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Abstract

Private set intersection (PSI) is a popular proto-
col that allows multiple parties to evaluate the in-
tersection of their sets without revealing them to
each other. PSI has numerous practical applica-
tions, including privacy-preserving data mining and
location-based services. In this work, we develop
a new approach for the PSI problem within the
federated analytics framework. In particular, we
consider a setting where a server wants to deter-
mine (query) which among its local set of data
identifiers appears coupled with the same value
in at least K of N parties. Applications for this
framework include: double-filing insurance veri-
fication and credit scoring. The proposed setting
does not lend itself directly to state-of-the-art PSI
approaches based on Oblivious Transfer, since the
server does not have a complete representation of
a datapoint (only the identifier, but no value). To
address the proposed setting, we propose a new
protocol Fed-K-PSI that allows the server to an-
swer this query while being oblivious to the data
of identifiers not satisfying the distributed query at
the parties or the parties that contain these identi-
fiers. We show that Fed-K-PSI achieves a strong
information-theoretic privacy guarantee and is re-
silient to collusion scenarios among honest-but-
curious parties. We also evaluate Fed-K-PSI via
extensive experiments to study the effect of differ-
ent system parameters.

1 Introduction
In today’s world, data privacy has become a precious and crit-
ical commodity that individuals and/or enterprises are suspi-
cious to give up, even when the greater-good goal is the target.
However, there is an increasing number of applications where
an entity needs to evaluate its available information on data
owned by suspicious or non-trusting parties. For instance,
consider the following scenarios:

1) A federal agency wants to verify that an individual is not
double-filing insurance claims with multiple insurance com-
panies, but the companies are not willing to share their data;

2) A federal tax authority wants to learn whether suspected
tax evaders have accounts exceeding a particular threshold at
a number of foreign banks. However, the bank’s domicile
prevents explicit disclosure of clients’ account information;

3) An online marketplace (e.g., Amazon) wants to verify
that some sellers are not harassing buyers with off-site spam
email communications, but the buyers are not willing to share
their emails and their bodies with the marketplace.

These examples highlight scenarios where protocols for
private-set-operations are needed. In particular, these exam-
ples are closely related to the problem of Private set inter-
section (PSI). PSI is a class of cryptographic protocols that
allows for evaluating the intersection of the input sets of two
or more parties privately without revealing anything about the
sets beyond the intersection. PSI has seen several real-world
applications in both the two-party setting and the multi-party
setting. Two-party PSI has been used in measuring the effec-
tiveness of online advertising [Ion et al.(2017)], contact dis-
covery [Kales et al.(2019)], and Apple’s new system for de-
tecting child sexual abuse material [Bhowmick et al.(2021)].
PSI in the multi-party setting has been used in applications
such as COVID-19 contact tracing [Duong et al.(2020)].

In this paper, we consider a generalized multi-party PSI
setting called K-PSI where a server is interested in check-
ing whether a datapoint identifier (e.g., email address, ID,
etc) appears associated with a repeated value (unknown to
the server) in K out of the N parties. For instance in example
#1 described at the opening of the section, the server (federal
agency) wants to evaluate whether a set of individuals (each
identified with their IDs) have filed duplicate claims (repre-
sented by the value for the ID in our setting) in at least K of
the N potential insurance companies. If the query response is
negative for an individual in the server’s query list, it should
not learn any information about the values associated with
this particular individual in the local datasets.

State-of-the-art multi-party PSI protocols essentially rely
on two main techniques: (1) Pseudo-random permutation on
the data space [Kamara et al.(2014)]; (2) Oblivious Trans-
fer (OT) extension [Pinkas et al.(2014)]. Both techniques
provide protection for data values against a polynomial-time
honest but curious adversary. In our described K-PSI setting,
the use of permutation approaches (where essentially the par-
ties send their datapoints after random permutation in space)
can allow the server to learn statistical information about the
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Figure 1: Illustration of our Fed-K-PSI protocol. (1) Server shares
its target identifier set; (2) Programming distributed linear map: par-
ties agree on a programmed distributed random linear map and en-
code their local data using their share of the distributed map; (3)
Aggregation at the server and determining target identifier subset.

parties’ datasets even for identifiers that do not satisfy the K-
PSI query; for example, how many points exist in the inter-
section of Party 1 and Party 2, even though this wasn’t the
intended goal of the query. On the other hand, the use of OT
based approaches in our setting is also limited by the fact that
the server only has access to partial data about the datapoint.
Specifically, if we view the datapoint as (ID, value) pair, the
server only has access to the ID portion of the datapoint.

