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Abstract

Deep neural networks have been found easily
fooled by adversarial attacks, which raises major
concerns in security-sensitive contexts. Over the
past years, considerable efforts have been made
to improve the robustness of deep learning mod-
els. Recent research has investigated the adver-
sarial robustness of neural networks from the ar-
chitectural point of view and produced encourag-
ing results. However, the cost of computation in
the search for architectures is high, which becomes
even worse because adversarial training process is
particularly time-consuming. To address the above
challenge, this paper proposes a surrogate-assisted
approach to the search of robust architectures effec-
tively and efficiently. More specifically, we lever-
age low-fidelity evaluations to predict the perfor-
mance of architectures and introduce an additional
“helper-objective”, the value of which is the out-
put of a surrogate model that is trained based on
high-fidelity evaluations. Comprehensive experi-
ments confirm the effectiveness of our approach.
The discovered architectures show competitive per-
formance on CIFAR-10, and outperform most base-
lines on CIFAR-100 and SVHN datasets.

1 Introduction

Deep neural networks (DNNs) have been shown to be vul-
nerable to adversarial examples that are intentionally crafted
with imperceptible perturbations [Szegedy er al., 2013].
Much effort has been made to tackle the threat of adversar-
ial examples, such as adversarial training [Goodfellow et al.,
20151, defensive distillation [Carlini and Wagner, 2016], and
adversary detection [Metzen et al., 2017].

Despite the considerable effort on defense strategies, a ma-
jority of researchers carried out experiments based on one
or two specific manually designed convolutional neural net-
works (CNNs). Recently, neural architecture search (NAS)
has attracted increased attention and achieved outstanding
performance on a variety of tasks. Early NAS algorithms
[Zoph and Le, 2016] suffer from an extremely heavy compu-
tational burden since evaluating the performance of each can-
didate architecture requires to train the network from scratch

and then test it on a validation dataset. To reduce the search
cost, researchers built proxy networks with fewer layers or
channels [Real et al., 2019; Wu et al., 2019], and trained
them to solve proxy tasks of smaller scales [Cai er al., 2018;
Wu et al., 2019; Liu and Jin, 2021]. However, the archi-
tectures obtained from proxy tasks do not perform well on
the target task. Parameter sharing [Pham er al., 2018; Cai et
al., 2019] and predictor-based evaluators [Liu et al., 2018;
Sun et al., 2019] are two efficient strategies to estimate the
performance of architectures.

Despite the remarkable progress, existing NAS methods
mainly focus on improving classification accuracy and are
limited by intensive computation and memory costs. Only a
few studies have attempted to understand adversarial robust-
ness from an architectural perspective.

In this work, we utilize the predicted value of a surro-
gate model, leveraging the knowledge of high-fidelity fitness
evaluations, as a “helper-objective” to assist a multi-objective
evolutionary optimization process. The proposed algorithm,
named Multi-Objective Robust Architecture Search based on
a Surrogate as a Helper-objective (MORAS-SH), is applied
to search for robust architectures effectively and efficiently.
Specifically, the main contributions of this work are as fol-
lows:

* We predict the performance of candidate architectures
by leveraging a combination of the parameter sharing
evaluation and predictor-based evaluator to accelerate
the search process.

» We adopt the concept of multi-objectivization [Knowles
et al., 2001] and employ an online surrogate model
that predicts the high-fidelity fitness as an additional
objective. This is the first attempt to use the “helper-
objective” in NAS, which is the core novelty of this
work.

* Experiments on benchmark datasets demonstrate that
the proposed MORAS-SH method efficiently finds ro-
bust architectures with comparable classification accu-
racy.

The remainder of this paper is organized as follows. The
next section will briefly describe the related work. In Sec-
tion 3, we elaborate on the proposed approach to employing
surrogate as a helper-objective in multi-objective architecture
search for adversarial robustness. Experimental settings and



implementation details are presented in Section 4, followed
by descriptions of the experimental results and discussion in
Section 5. Finally, we summarize our findings along with fu-
ture work.

