuples
from i-th local dataset, ID;. A neural network model is denoted
with weights w;, which is splitted into two segments such that
w; = [w.;, ws]T fori € C. We define f as a representation
for mapping from the input data to the output. The smashed
data is expressed as s; := fw,,(x;). Here, transformers
divide the raw data into M number of patches, and each patch
is transformed into an embedding vector during FP. A smashed
data is denoted as s = [ey, ..., epr] € RM*m where e; is the
i-th embedding vector and d,,, is the dimension of the patch
embedding.

Before uploading CutSmashed data, a piece of information
which patch embeddings would be transmitted are shared
between a server and clients. This prior information is called
as a pseudo random sequence, and is denoted as B. Then,
CutSmashed data is expressed as sg =B ®s,;, where B =
[m;]arx1, and m; € {0, 1} where 0 indicates not to transmit,
and 1 to transmit. © denotes element-wise multiplication
operation. Its communication cost can be ignored, since B is
treated as a binary number which could be converted to one
integer-type data having a negligible communication payload.
Figure 4b shows examples of CutSmashed data whose black
regions indicate the cut off regions. The pseudo random mask
over the smashed could be created regardless of the depth of
the cut layer since it is determined based on the number of
patches of the smashed data.

Figure 2 shows the performance of SL and SFL training with
CutSmashed data instead of smashed data in regard to the
average size of CutSmashed data to identify the effect of the
size of masking. The cases when the positions to be cut off are
fixed for all rounds, and randomly selected at each iteration are
compared. In the both cases, the performance decreases more
with a larger size of the cutoff. The model cannot generalized
well since the masked regions discard meaningful features of
original data distribution. Interestingly, when the mask posi-
tions changed randomly, the performance is improved up to a
certain extent of the cut off size. This implies that randomly
generated CutSmashed data with a moderate size rather helps
to prevent the model from overfitting to the local dataset act-
ing as regularization like Cutout [DeVries and Taylor, 2017].
While the original Cutout putting one square region of mask
to input, ours generate multiple masks to random locations.

In terms of the leakage of data privacy, CutSmashed data is
preferable than smashed data, since partial elements are con-
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Figure 2: Performance of SL with CutSmashed data w.r.t. the average
size of CutSmashed data.
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Figure 3: Operation of CNN and ViT.

cealed to the server. We elaborate on the data privacy leakage
in the setting of a reconstruction attack where the attacker is
willing to reconstruct an original data from uploaded smashed
data. Hard to be restored by reconstruction attack implies raw
data has strong privacy. In Section 4 evaluates the privacy leak-
age of CutSmashed data compared with the other techniques
to be described in the next section.

3.2 Smashed Patch CutMix: Inter-client Mixup

The vision transformer is difficult to be generalized well in
situations where there is insufficient data held by clients due
to its low inductive bias [Baxter, 2000]. Inductive bias is a set
of assumptions added as prior information to solve unknown
machine learning problems. The weak inductive bias causes
reliance on data augmentation and model regularization to
gather sufficient training data [Steiner er al., 2021]. Due to the
data privacy, data augmentation between data held by different
clients is limited in a distributed learning, making a severer
problem for a transformer in a distributed learning. To over-
come a limited inter-client data augmentation, and reduce the
risk of the performance drop by uploading CutSmashed data,
the blank parts of CutSmashed could be filled with patches of
different clients’ CutSmashed data.

A self-attention mechanism evaluates which patches they
should pay more attention to. Combining patches from dif-
ferent smashed data corresponds to a new attention between
data from different clients. We demonstrate this assumption
by putting CutSmashed data together from different clients



during FP like putting the puzzle together. Since the process
resembles CutMix [Yun ef al., 2019] in that some region of
data are cut and pasted into different data in the form of multi-
ple patches with the same sizes, this operation is expressed as
Smashed Patch CutMix, and its mixed smashed data as CutMix
data. The central idea of Smashed Patch CutMix is to create a
new smashed data to supplement the performance loss due to
partial uploading with filling blanks of CutSmashed data with
each other. As shown in Figure 1c, a virtual entity conducting
the mix operation, a mixer, is conceptualized to compare with
SL and SFL. A mixer could be a 3rd party, or could be divided
and belong to the server and the clients. Since overlapped
patches lose its clear representation, non-overlapping mix be-
tween different CutSmashed data should be guaranteed, and
paired pseudo random sequences are generated for Smashed
Patch CutMix.