1.1 Our Contributions
In this paper, we explore a new perspective of the PSI prob-
lem by considering a federated analytics scenario where a
server only knows the identifier of the datapoint (but not its
value). The goal is to query N parties for points that appear in
at least K of the parties. We call this query scenario K-PSI.

For this setting, we develop a novel private protocol named
Fed-K-PSI that can allow the server to verify if each iden-
tifier, out of its set of identifiers, appears associated with a
particular value in the K-set intersection of N parties. Our
studied and proposed Fed-K-PSI solution shifts focus from
private pairwise equality-testing which is at the core of state-
of-the-art PSI protocols towards programming a random dis-
tributed linear map across the parties. Specifically, a share
of a linear map is applied on each party’s local dataset, then
masked and uploaded to the server for aggregation. Then, the
server aggregates the linear map in a one-shot and analyzes
the output properties to retrieve the target identifiers set.

As illustrated in Figure 1, the main idea of Fed-K-PSI
is that each party uses the set of target identifiers shared by
the server in order to compute a vector Yi which represents
a share in a distributed linear map of the parties’ datasets.
The parties then mask these vectors and transmit them to the
server for aggregation. Finally, the server checks the aggre-
gated vector for a predetermined property to decide which
subset of identifiers appeared associated with the same value
at least K times across the parties.

We show that our proposed Fed-K-PSI protocol is cor-
rect and satisfies a strong information-theoretic privacy guar-
antee in the honest-but-curious server setting. In particular,
Fed-K-PSI fully protects any information about the data
related to the identifiers that do not give an affirmative answer
to the server’s query. We discuss this guarantee formally in
Section 2.2. We also compare Fed-K-PSI with other ap-
proaches in the literature (e.g., [Pinkas et al.(2014); Pinkas
et al.(2015); Rindal and Rosulek(2017); Pinkas et al.(2019);

Kolesnikov et al.(2017)], in a specialized version of the
K-PSI problem where identifiers can only take a common
singular value. We use this specialized version of the K-PSI,
since these approaches can not be applied to our general
K-PSI setting as we discuss next in Section 1.2. In this com-
parison, we highlight that for the best achieving PSI proto-
col (in the privacy sense), our protocol achieves better pri-
vacy guarantees for a factor N increase in complexity, which
makes it well-suited for applications where the parties are
data silos. We also analyze the theoretical complexity of
Fed-K-PSI and run extensive experiments to empirically
demonstrate its running time as well as the effect of the differ-
ent protocol components on the end-to-end wall clock time.

1.2 Related work
Two-party and Multi-party PSI. PSI is a well-studied prob-
lem and has gained attention over the last two decades [Pinkas
et al.(2018)] due to its large number of practical use cases.
Based on the number of participating parties, the proto-
cols in PSI problem can be broadly divided into: two-party
PSI and multi-party PSI. In the two-party setting, there are
many existing approaches in the literature, including works
based on homomorphic encryption [Huberman et al.(1999);
Ion et al.(2017); Freedman et al.(2016); Chen et al.(2017)],
Oblivious Polynomial Evaluation [Freedman et al.(2004);
Dachman-Soled et al.(2009)], Oblivious Transfer [Pinkas
et al.(2015); Rindal and Rosulek(2017); Pinkas et al.(2019)],
and works based on garbled circuit [Huang et al.(2012);
Dong et al.(2013)]. A number of these techniques extend to
the multi-party setting. In particular, the closest to our set-
ting is the server-aided PSI problem discussed in [Kamara
et al.(2014); Abadi et al.(2020)], where the goal is to compute
the PSI between the parties while off-loading the computation
to a third party (for example, a cloud server) that has no in-
puts to the computation and receives no output, but makes its
computational resources available to the parties. Our stud-
ied setting differentiates from classical PSI settings in two
aspects: (a) Although, we can consider the server as one of
the parties that wishes to compute the intersection, the server
in our K-PSI setting has missing data portions, since it only
has access to the identifiers associated with each datapoint
(but not its value). Therefore, the server can not perform pri-
vate pairwise equality testing or membership testing which is
a central concept in PSI protocols; (b) In K-PSI, the server
is interested in knowing which of its points can be part of at
least K sets of the different parties, whereas current protocols
target datapoints in the intersection of all N parties.
Threshold-PSI. Another variant of PSI problem is the
threshold-PSI, where the intersection is computed between
parties if the intersection cardinality exceeds a threshold.
Protocols have been developed for two-party [Ghosh and
Simkin(2019)] and the multi-party [Branco et al.(2021)] set-
ting with the most famous implementation being by Ap-
ple [Bhowmick et al.(2021)] to counter child sexual abuse
material in the iCloud. The key difference from our K-PSI
problem is that in Threshold-PSI, the threshold is on the num-
ber of elements that are shared across ALL the parties, while
in K-PSI, the threshold is on the number of parties that share
a particular element, not the number of such elements.
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Table 1: Comparison between our proposed approach and different classes of PSI protocols in the literature when adapted to the singular-
value K-PSI setting (where v(u) = v,∀u). The table highlights number of rounds needed as well as leaked information to the server.