2 Related Work

2.1 Adversarial Attack and Defense

Deep learning models can be misled by adversarial attacks,
such as fast gradient sign method (FGSM) [Goodfellow et
al., 2015], basic iterative method [Kurakin et al., 2016], and
C&W attack [Carlini and Wagner, 2017]. One of the strongest
adversarial attacks, PGD [Madry et al., 2018], which com-
bines randomized initialization with multi-step attacks, can
be expressed as follows:

X5 = X+U(—¢e€), €))
Xn1 = x X} +a-sign(Vx: J(X5,9)} ()

where X* denotes the adversarial examples, X denotes the
original examples, U/ refers to a uniform distribution, € is
a hyper-parameter that controls the magnitude of the distur-
bance, o represents the step size, y denotes the true label, and
IIx (B) denotes the projection to B(X, ¢).

Extensive counter-measures have been designed to im-
prove the robustness of deep learning models. The most ef-
fective and popular defense technique is adversarial training
[Goodfellow et al., 2015; Madry et al., 2018], which im-
proves the robustness of a network by training it together with
adversarial examples. Adversarial training works by mini-
mizing the weighted training loss on clean and adversarial
examples. In this work, we employ PGD adversarial train-
ing (PGD-AT) to train the supernet and the architectures that
are going to be evaluated for final evaluation. The PGD-AT
process can be mathematically expressed as:

minEx )~ pJ(PGD(X, ), y) 3)
where 2 is the threat model.

2.2 Neural Architecture Evaluators

Parameter sharing and predictor-based evaluators are two
commonly used techniques to efficiently evaluate archi-
tectures without training each candidate architecture from
scratch.

Parameter sharing [Pham er al., 2018], also known as
weight sharing, is the process of building and training a
super-large network within a given search space, and then
the subnet directly shares the parameters from supernet. This
over-parameterized supernet will contain all possible subnets.
Therefore, the evaluation of subnets greatly reduces the time
to evaluate candidate architectures because they share the pa-
rameters of the supernet without training them from scratch.
Sample-based single-path training is a common method for
training the supernet, which is trained by uniform sampling
or fair multipath sampling and optimizing single paths. After
training, the supernet can act as a performance estimator for
different paths. When choosing a path, it can be carried out
through various search strategies, such as evolutionary algo-
rithms or reinforcement learning.

The most popular predictor in NAS is the surrogate-based
predictor [Sun et al., 2019] based on supervised learning. To
obtain the data for training the predictor, it is necessary to
train a large number of architectures initially, which is pro-
hibitively time-consuming. The predictor then takes the ar-
chitecture descriptions as inputs, and outputs the predicted
performance scores. Utilizing a good predictor, promising
architectures can be selected to be evaluated by the expensive
evaluator. The query time is short, which allows large amount
of predictions to be made during NAS.

In summary, both one-shot evaluators and predictor-based
evaluators can accelerate the NAS process. However, how
to combine them effectively and further reduce the computa-
tional time remains a challenging topic [Liu ef al., 2022].

2.3 Evolutionary Multi-objective Neural
Architecture Search

Differentiable NAS, reinforcement learning and Bayesian
optimization based NAS methods usually transform multi-
objective NAS into a single-objective one using scalariza-
tion or an additional constraint. However, scalarization ap-
proaches were shown to be not as efficient as Pareto ap-
proaches. Multi-objective EAs are popular in solving multi-
objective problems and have been shown to be successful in
finding a set of Pareto optimal neural architectures in NAS
[Zhu and Jin, 2020; Yang et al., 2020; Hu et al., 2021,
Lu et al., 2020].