We call k-way CutMix to represent that each k£ number of
smashed data are mixed to generate one CutMix data. Mix-
ing groups, G = {gu, .., g}, are generated randomly from C
at each iteration. Then, the number of patches allocated to
each CutSmashed data (i.e. mixing ratio), {ay, .., ax }, is deter-
mined by “Dirichlet-multinomial distribution” [Bishop et al.,
2007]. Here, the number of trials of the distribution is equal
to M so that Zle a; = M, and a probability vector is drawn
from a Dirichlet distribution. Afterwards, patches at which po-
sitions of each smashed data are determined by the given mix-
ing ratio. Here, the selected positions for patches of each client
are not superposed with each other. Pseudo random sequence
for ¢-th smashed data in a mixing group is denoted as B,,, and

B,, is determined uniformly and randomly. Zjle Ma,;,j = Q4

. k
where B,, = [mq, jlamx1 fori € [K]. >0, Ba, = Larxa,
where 1 is a vector of all ones.

Each client uploads CutSmashed data according to the re-
ceived pseudo random sequence generated and shared by a
mixer. The mixer conducts Smashed Patch CutMix, and Cut-
Mix data and its corresponding label by the 2-way Smashed
Patch CutMix is expressed as:

Sgijy =Si +8;=Ba, Osi + By, Os; (1)
~ a; a;
Yiigy = 37 Yit M] Vi (2)

where ® denotes the element-wise product.

The proposed is simple to implement with negligible extra
communication cost for sharing pseudo random sequences.
Intermixing CutSmashed data transmitted from each client’s
side enhances the server side’s generalization capability acting
as a data augmentation at feature space. Additionally, the im-
pact of shuffling the order of the sequence on the performance
is analyzed in detail in Appendix C.

3.3 Weight Update based on CutMix data

At the server, the upper model segment w, propagates Sg; ;3
uploaded by ¢-th and j-th client, and generates softmax output

fw.(sgijy). Then, the loss Ly; ;) generated by the server
model with CutMix data can be expressed as:

. 1 ) )
Ly = 7 ZCE(fws (8¢ij1)> Yiig}) » 3

Algorithm 1 Operation of Mixer

function SEQUENCE GENERATION
Sample {ay, .., ax } ~ Dir(«) for k-way CutMix
Generate {B,,, , .., B, } uniformly at random
return paired pseudo random sequences

end function

fore < 1to E do
Generate a set of mixing groups, G from C
SEQUENCE GENERATION
Send {B,, , .., B,, } to clients based on G
Receive {(s},y1), .., (s},,yn)} from C
for g € G do
(Sgayg) — (Zng 597 jEg %Yj)
Upload sg, y¢ to the server
end for
end for

where b is a batch size. The weights of the server and the
clients are updated by BP as follows:

W‘s - w-5 _q Z{i,j}e({} (YWSL{M}) 4)
WeieC WeieC VWC,iL{i,j}

where G is a set of groups of clients whose smashed data are
mixed, 7 is a learning rate, and szfj{iﬁj} and wali{i,j}
are the derivatives of the error with respect to wg and w ;,
respectively. The server sends the gradients of Ei, j with re-
spect to the uploaded smashed data s; and s’, Ve, L; j and
Vsj zi,j, to the corresponding clients, and the clients calcu-

lates Vwc,iz{i7j}’ which is given as:

- 8[~/{i,’} Os;
VwilLij= 85’.] aTcz

(3

(&)

The method above aims to resolve a server-clients update
imbalance problem, hindering the scalability of parallel split
learning [Oh et al., 2022]. The more clients, it incurs the
more imbalanced updates between the server and the clients.
There are n times of update on the upper model segment,
whereas each client updates its model once. Meanwhile, with
our proposed method, the server executes its server model’s
update only once on a unit mixed smashed data, as shown in
Figure lc. Therefore, when all clients update their parameters
with CutMix data, n times updates are in the server model
reduce to 7 times updates for k-way CutMix. The CutMixSL
(k times) in Table 2 is the case when gradients from one
CutMix data flow to only one client and the server updates n
times in total like SL. Compared with CutMixSL in Table 2
where the server updates % times, it shows that the reduced
update of the server by CutMix data has a positive impact on

a performance gain.