2 Problem Formulation (K-PSI)
2.1 Problem setting
We consider a federated PSI problem with a server and N
parties {P1, P2, · · · , PN}. Each party Pi has a set of ni

datapoints defined as an identifier-value pair (ui
j , vi(u

i
j)),

where vi(u
i
j) is the value for identifier ui

j at party Pi.
An identifier u is unique across the data points at Pi, but
the value vi(u) might be the same for multiple identi-
fiers. We denote the set of data points at Pi with Pi ={
dij
∣∣dij = (ui

j , v
i
j), ∀j ∈ [ni]

}
. For a set of identifiers Û , we

denote with Pi(Û) the subset of Pi with only identifiers in Û .
The server has a set of identifiers Us and targets to know

whether for each identifier u ∈ Us, it appears with an asso-
ciated value v at least K times across the parties. In formal
terms, the server would like to compute the set

UK
s = Us

⋂
UK
P ,

where : UK
P =

u

∣∣∣∣∣∣∣∣ ∃v
′, s.t., (u, v′)∈

⋃
Λ⊆[N ],
|Λ|=K

⋂
j∈Λ

Pj

 . (1)

The set UK
P represents the set of identifiers u that with the

same value v′ in K of the N parties. The server is interested
to learn which such identifiers appear in its local set Us.

We assume an arbitrary identifier space U, but consider all
operations on the values v(u) to be over a finite field Fq for
some prime field size q, such that: (i) vi(u) ̸= 0,∀u; (ii) the
maximum value vmax satisfies that q > vmax +N 1.

Example Application. As a motivation for the above prob-
lem setting, we encourage the reader to think of an insurance
fraud detection application, where the server (a federal au-
ditor) has a set of potential suspects. The server would like
to check a set of suspects with insurance companies (parties)
without a company having to reveal its internal, potentially
private, information about its clients. The server declares an

1The assumptions that the values do not take zero and that q >
vmax +N can be satisfied by mapping the value space into a large
enough field-size and shifting the value space away from zero.

individual on its potential list as a fraud if the person submit-
ted the same claim to at least K (typically equal 2 or 3) out of
the insurance companies, i.e., the same (ID, claim) pair was
found in the internal dataset of K of the N parties.

2.2 Threat model and privacy guarantee
We consider a threat model where the server is honest but
curious. We assume no-collusion between the server and the
parties. There are many settings in practice where there is
no collusion between the server and the parties, e.g., due to
legal constraints and/or economic incentives. In our setting,
the server could be a government agency or an enterprise, and
it is reasonable - given the consequences of legal action and
bad publicity — to assume that the server will not collude
with the parties. This assumption was also adopted in other
PSI works (e.g., [Kamara et al.(2014)]).

We consider privacy guarantee for the non-target set UKc

s

in the strong information-theoretic sense, where UKc

s =
U\UK

s is the compliment of UK
s . This requires that at the

server, we must have this mutual information guarantee

I
(
{Pi(UKc

s )}i∈[N ];Ys|UK
s

)
= 0, (2)

where Ys is the collection of information received at the
server and UK

s is the target set as defined in (1).

Objective. We aim to design a protocol to solve the K-PSI
problem setting described in Section 2.1 that is simultane-
ously Correct and Private, as defined formally below:

Definition 1 (Correctness). We say that a protocol A is cor-
rect if A(Us,Pi∈[N ],K) gives UK

s error-free at the server.