Despite remarkable progress, the research on multi-
objective NAS for the resilience of architectures against ad-
versarial attacks [Vargas and Kotyan, 2019; Guo er al., 2020;
Yue et al., 2020; Xie ef al., 2021] has been sporadic. In our
previous work, we introduced MORAS [Liu and Jin, 2021]
to search for architectures that are less sensitive to various
adversarial attacks. However, the search process is time-
consuming because each architecture in the population must
be trained to obtain the fitness values. This work, by con-
trast, combines supernet training with surrogates to assist the
evaluation process, thereby further improving the search effi-
ciency.

3 The Proposed Approach

In this section, we develop a multi-objective architecture
search for adversarial robustness with a surrogate as a
“helper-objective”, namely MORAS-SH. As shown in Fig-
ure 1, MORAS-SH consists of three parts, i.e., architecture
evolution, architecture evaluation, and architecture training.

We employ the elitist non-dominated sorting genetic algo-
rithm (NSGA-II) [Deb et al., 2002] as the baseline for archi-
tecture evolution. To efficiently evaluate the architectures, we
estimate the performance of architectures on both clean im-
ages and adversarial examples by leveraging low-fidelity fit-
ness evaluations. To guide the search for good solutions and
help maintain diversity in the population, we train a surrogate
by leveraging high-fidelity evaluations to predict the perfor-
mance of the candidate architectures and the predicted value
is used as a “helper-objective”. The low-fidelity and high-
fidelity fitness values are obtained by inheriting weights W
from a pre-trained supernet A/ on partial and full validation
sets, respectively.
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Figure 1: Overall Framework.

3.1 Search Space and Embedding

The search space we use is the same as the stage-wise search
space in [Ning er al., 2020al. We use adjacency matrix en-
coding, which is the most common type of encodings used in
current NAS research.

A surrogate model s, usually constructed by an MLP or
RBF, takes a neural architecture as input and outputs a pre-
dicted score. Following [Ning et al., 2020al, this work takes a
graph-based neural architecture encoder called GATES [Ning
et al., 2020b] that maps a neural architecture into a continu-
ous embedding space, and then concatenate the embeddings
of the four stage-wise block topologies as the architecture em-
bedding.

3.2 Multi-objectivization

Multi-objectivization [Knowles er al., 2001] was intended to
decompose a single-objective optimization problem into sub-
objectives to reduce local optima. The concept of multi-
objectivezation is developed by simultaneously optimizing
the primary objective and some helper-objectives [Jensen,
2004]. Some research [Huang er al, 2020] also adds a
helper-objective to multi-objective optimization problems to
further enhance the performance. With the help of multi-
objectivization, the optimizer can perform better than fo-

cusing on the primary objectives only because the helper-
objective helps maintain diversity, and guides the search away
from local optima.

In this work, we include the predicted score of a surro-
gate as an helper-objective, where the primary objectives are
the accuracy and robustness of networks. Although multi-
objectivization has been used in many studies to solve diffi-
cult optimization problems, it is the first attempt to employ it
in NAS and it is also novel to utilize the predicted values of a
surrogate model as a helper-objective.

Both the evaluations using the low-fidelity fitness functions
and surrogate models are computationally cheap yet corre-
lated with the high-fidelity fitness function. However, neither
of them is accurate enough to find a satisfactory solution to
a bi-fidelity optimization problem. Moreover, the estimated
performance according to the low-fidelity evaluation may be
inconsistent with the one predicted by a surrogate. Hence, we
use the predicted scores obtained from a surrogate as an ad-
ditional objective to assist the evolutionary process with low-
fidelity evaluation. We formulate NAS as the following three-
objective minimization problem:

min : F(z) = {f1, fo, f3} )

1
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where fi(x), fo(z) are the primary objectives, {f!(z),
fi(x)} denote low-fidelity fitness evaluations calculated by
the error rate on the partial validation set. The candidate ar-
chitectures inherit parameters from the supernet directly, so
the computational cost is less expensive. f3(x) represents the
“helper-objective”, which equals the predicted score fs(x) of
the surrogate model.