4 Evaluation

The total number of devices is ten in our setting. The total
epoch is 600 with 5 warmup epochs, the learning rate is 0.001,
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the optimizer is adamW, a batch size is 128, and a scheduler is
cosine annealing. Our benchmark is CIFAR 10 to reduce the
computation overload compared to ImageNet, and the patch
size is 4 x4 in our settings. A transformer receives input as a
1D sequence of token embeddings, and a vision transformer
divides an image into a sequence of M flattened 2D patches.
ViT-Tiny [Touvron et al., 2020] is used in our settings, con-
sists of transformer encoder blocks, whose the depth of the
transformer is 6 blocks to eliminate unnecessary computation
burden to process CIFAR-10 dataset. Each client has an em-
bedding layer, concatenates a class token and the patch tokens,
adds positional embedding, and uploads its activations to the
server. The server has the rest of the model. Each client has
5,000 images.

Impact of Mixing Methods To analyze the effectiveness of
Smashed Patch CutMix on the transformer, we evaluated differ-
ent types of mix operations on both transformer-based models
and a CNN-based model. ViT-Tiny for a pure transformer,
PiT-Tiny [Heo et al., 2021] for a pooling-based transformer,
and VGG-16 [Simonyan and Zisserman, 2014] for CNN are
evaluated whose simplified model architectures are described
in Figure 5. Recently, many ViT models with hierarchical
representations are proposed such as Swin Transfromer [Liu
et al., 20211, and T2T-ViT [Yuan et al., 2021] including PiT.
VGG is a representative model of CNN composed of only
convolutional layers, pooling layers and a classifier, and the
cut-layer is after two convolutional layers and one pooling
layer.

Table 1 shows the performances of Cutout (CutSmashed data),
Smashed Patch CutMix (CutSmashed data + CutMix), Mixup
(Smashed data + Mixup), and Shuffled CutMix (CutSmashed
data + CutMix + Shuffling). Smashed Patch CutMix has 18.5%
and 20.9% performance gain in ViT and PiT compared to par-

Method | Models

\ ViT-Tiny PiT-Tiny VGG-16
Standalone 49.14 47.77 54.97
Parallel SL 57.05 52.28 62.62
Cutout 65.03 60.87 67.06
Mixup 71.02 65.92 74.43
Patch CutMix 75.55 73.19 72.23
Shuffled CutMix 72.78 57.59 33.50

Table 1: Performance w.r.t. mixing methods.

Type | Mixing Ratio
| Uniform Dir(c = 6)
2-way 70.93 75.55
3-way 68.59 70.86
..... o 4-way | 66.96 66.67
—,———— 5-way 67.01 67.04

T
051 2 3 4 5 6 7 =

(b) Top-1 Accuracy w.r.t. a mixing

(a) Top-1 Accuracy w.r.t. o for .
group size.

mixing ratio.

Figure 6: Performance w.r.t. mixing ratio and group size.

allel SL. It is higher than Mixup for ViT and PiT (4% and
8%, respectively), and 2% lower than Mixup for VGG-16.
Masking such as CutMix is better at preserving local features
than interpolation such as mixup without distorting data dis-
tribution [Harris et al., 2020]. Transformers process data as
divided separate patches, and even though randomly chosen
patches to be cut and pasted destroy a global structure of im-
age, transformers do not lose its inference ability because of
parallel processing for an entire range of sequence by atten-
tion mechanism. In this sense, masking smashed data is more
suitable than interpolation to transformers. On the other hand,
CNN’s core operation is a sliding convolutional filter, and one
of assumptions CNN poses is a locality of pixel dependencies.
Neighboring pixels which tend to be correlated, get uncorre-
lated by masking due to junctions of different clients’ patches.
Notwithstanding, the result shows that the impact of masking
is not big enough to degrade the performance of CNN. We
guess that the unchanged position of patches from the original
location keeping its architecture of the data results in a positive
impact to the performance gain.