Definition 2 (Privacy). A federated K-PSI protocol A is said
to be private if it satisfies the condition (2).

2.3 Summary and placement of paper results
After introducing the K-PSI problem and the target theoreti-
cal privacy guarantees, we can now summarize the key results
in this paper and show how they compare with solutions built
using state-of-the-art PSI protocols.

Table 1 compares the communication complexity2 and pri-
vacy leakage (violations to the privacy definition in (2)) for

2Computation loads are order-wise similar to communication
costs.



prototype approaches using the state-of-the-art algorithms
and our Fed-K-PSI protocol (introduced in the next sec-
tion). Although Fed-K-PSI pays the highest complexity, it
provides the strongest privacy guarantees with no leakage be-
yond UK

s . In fact, the complexity of Fed-K-PSI is only a
factor of N K−1

K away from the second-best approach (in the
sense of privacy), which use oblivious programmable pseudo
random functions [Kolesnikov et al.(2017)]3. Approaches
that rely on pseudo-random permutation and Oblivious trans-
fer rely on either sending encrypted data to the server, or cre-
ating 1-to-1 PSI sessions between the server and every party,
which leads to the leakage highlighted in Table 1.

3 Proposed protocol (Fed-K-PSI)
In this section, we formally present our Fed-K-PSI pro-
posed protocol for the k-PSI problem. The central idea
of the protocol is as follows: For each identifier u ∈ Us,
the N parties will collaboratively program a random linear
mapping of the values associated with the identifier u in
their local datasets; we denote the set of these values Vu.
The parties then communicate messages {Yi(u)}i∈[N ] to the
server, which ensure that the server can compute a set of pro-
grammed linear mappings of the values but nothing else. The
server declares an identifier u to be in UK

s only if at least
one of the computed maps is equal to zero. Our proposed ap-
proach is composed of three phases. We start by giving an
overview of the different phases of the protocol. Afterwards,
we discuss in detail how to construct the different elements
that satisfy the probabilistic assumptions described in the pro-
tocol. An illustration of the different phases of the protocol is
shown through a running example given by Fig. 2.
Phase 1 (Initialization) The parties start by jointly agreeing
on a secret random seed aN (for e.g., using Diffie-Hellman
agreement [Diffie and Hellman(1976)]). The server shares its
identifier set Us with the N parties. The following two phases
are repeated identically for each identifier u ∈ Us.

Phase 2A (Programming of random linear map)
Using the seed aN , the random constructions in this phase
will be shared across the parties. Each party starts by sam-
pling a uniformly random subset Iℓ ⊂ [N ] of size K (without
repetition). For each such subset Iℓ, we uniformly sample an
independent matrix Ẑℓ

u ∈ FK×K−1
q , ∀ℓ ∈ [L] such that: (1)

the matrix has full column rank; (2) 1T Ẑℓ
u = 0. Thus, in total

we sample L =
(
N
K

)
matrices with the properties aforemen-

tioned. Next, we expand each matrix Ẑℓ
u into a sparse matrix

Zℓ
u ∈ FN×K−1

q , such that the Iℓ rows of Zℓ
u are populated

with Ẑℓ
u and all other rows are zeros, i.e.,

Zℓ
u[Iℓ, :] = Ẑℓ

u, Zℓ
u[I

c
ℓ , :] = 0(N−K)×(K−1). (3)

The key intuition here is that, each matrix Ẑℓ
u is designed to

test whether a subset of K parties Iℓ have the same value for
identifier u. In particular, since the matrix Ẑℓ

u is uniformly
distributed over matrices FK×(K−1)

q with columns represent-
ing a basis for the null space of 1K , then each sampled matrix

3This follows since
(
N
K

)
= N

K

(
N−1
K−1

)
.

Zℓ
u represents a random mapping FN

q → FK−1
q which maps

the input x ∈ FN
q uniformly to a vector xTZℓ

u ∈ FK−1
q \{0}

except if x[Iℓ] = v′1 for some v′ in Fq; in which case, it is
always mapped to 0K−1 (recall the property that 1T Ẑℓ

u = 0).