The surrogate model is trained to approximate high-fidelity
fitness using data S. Initially, we sample m solutions us-
ing the Latin hypercube sampling [Stein, 1987] and calculate
their fitness using the high-fidelity evaluation, which is calcu-
lated by the error rate on the entire validation set. The inputs
of the surrogate model are the values of architectures after
embedding by using GATES [Ning et al., 2020b]. The ap-
proximation error of the surrogate model is inevitable. There-
fore, infilling samples from the current population will be
added to S after evolving GG generations. As suggested in
[Wang et al., 2020], we select promising and uncertain solu-
tions as infilling samples.

3.3 Overall Framework

The MORAS-SH workflow is composed of the following
three steps:

1. Supernet Training. In a predefined architecture search
space (Sec. 3.1), we adversarially train a supernet A/
by using a 7-step PGD attack (PGD-7) (Sec. 2.1) on
training data Dy,..

2. Architecture Evolution. We randomly initialize a popu-
lation Py with n individuals (candidate topologies). For
each individual, the low-fidelity evaluation is used to es-
timate its fitness values and the predicted score obtained
from a surrogate model is used as a “helper-objective”
(Sec. 3.2). The individuals in the population are gradu-
ally updated according to NSGA-II during the architec-
ture optimization step. Concretely, we employ simulated
binary crossover (SBX) and polynomial mutation (PM)
[Deb et al., 1995] to generate offspring. This process
repeats G iterations and then % individuals from the cur-
rent population are selected according to the infill crite-
rion. The surrogate model will be updated using S.

3. Final Training. Since we evaluate the candidate archi-
tectures during the search process by using low-fidelity
evaluation with the surrogate as a helper-objective, the
evaluations are of low precision. We consider this pro-
cess as a pre-screening criterion. After the computation
budget is exhausted, we evaluate all the non-dominant
solutions in A from the pre-screening criterion on the
complete validation set with high fidelity to conduct sec-
ondary screening and then filter out the non-dominated
solutions A for final adversarial training from scratch on
fully training data D using PGD-AT.

4 Experimental Settings
4.1 Datasets

Three widely-studied datasets are involved in the experi-
ments, CIFAR-10 [Krizhevsky et al., 2010], CIFAR-100
[Krizhevsky er al., 2009] and Street View House Numbers
(SVHN) [Netzer et al., 2011]. We conduct a robust architec-
ture search on CIFAR-10, and evaluate the discovered archi-
tectures on the CIFAR-10, CIFAR-100 and SVHN datasets.

4.2 Peer Competitors

The first group of baselines includes MobileNet-V2 [Sandler
et al., 2018], VGG-16 [Simonyan and Zisserman, 2014], and
ResNet-18 [He er al., 2016], which are manually designed by
human experts. The second group represents NAS-based ap-
proaches in a search space that is similar to ours, including
RobNet-Free [Guo et al., 2020], MSRobNet-1560 [Ning et
al., 2020a] and MSRobNet-1560-P [Ning ef al., 2020a]. The
third group of competitors are conducted for ablation study.
The main components of MORAS-SH include high-fidelity
evaluation, low-fidelity evaluation, and surrogate modeling,
which are actually part of the pre-screening of robust archi-
tectures. We conduct experiments with each components,
which are termed MORAS-H, MORAS-L, MORAS-S.

4.3 Implementation Details

We used NVIDIA Titan RTX GPUs and implemented the
experiments using PyTorch. PGD-7 under ¢,, norm with
e = 8/255 and step size 7 = 2/255 is used for adversarial
training.

We train the supernet with initial channel number of 44
for 400 epochs. We use an SGD optimizer with a batch size
of 64, a weight decay of le-4, and a momentum of 0.9. The
learning rate is initially set to 0.05 and decayed to O following
a cosine schedule.

During the search process, we employ RBF and MLP as
the surrogate separately. After GATES embedding, a 128-
dimensional vector is fed into the surrogate. We sample 200
architectures to train an initial surrogate.