Impact of Mixing Ratio & Group Size In Figure 6a, the
performance of CutMixSL with respect to the parameter, c«,



Method ‘ # of clients

| 2 4 6 8 10
Parallel SL 5291 55.55 56.81 56.55 57.05
SplitFed 53.96 58.39 63.07 65.59 66.70
CutMixSL (k times, uniform) ~ 58.06 65.11 65.76 68.97 67.66
CutMixSL (uniform) 61.66 66.80 67.69 69.86 70.93
CutMixSL (a=6) 62.62 69.47 71.80 73.67 75.55
CutMixSFL (uniform) 65.82 72.31 74.31
CutMixSFL (a=6) 67.58 73.52 76.85

Table 2: Scalability. Top-1 accuracy w.r.t. the # of clients.

of Dirichlet-multinomial distribution, is evaluated to identify
the sensitivity of the operation to the mixing ratio. The higher
«, the higher the probability of even mixing ratio. The re-
sult shows that the higher probability of evenly mix gains
more accuracy than the lower one. The top-1 accuracy when
a — 00, which is the number of sampled patches is fixed to
even, is lower than the case for the lower «. It implies that
having an unbalanced mixture with a moderate probability is
preferable for a higher performance. Figure 6b evaluated a
performance of the proposed in regard to the different size of
mixing group with a uniform distributions and the dirichlet
distribution with ac = 6. It is expected that the performance
would be improved with the larger mixing group size from
the standpoint of update imbalance problem, since the server
updates less. Nevertheless, 2-way CutMix has a best perfor-
mance gain, resulting from the fact that overly mixing with
different classes causes the server cannot learn each class’s
distinct features.

Scalability In Table 2, while all evaluated methods are scal-
able up to at least 10 clients, each has a different performance
gain at scale. The brackets in Table 2 represents the distri-
bution that a mixing ratio is sampled from. Parallel SL has
a weak scalable performance gain (4%) due to the update
imbalance problem, whereas CutMixSL has a higher scal-
able performance gain than parallel SL (12.9%) and even SFL
(12.7%), and an absolute accuracy is also higher than SFL. For
CutMixSFL, which is CutMixSL with FedAvg on the lower
models, mixing activations and FedAvg are overlapped, and
CutMixSFL achieves 13.4% performance gain at scale and
about 80% top-1 accuracy with ten clients.

Communication Efficiency. Compared to Parallel SL re-
quiring entire smashed data, one of the advantages of the
proposed technique is a large reduction of upload payload
size with an enhanced accuracy. Figure 7 shows an uploading
payload size per communication round and its performance
of CutMixSL and its derivatives. The black line shows an
accuracy of SL with CutSmashed data regarding ), the ra-
tio of the size of CutSmashed data to the one of the original
smashed data, described in Figure 2. CutMixSL shows the
highest performance and upload payload reduction up to 20 -
50%. The more mixing group size increases, the higher com-
munication cost reduction can be achieved. In our settings,
one unmatched client of 3-way sends smashed data, and two
unmatched clients in 4-way CutMix operate 2-way CutMix.

Privacy Leakage Data privacy leakage increases with the
mutual information between the CutSmashed data and its raw
data. Due to the unknown data distributions, the mutual infor-
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Figure 7: Upload payload size per communication round of Cut-
MixSL and its derivatives.

Type \ Train Dataset(10%) Train Dataset(100%)
Smashed data 0.0091 0.0056
CutSmashed data 0.0920 0.0829
Mixup 0.0402 0.0351
Patch CutMix 0.0458 0.0434
Shuffled CutMix 0.1233 0.1250

Table 3: Privacy leakage measured by the reconstruction loss (MSE).

mation is often approximated by the error when reconstructing
the input data [Vepakomma et al., 2020]. In this respect, fol-
lowing [Wang et al., 2021], we train an autoencoder whose
input is the CutSmashed data and the output is the original
raw data. The trained autoencoder’s loss, given as the mean
squared error (MSE), can thereby treated as the amount of
privacy leakage to the server.

Table 3 shows the privacy leakage of 2-way CutMixSL and
its variants on a test set when the autoencoder trains 10% of a
train set, and when it trains 100% of a train set. As expected
intuitively, CutSmashed data reduces privacy leakage by 15 x
compared to Smashed data. For the mix operations, Smashed
Patch CutMix is better than Mixup, and this gap is highly am-
plified when the order of its sequences is shuffled. Compared
to the baseline, CutMixSL reduce data privacy by around 8
times. Masking data and shuffling are two principal factors
for privacy enhancement. Figure 4c shows some examples
of reconstructed images by the reconstruction attack for a
qualitative comparison.