Phase 2B (Encoding K-intersection)
In order to facilitate readability of this phase of the protocol,
we will view the values associated with an identifier u, Vu, as
structured in a vector form vu ∈ FN×1

q , such that

vu[i] =

{
vi(u) if (u, vi(u)) ∈ Pi

i+ vmax otherwise.
(4)

Note that if identifier u does not exist at party Pi, its value is
substituted with a unique value (i + vmax) that is not shared
by other parties. We observe that from the construction of
Zℓ

u, we have that vT
uZ

ℓ
u = 0 if and only if vu[Iℓ] = v′1K for

some v′ ∈ Fq .
The goal of the N parties in our Fed-K-PSI protocol is

to allow the server to compute rℓu(1×K−1)
= vT

uZ
ℓ
u, ∀ℓ ∈ [L].

We observe that from the construction of Zℓ
u, we have rℓu = 0

if and only if vu[Iℓ] = v′1K for some v′ ∈ Fq . Thus, if ∃ℓ,
such that rℓu = 0, then the current identifier u in question
belongs to UK

s . Otherwise, u ̸∈ UK
s .

To allow the server to compute rℓu, each party Pi can sim-
ply compute its 1×K − 1 vector

ŷℓ
u,i = vu[i] · Zℓ

u[i, :] (5)

and transmits it to the server. The server adds the received
ŷℓ
u,i vectors from the N parties to verify that they add to 0

or not. However, note that for any ℓ ∈ [L], the vector ŷℓ
u,i

is zero for some parties, particularly when i ̸∈ Iℓ. As a re-
sult, the server (who is fully knowledgeable about the proto-
col procedure) can also learn which K parties have the same
shared value v(u). In order to combat this, the fourth phase
masks which K parties are part of Iℓ.

Phase 2C (Masking and uploading linear components)
Each party uses the shared seed aN to generate a matrix
Mℓ

u ∈ FN×(K−1)
q uniformly at random such that: (1)

1TMℓ
u = 0; (2) For any submatrix of M̂ℓ

u of size N − 1 ×
K−1, the elements are iid and distributed uniformly over Fq .

After each party Pi locally computes its component ŷℓ
i,u of

rℓu, ∀ℓ ∈ [L] using (5), Pi masks it by adding its associated
row of Mℓ

u, to get

yℓ
u,i = ŷℓ

u,i +Mℓ
u[i, :]. (6)

Each party then transmits yℓ
u,i to the server. Note that after

masking with Mℓ
u[i, :], the server always receives a random

vector from Pi, regardless of whether i ∈ Iℓ or not.

Phase 3 (Decoding)
The server computes rℓu by adding the received vectors to get

rℓu =

N∑
i=1

yℓ
u,i = vT

uZ
ℓ
u + 1TMℓ

u

(a)
= vT

uZ
ℓ
u, (7)

where (a) follows due to the properties of Mℓ
u. The server

declares u ∈ UK
s iff ∃ ℓ, s.t., rℓu = 0. Otherwise u ̸∈ UK

s .
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Figure 2: An illustrative example of Fed-K-PSI protocol with three parties. Following the insurance fraud detection application, the
identifier represent the ID of an individual in the party’s (company’s) dataset, while the value for each identifier represents the claim submitted
(if any). The parties first agree on a secret seed aN and the server shares its identifier set Us with the parties. Every subset of K = 2 parties
encodes their data with a linear map Z that returns 0 iff their values for identifier u are equal; the N parties mask the participation of the
selected K parties using a mask M that is removed by aggregation at the server. The server declares that u ∈ UK

s iff ∃ℓ ∈ [
(
N
K

)
], rℓ(u) = 0.

Remark 1 (Masking using SecAgg). The masking proce-
dure in Phase 2C is equivalent to the secure aggregation pro-
tocol [Segal et al.(2017); So et al.(2022)] used in federated
learning. In this context, the masks are generated by exchang-
ing pairwise secrets between parties during learning. Since in
our protocol, the parties share a secret aN to construct the
linear map Zℓ

u, we use the same seed in our construction of
Mℓ

u. As discussed, the key benefit of this masking step is to
prevent the server from knowing which parties participated in
constructing Zℓ

u based on their transmitted messages.
Construction of matrices Mℓ

u. To efficiently sample a ma-
trix Mℓ

u ∈ FN×(K−1)
q , such that 1TMℓ

u = 0, each party
samples a matrix M̂ℓ

u of size N−1×K−1 with iid elements
uniformly sampled from Fq . We finally add an additional row
to M̂ℓ