To limit the computational overhead, we set the maximum
search time as three days. The portion of low-fidelity evalua-
tion data is set to 0.2 according to [Zhou et al., 2021]. To fur-
ther alleviate the computational burden, we use the FGSM at-
tack as an efficiency proxy [Ning er al., 2020a] of the PGD-7
since NAS does not necessarily require accurate performance
and the evaluation could be accelerated by roughly 8x. We
use a population size of 100 and update the surrogate every 20
iterations. Ten samples will be infilled to the set S. The prob-
abilities for crossover and mutation are set to 0.9 and 0.02,
respectively.

For better performance, we augmented the initial channels
of the architectures for the final training to 55. For the final
comparison on CIFAR-10, CIFAR-100 and SVHN, we ad-
versarially train the architectures for 110 epochs on CIFAR-
10/CIFAR-100 and 50 epochs on SVHN, using PGD-7 at-
tacks with ¢ = 8/255 and step size n = 2/255, and other
settings are also kept the same.

To evaluate the adversarial robustness of the trained mod-
els, we apply the FGSM [Goodfellow et al., 2015] with



e = 8/255 and PGD [Madry et al., 2018] with different step
numbers.

5 Experimental Results
5.1 Performance of MORAS-SH on CIFAR-10

From the set of non-dominated solutions returned after the
evolution, we obtained 91 and 43 architectures by using the
proposed MORAS-SH with a surrogate of RBF and MLP, re-
spectively. After the second screening by high-fidelity eval-
uation, the number of non-dominated solutions both reduce
to eight. We then fully train the 16 architectures and choose
three architectures for each method based on their trade-offs.

Table 1 compares the performances of the architectures un-
der various adversarial attacks. The architectures discovered
by our method are referred to as MORAS-SHNets, where
MORAS-SHNet-M and MORAS-SHNet-R represent the ar-
chitectures obtained by MORAS-SH with an MLP and RBF
as the surrogate, respectively. The results of RobNets-Free
and MORobNet series are extracted from [Guo et al., 2020]
and [Ning er al., 2020al, respectively.

As can be seen from Table 1, our MORAS-SHNet-R1
achieves 86% accuracy on clean data sets, outpacing all
competitors. Under the FGSM attack, our MORAS-SHNet-
M2 achieves an accuracy of 60.1%, which is also the
best result among the competitors. Under the PGD-7 at-
tack, MORAS-SHNet-R2 achieves 56.2% accuracy, the same
as the MSRobNet-1560, which is also the highest. Un-
der the PGD-20 and PGD-100 attacks, the best results are
achieved by MSRobNet-1560, and our MORAS-SHNet-R2
and MORAS-SHNet-R3 are the second best.

We can see that the architectures discovered by MORAS-
SHNets significantly outperform the manually designed
CNNs under FGSM and strong adversarial attacks (PGD-
7/10/100). With a similar number of parameters, MORAS-
SHNets outperform other NAS-based peer competitors on
clean samples and the samples with FGSM and PGD-7 at-
tack. Moreover, the computational cost of MORAS-SH is
smaller than the MSRobNet series since only one supernet is
trained instead of eight. It illustrates that our approach can
effectively and efficiently search for architectures with adver-
sarial robustness.

5.2 Transferability to CIFAR-100 and SVHN

In line with the practice adopted in most previous NAS meth-
ods [Ning et al., 2020al, we evaluate the transferability of the
obtained architectures by inheriting the topology optimized
for one dataset with weights retrained for a new dataset.
We train MORAS-SHNets on CIFAR-100 and SVHN, and
present the comparative results in Table 2.

In general, our models are consistently more robust than
manually designed networks on both CIFAR-100 and SVHN.
As shown in Table 2, on SVHN, our MORAS-SHNet-M3
outperforms all peer competitors in all cases, the results un-
der different adversarial attacks are much better than the
peer competitors. MORAS-SHNet-R1 outperforms others on
clean CIFAR-100. However, the overall performance of our
network is not as good as MSRobNet. Therefore, the trans-
ferability of this method needs to be improved. In the future,
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Figure 2: Pareto fronts obtained by comparative experiments. The
parameters are inherited from the supernet.

we will investigate how to enhance the transferability of the
network.