5 Conclusion

In this work, we proposed CutSmashed data to resolve data
privacy leakage and improve communication efficiency of split
learning motivated by a vision transformer processing data as
a sequence of patches. Furthermore, CutMixSL is introduced
with Smashed patch CutMix, smashed data augmentation, to
deploy a transformer-based model in split learning. We ana-
lyzed the design elements’ impact on the proposed operation,
and confirmed that the proposed approach has advantages in
data privacy, performance gain, and communication efficiency
compared to Parallel SL and SplitFed.
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A Pseudo Algorithm of CutMixSL

Algorithm 2 CutMixSL

function SEQUENCE GENERATION
Sample {ay, .., ax} ~ Dir(a) for k-way CutMix
Generate {B,, , .., By, } uniformly at random
return paired pseudo random sequences

end function

fore <~ 1to E do
/*Runs on mixer*/
Generate a set of mixing groups, G from C
SEQUENCE GENERATION
Send {B,,, .., B,, } to clients based on G
Receive {(s],y1), .-, (s),, yn)} from C
forg € Gdo
(Sg7 S’g) — (Z]’eg S;W Zjeg %yj)
Upload sg, y¢ to the server
end for

/*Runs on clients*/
for each client ¢ € C in parallel do
Receive B; from mixer
Si < fw.,(%:);s, < B, Os;
Upload (s, y;) to mixer
Receive Vg, Lg; Calculate gradient V., , Lg
Weight Update w.; <~ Wi — NV, Lg
end for

/*Runs on server*/

for g € Gdo
Receive (Sg, ¥g) from mixer
L+ 3 2 (5e. 56} CE(]iws (Sg). Ve)
Calculate gradient Vy, Lg
Weight Update wy <~ w, — NV Lg
Download Vg, Lg to clienti € g

end for

end for

B Mixing Methods

Data augmentation can generate new samples through mixing
different samples, and there are generally two types of data
augmentation: masking and interpolation. The typical tech-
niques of masking are CutMix [Yun et al., 2019] and Cutout
[DeVries and Taylor, 2017], and the one of interpolation is
Mixup [Zhang et al., 2017].

Mixup is an entire interpolation of two given raw data, z; and
x; with a certain ratio ), and is expressed as follows:

Xmizup = )\Xi -+ (]. — )\)X]‘. (6)

In [Verma et al., 2019], Manifold Mixup, which is Mixup
in the intermediate feature space of the deep neural network
(DNN), has been proposed. Manifold Mixup is expressed as
follows:

Smizup = Asi + (1 - )‘)Sj' (7)

The corresponding label for Mixup and Manifold Mixup is
expressed as follows:

As a masking technique, Cutout [DeVries and Taylor, 2017]
masks out square regions of input, and is expressed as follows:

Xcutout = Mo X, (9)

where M € {0,1}"W>*# is a binary mask indicating which
pixel is to be dropped out. M fills 0 inside the bounding box
coordinates, B = (1, ry, 7y, Ts), indicating the cropping
region of the image.

As one step further, CutMix drops a unit square region of
random size, and fills in the blanks with a different raw image,
and is expressed as following:

Xeutmiz = M © X; + (1 - M)XJ
Yeutmiz = /\yz + (]- - )‘)yja

TwTh .. .
Vlle , 1S @ mixXing ratio.

(10)

where A =

Smashed Patch CutMix, we proposed, is operated in the fea-
ture space and is expressed as follows:

Scutmiz = Mo s; + (1 - M)Sj

(1D

Yeutmiz = )‘YZ + (]- - A)y]
The proposed masks random number of patches with other
client’s patches, which is similar to the CutMix except for the
number of patches to be replaced; ours use multiple fixed-size
patches.

Shuffled CutMix conducts shuffling after mixing smashed data
by Smashed patch CutMix, and is expressed as follows:

Sshuffle = S(Scutmiw)7 (12)
where S is a shuffle operation on S¢ytmiz = [€1,...,em] €
RMxdm ¢, is the i-th embedding vector, d,y, is the size of a
vector of a patch, and S shuffles the sequence of the embedding
vectors of Scymi. For CNN, activations can be reshaped to
a 2D dimension like activaitons in a vision transformer by
dividing it with a given patch size, and aligning it in parallel.

C Add-On Experiments

Shuffling Transformers process data as a long-range se-
quence in parallel by attention mechanism, and are not unaf-
fected by sequence order. This high permutation invariance
also applies to ViTs [Naseer et al., 2021], and could bring
benefit on reducing privacy leakage by reconstruction attacks
in SL since shuffling patches can destroy images’ overall struc-
ture as shown in Figure 4a. While all patches retain their own
positions during mixing, we can extend it to a shuffled version
of Smashed Patch CutMix, Shuffled CutMix, in short, for a
further privacy enhancement.