u equal to q−1TM̂ℓ
u, which gives us the intended prop-

erty. Note that for this construction, any submatrix of M̂ℓ
u

with less than N rows is composed of iid element distributed
uniformly over the field. As a result the server cannot learn
anything if it only listens to N − 1 parties.
Construction of matrices Ẑℓ

u. We would like to sample a
matrix Ẑℓ

u of size K × (K−1) with full column rank and
1T Ẑℓ

u = 0. We can restate this as uniformly sampling a
basis for the null space of 1K in FK

q . For this, we give the
following explicit construction

Ẑℓ
u =

[
IK−1

(q − 1)1T

]
Aℓ

u, (8)

where Aℓ
u ∈ F(K−1)×(K−1)

q is sampled uniformly from the
set of full-rank square matrices. The first matrix in the RHS
in (8) has a full column rank and ensures that 1T Ẑℓ

u = 0 as it
represents a basis for the null space of 1K . We now have the
following proposition which gives us our target distribution.
Proposition 3.1. By picking a full rank square matrix Aℓ

u

uniformly at random and constructing Ẑℓ
u as in (8), we have

that Ẑℓ
u is uniformly distributed over all matrices satisfying:

(a) 1T Ẑℓ
u = 0; (b) Ẑℓ

u has full column rank.

Remark 2 (Uniform sampling of full rank square matrices).
A central part of the construction of Ẑℓ

u in (8) is to sam-
ple a full-rank square matrix uniformly. In a finite field,
there does not exist an efficient approach to construct such
a function with uniform probability. Fortunately, for large
enough field sizes, full-rank square matrices represent the ex-
treme majority of square matrices. In fact, we can charac-
terize the exact probability of an n × n matrix sampled with
uniformly distributed iid terms in Fq being full-rank as fol-
lows: The total number of different matrices of size n × n
is equal to qn

2

. The set of full-rank n × n square matri-
ces in the finite field Fq is the famous general linear group
GL(n, q) [Borel(2012)], for which the number of group ele-
ments is given by qn(n−1)/2

∏n
i=1(q

i − 1). Thus, the prob-
ability of getting a full-rank matrix is qn(n−1)/2

∏n
i=1(q

i −
1)/qn

2

which is increasing in q. For instance, for q = 103
and n = 3, the probability is equal to 0.9901. Thus, for Aℓ

u
in (8), we sample a matrix of size K − 1 × K − 1 with iid
uniformly distributed elements and repeat the sampling if the
matrix is not full-rank, where each resampling has a proba-
bility of success close to unity if q is sufficiently large.

4 Theoretical Analysis
4.1 Theoretical Guarantees
We now state our main theoretical result for the Fed-K-PSI
protocol which ensures that for u ̸∈ UK

s , no information is
leaked beyond the fact that it is not in UK

s .

Theorem 4.1. Consider a K-PSI problem with N parties as
described in Section 2.1. Then, the proposed Fed-K-PSI
protocol is simultaneously (a) private, and (b) correct.

4.2 Complexity of Fed-K-PSI
We analyze the theoretical communication load and compu-
tational load of Fed-K-PSI in terms of number of units of
elements communicated or operations computed in Fq .
Computation Load Let L=

(
N
K

)
. For each ℓ ∈ [L], each

party locally computes two matrices Zℓ ∈ FK×(K−1)
q and
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Figure 3: Breakdown of the running time of Fed-K-PSI vs N
parties (with K = 3 threshold) for one data point: (a) Total run
time; (b) Encoding phase components; (c) Designing Mi and yi.

Mℓ
u ∈ FN×(K−1)

q . With very high-probability (see Re-
mark 1, 2), the generation of the two matrices follows an iid
uniform sampling of elements which takes O(N(K − 1)) for
the larger matrix. The encoding of the local data and mask-
ing takes a similar complexity. Thus, the total computational
complexity is O (nsLN(K − 1)), where ns is the cardinality
of the identifier set Us shared by the server. The server aggre-
gates the received vectors at a cost of O (nsLN(K − 1)).
Communication Load Communication during Fed-K-PSI
takes place over two phases. First, the server shares its iden-
tifier set Us of cardinality ns with the parties, which results
in a multicast transmission of O(ns). Upon computing their
linear shares yℓ

i (u), ∀u ∈ Us and ℓ ∈ [L], each party sends
nsLN(K − 1) elements back to the server.