5.3 Ablation Study

This section aims to disentangle the individual contribution
of each main component in the proposed method. In the ab-
lation experiment, we assume that the fitness values obtained
by the parameters of the architectures inherited directly from
the supernet after a complete validation set test are relatively
accurate, that is, we use high-fidelity evaluation to measure
the performance of the algorithms under comparison in the
pre-screening process. To be fair, all experiments are termi-
nated for three days.

Over a three-day evolutionary process, we obtained
the non-dominated solutions of each experiment for pre-
screening. The method we propose, with the surrogate model
as a helper-objective, has a large number of solutions obtained
in the pre-screening. We draw the Pareto frontier obtained af-
ter a high-fidelity evaluation of the predicted non-dominated
solution obtained after three days of running each experiment
on Fig. 2.

As can be seen from Fig. 2, the solutions obtained by
MORAS-H, MORAS-L, MORAS-S-M and MORAS-S-R are
dominated by the solutions obtained by the methods we pro-
pose. The solutions obtained by MORAS-L is comparable
to our method, and in order to prove the superiority of our
method, we further trained them from scratch in a complete
adversarial training on CIFAR-10. We show the performance
of each network after training in Figure 3. As shown in Fig-
ure 3, the architectures that MORAS-L searched for are dom-
inated by most of the architectures we searched. This further
validates the effectiveness of our surrogate model as a helper-
objective.

Here we list why separately considering different parts fails
to obtain promising Pareto fronts. Evaluating each candidate
architecture through high-fidelity evaluations at each iteration
is prohibitively expensive. With a given budget, MORAS-H
can iterate only a few generations, leading to MORAS-H’s



Table 1: Comparison with peer competitors under various adversarial attacks on CIFAR-10.

Architecture Clean (%) FGSM (%) PGD-7 (%) PGD-20(%) PGD-100(%) #Para(M) FLOPS (M)
Manually designed networks MobileNet-V2 71.0 53.0 50.1 48.0 47.8 2.30 182
VGG-16 79.9 53.7 50.4 48.1 47.9 14.73 626
ResNet-18 83.9 57.9 54.5 51.9 51.5 11.17 1110
RobNet-Free 82.8 584 55.1 52.7 52.6 5.49 1560
NAS-based methods MSRobNet-1560 84.8 60.0 56.2 53.4 52.9 5.30 1588
MSRobNet-1560-P 85.2 594 55.2 51.9 51.5 4.88 1565
MORAS-SHNet-M1 85.8 59.4 55.5 52.5 52.1 522 1634
MORAS-SHNet-M2 85.4 60.1 55.8 52.9 524 5.05 1606
Ours MORAS-SHNet-M3 85.5 59.6 55.6 52.8 52.5 5.20 1661
MORAS-SHNet-R1 86.0 59.9 55.4 52.1 51.6 5.60 1525
MORAS-SHNet-R2 85.6 59.9 56.2 53.1 52.6 5.42 1471
MORAS-SHNet-R3 85.1 59.9 55.8 53.0 52.7 5.41 1484

Table 2: Comparison with peer competitors under various adversarial attacks on CIFA-100 and SVHN.