The last row of Table 1 shows that the influence of shuffling an
order of patches of CutMix data. ViT keeps its performance
in spite of shuffling with a slight performance loss by its
capability of high permutation invariance. However, PiT has a
pooling operation blurring shuffled patches and lose their own
distinct features, and the decline of a performance is more
serious for CNN due to a consequence of convolutional filters
in addition to pooling. Nevertheless, a considerable profit by
shuffling is an improvement of reconstruction mitigation as
shown in Table 3. It reduces the privacy leakage by around 22
x compared to the the baseline (SL with smashed data).

FedAvg FedAvg on clients can be utilized to enhance the
performance gain and to be tolerant to data distribution shifts.
When data are non-IID to clients, each client contains one
or two dominant classes’ data, training its one-sided classes
predominantly. A mix operation like Smashed Patch CutMix
can alleviate unbalanced training in cooperation with FedAvg.
In Figure 8b, dirichlet distribution with concentration param-
eter, u, 0.1 is used to formulate the non-IID case. The result
indicates that the degenerated performance of SL and SFL by
non-IID condition can be less worsened by Smashed Patch
CutMix and FedAvg.

During BP through CutMix data, the flow of gradients to each
client can be calculated from the perspective of the server and
and the perspective of clients. [Pal et al., 2021] uses local
gradient averaging for broadcasting the gradients to clients.
Likewise, the gradients from CutMix data can flow as unicast
and broadcast.

0Ly ds) |

7 ~ s,  Owe,i’
Viweilig = OLyi gy 084i) .
85{1‘,]} chyi )

for unicast
. (13)
for broadcast

The unicast case is that the gradients is calculated in the per-
spective of clients, and the server knows paired pseudo random
sequences indicating which patches each client uploaded. The
server sends individual gradients, V3, L; j and V3, L; 5, to i-th
and j-th clients, respectively, according to the corresponding
portion in CutMix data by unicast. For the broadcast case, the
server is assumed not to know the pseudo random sequences,
thereby the gradient with respect to the whole region of Cut-
Mix data is sent during BP, and it is named as CutMix Gradient.
It broadcasts combined gradients, V5, .. L; j, to the clients
whose CutMix data are generated from. The communication
payload for back propagation are the same for both cases. Cut-
Mix Gradient could be used when the server does not know
the pseudo random sequences.

Although the difference of the performances is negligible in the
IID condition, the performance of CutMixSFL with CutMix
gradients is 6% higher than the one with the gradients with
respect to CutSmashed data in the non-IID condition. It could
be interpreted that CutMix Gradients by the mixed smashed
data is more effective in that each model trains data of scarce
classes indirectly through CutMix gradient with the help of
FedAvg.

SL CutMixsL  SFL  CutMixSFL CutMixSFL S CutMixsL
{unicast) (brodcast)

Method Method

(a) IID. (b) non-TIID(p = 0.1).

SFL  CUtMixSFL CutMixSFL
(unicast) (brodcast)

Figure 8: Performance w.r.t. IID and non-IID data distribtuion.
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Figure 9: Utility according to the scale of gaussian noise added to
the smashed data and its label.

Noise Injection Many privacy-preserving data mining tech-
niques involve noise injection, such as differential privacy, to
randomly distort and mask data reducing the distance correla-
tion between an output of a mechanism and a raw input data.
In Figure 9, the utility of mixing operations are evaluated when
additive white gaussian noises are integrated to the smashed
data and its corresponding label for data privacy. It shows
a comparison of utility of Smashed Patch CutMix, Smashed
Mixup, and the baseline (Parallel SL) according to the scale,
o, and o, of the noise distribution on the raw data and its
label, respectively. The higher o preserves stronger privacy at
the larger cost of utility. The result indicates the proposed has
a higher utility compared to the others, even though the gap
is decreased with a higher o. One interesting founding is that
two cases except for the proposed show utility gains when a
small amount of noise is injected. It could be explained that
two methods get a positive effect by regularization making
the model less certain of its predictions, while the proposed
does not so since it already gets enough regularization and
data augmentation effect.

D Additional Visualization of images

Additional examples of mix operations on raw images,
smashed data and its corresponding reconstruction images
are shown in the next page. All the images shown in Figure 10
are based on mixtures of two images.
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(a) Raw images. (b) Smashed data. (c) Reconstruction from smashed data.

Figure 10: Additional examples of data with different operations at raw images, smashed data, and reconstructed images.
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