5 Empirical Evaluation
5.1 Evaluation setting
We benchmark the performance of Fed-K-PSI using
Python on a server with AMD EPYC 7502 32-Core
CPU Processor. We use the NumPy module for seeded ran-
dom matrix generations and basic modular arithmetic oper-
ation. For reporting the computation time for a module in
our protocol (or the end-to-end time), we take the mean and
standard deviation over 8 runs each representing 1000 con-
secutive invocations of the module (or end-to-end computa-
tion). For communication, we consider an idealistic simu-
lation where the communication time is proportional to the
number of Fq elements transmitted. In particular, we simu-
late the communication time taken to run Fed-K-PSI as(

N
K

)
(K − 1)ns log2(q) + aN

BW
,

where: ns is the number of identifiers in Us;
(
N
K

)
(K−1) is the

number of messages {yℓ
i (u)}ℓ∈[(NK)]

from party Pi; the com-
mon shared secret aN across the parties is 100 bits; BW is the
assumed communication bandwidth. In all experiments, we
set the field size q = 5051 which is a prime number.

5.2 Complexity evaluation
In the following, we experimentally evaluate the running time
of Fed-K-PSI on ns=10, 000 identifiers in Us while study-
ing the dependency of the system complexity on both the N
and K parameters. We observe empirically (also through the
protocol procedure in Section 3) that the running time is lin-
ear in the size of the server identifier set Us. Thus, in the
following subsections, we report communication and compu-
tation times per identifier. We start by evaluating the depen-
dency on the number of parties N .
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Figure 4: Breakdown of the running time of Fed-K-PSI vs thresh-
old K (with N = 10 parties) for one data point: (a) Total run time;
(b) Encoding phase components; (c) Designing Mi and yi.

Dependency on N
In Figures 3, we show that the running time of Fed-K-PSI
per identifier changes with N when fixing the intersection
threshold to K = 3. For this evaluation, we set the communi-
cation bandwidth to 10 Mbits/sec. Figure 3(a) shows that for
the fixed bandwidth and field size (q = 5051), the commu-
nication time overhead is minimal compared to the computa-
tion time which is bottle-necked by encoding. As illustrated
in Fig. 3(b), the time taken to construct {Zℓ}ℓ∈[L] at party
Pi is the computation bottleneck in the encoding phase. The
main reason for this is the fact that Zℓ needs to be full-rank
for Fed-K-PSI to be correct. Although, we discuss in Re-
mark 2 that a matrix with iid uniformly distributed elements
is full-rank with high-probability, in implementation, we need
to verify that the generated matrix is full-rank otherwise we
re-sample a new matrix. Verifying the rank of the generated
matrix is the bottleneck operation in generating Zℓ.

Dependency on K
To study the effect of varying K on the complexity of our
protocol, we consider an experimental setting with N =
10 parties, while we vary the target intersection threshold
from K = 2 to 10 assuming a communication bandwidth
of 10 Mbits/sec. Figure 4 illustrates the dependency of
Fed-K-PSI on the intersection threshold K. Similar to Fig-
ure 3, the time for constructing {Zℓ

i}ℓ∈[L] at party Pi domi-
nates the run time for the encoding phase. Albeit, having dif-
ferent complexity levels, all modules in the encoding phase
peak in complexity at K = N/2 = 5 and decrease as K
approaches 1 or N . This is due to the fact the number of sub-
sets of [N ] of K peak at K = N/2. Similar to Fig. 3(a),
the encoding phase is the bottleneck for the protocol with the
current bandwidth as we observe a similar trend in Fig. 4(a).

6 Conclusion
In this work, we proposed the K-PSI problem, a new flavor
of the multi-party PSI problem within the federated analyt-
ics framework. In K-PSI, a server only knows the identi-
fier of a datapoint (but not its associated value at different
parties) and wishes to find the identifiers appearing with re-
peated values at least K of N parties. To address this prob-
lem, we developed a novel protocol named Fed-K-PSI. We
showed that Fed-K-PSI is correct and achieves a strong
information-theoretic privacy guarantee for identifiers that do
not satisfy the query. Finally, we evaluated the complexity
of Fed-K-PSI theoretically and through empirical experi-
ments highlighting the effect of the different system parame-
ters on the performance of Fed-K-PSI.
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