CIFAR-100 SVAN
Architecture Clean (%) FGSM (%) PGD-7(%) PGD-20 (%) PGD-100(%) Clean (%) FGSM (%) PGD-7(%) PGD-20(%) PGD-100 (%)
MobileNet-V2 182 28.1 273 263 262 939 73.0 61.9 357 539
VGG-16 51.5 29.1 27.1 25.8 25.8 92.3 66.6 55.0 474 45.1
ResNet-18 59.2 33.8 31.6 29.9 29.7 92.3 73.5 57.4 512 48.8
RobNet-Free - - - - 239 94.2 84.0 66.1 59.7 56.9
MSRobNet-1560 60.8 35.1 332 317 315 95.0 715 64.0 57.0 542
MSRobNet-2000 61.6 34.8 32.9 31.6 315 94.9 84.8 65.3 58.8 55.1
MORAS-SHNetMI  61.4 329 305 286 284 948 86.7 784 66.0 612
MORAS-SHNet-M2  61.2 34.1 30.9 29.1 28.8 94.4 84.3 65.3 58.6 55.6
MORAS-SHNet-M3 615 33.9 32.6 29.5 29.3 95.8 90.6 85.7 73.7 66.3
MORAS-SHNet-R1 61.8 34.1 30.8 28.6 282 94.9 85.4 64.1 57.8 549
MORAS-SHNet-R2  61.4 33.0 30.6 289 28.5 94.3 83.9 63.8 58.1 55.4
MORAS-SHNet-R3  61.4 33.0 33.1 313 312 94.7 71.3 61.4 55.1 52.8
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Figure 3: The performance of architectures obtained by comparative
experiments after adversarial training from scratch.

inability to find better architectures in a vast search space. If
using low-fidelity evaluation merely during the search pro-
cess, MORAS-L can search for more generations in a lim-
ited time budget. However, the diversity of solutions is poor,
and the number of non-dominated solutions obtained after the
search is also small. If using the surrogate model merely in
the search process, the search will be misled due to the in-
accurate prediction results of the previous surrogate model.
Even if the surrogate model is gradually updated with the gen-
eration increases, the range of predicted values of the updated
surrogate model also changes. This means that if the surro-

peer competitors on the CIFAR-10 dataset. And the network
architecture is also transferable, especially on the SVHN
dataset.

In terms of computational cost, we only pre-train one su-
pernet at a time, and then inherit the parameters of the super-
net when evaluating the candidate architecture, which greatly
reduces the time required to evaluate the performance of the
network. Moreover, we used a combination of low-fidelity
evaluations and surrogate models to further speed up the
search efficiency. The performance of the network obtained
by our method is comparable to that of MSRobNets, but the
computational cost is much less, since MSRobNets need to
train eight supernets. It demonstrates that our approach can
efficiently search for robust networks.

The time complexity of NSGA-II per generation is
O(M N?). The number of objectives M is two if we merely
consider the primary objectives. The computational complex-



ity will increase to O(4N?) if we consider accuracy and ad-
versarial robustness predicted by the surrogate model sepa-
rately. In this work, we employ a weighted sum of the clean
and adversarial error rates as a label for the architecture to
simplify the optimization problem and reduce the difficulty of
training the surrogate model. That is, the predicted score and
helper-objective are only one dimension instead of two. The
weights are both set to 0.5 for the sake of simplicity. There-
fore, the time complexity is O(3N?).

6 Conclusion

We employ an MOEA-based NAS approach to search for ar-
chitectures that are robust to adversarial attacks. To make the
procedure efficient, we propose a multi-objective architecture
search for adversarial robustness with the assistance of a sur-
rogate as a “helper-objective”, namely, MORAS-SH. Dur-
ing evolution, MORAS-SH maximally utilizes the learned
knowledge from both low- and high-fidelity fitness. Exper-
iments results on benchmark datasets demonstrate that the
proposed MORAS-SH can efficiently provide several archi-
tectures on the Pareto front. The searched models are also
superior to peer competitors in terms of robustness and accu-
racy.

Most research on NAS for robust architectures focuses on
network architectures that perform well on both clean and ad-
versarial examples but ignoring those that perform well on
clean data sets but are sensitive to attacks. Few researchers
have studied what kind of network topology or parameters
cause this phenomenon. It is an interesting topic to study
networks that perform well on clean data but are sensitive to
attacks, and it will help to further understand the intrinsic na-
ture of neural networks. Early detection of structural factors
that make networks sensitive can accelerate the discovery and
design of more robust networks.
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