
Vertical Federated Knowledge Transfer via Representation Distillation

Leye Wang1 , Chongru Huang2 and Xiao Han3

1Peking University, China
2Northwest A&F University, China

3Shanghai University of Finance and Economics, China

Abstract
With the emergence of data protection laws and
regulations, federated learning (FL) has played an
important role in cross-party feature enrichment for
a machine learning system. Such FL methods on
feature enrichment are often known as vertical FL.
Traditional vertical FL can only benefit multiple
parties’ shared samples, which strongly restricts
its application scope. To expand vertical FL’s us-
ability to each party’s (non-shared) local samples,
we propose a vertical federated knowledge trans-
fer mechanism based on a novel cross-party repre-
sentation distillation component. Specifically, our
mechanism includes three steps. First, shared sam-
ples’ federated representations are learned by con-
sidering multiple parties’ joint features with an effi-
cient randomized-masking-based federated matrix
decomposition method. Second, for each party,
we learn a federated-representation-distilled auto-
encoder, which can distill the knowledge from
shared samples’ federated representations to en-
rich local samples’ representations. Finally, each
party can leverage local samples’ representations
enriched by the distilled auto-encoder to boost an
arbitrary machine learning task. The experiments
on real-life datasets verify the knowledge transfer
effectiveness of our mechanism.

1 Introduction
With the prevalence of data protection laws such as GDPR
(General Data Protection Regulation), how to conduct ma-
chine learning and data mining in a privacy-preserving
and law-regulated way has attracted much interest in both
academia and industry. Federated learning (FL) has thus be-
come one promising solution [Yang et al., 2019]. In general,
FL does not need different parties to exchange their raw data;
instead, every party runs local computation and training on
their own data and then uploads the intermediate results (e.g.,
gradients) to a server. By integrating these intermediate re-
sults from all the parties, a federated global model can be
learned. Especially, such a federated model can achieve sim-
ilar prediction performance as a centralized model directly
trained on all the parties’ data [Yang et al., 2019].

In general, there are two main types of FL algorithms,
horizontal and vertical. The first FL algorithm proposed by
Google is horizontal [McMahan et al., 2017]; the setting is
that different parties (often devices) hold different samples
with same features or data formats. A representative applica-
tion of horizontal FL is the mobile phone keyboard next-word
prediction, where a global next-word prediction model can be
learned without collecting users’ raw keyboard inputs [Yang
et al., 2018]. In contrast, vertical FL’s setting is that differ-
ent parties (often organizations) hold different features of the
same set of samples. This work focus on the vertical setting.

The successful adoption of current vertical FL methods is
highly dependent on how many overlapped samples exist be-
tween parties. Hence, most vertical FL collaborations are
conducted by involving at least one giant data holder with
abundant data. For instance, FDN (federated data network)1

includes anonymous data from one of the largest social net-
work service providers in China and thus can cover most user
samples from other data holders (e.g., customers of banks).
However, this makes giant data holders occupy a dominant
position over other small data holders in vertical FL, which
could lead to unfair trades and data monopoly in the digi-
tal economy.2 To alleviate this pitfall and expand application
scenarios, a vertical FL process that can benefit various or-
dinary data holders (e.g., two parties with a small number of
overlapped samples) is urgently needed.

As a pioneering attempt in this direction, this paper pro-
poses a novel vertical federated knowledge transfer algo-
rithm that can transfer the knowledge from (a limited num-
ber of) cross-party shared samples to each party’s local (non-
shared) samples. The key challenge is, how to fill the gap
between a party’s local samples (with only this party’s fea-
tures) and cross-party shared samples (with multiple parties’
features). To address this issue, we propose a novel distilled
auto-encoder, which can distill the knowledge from shared
samples’ federated representations to enrich local samples’
representations. More specifically, shared samples’ federated
representations are first learned by some federated latent rep-
resentation extraction methods (e.g., federated singular vector
decomposition [Chai et al., 2021]); then, a party can leverage

1https://fdn.webank.com/
2https://www.theguardian.com/technology/2015/apr/19/

google-dominates-search-real-problem-monopoly-data

https://www.theguardian.com/technology/2015/apr/19/google-dominates-search-real-problem-monopoly-data
https://www.theguardian.com/technology/2015/apr/19/google-dominates-search-real-problem-monopoly-data

shared samples’ federated representation as the guidance to
enrich its local feature auto-encoder via a knowledge distill-
ing strategy [Hinton et al., 2015]. Especially, our knowledge
transfer mechanism has the following characteristics.

• Knowledge transfer to local samples. As aforemen-
tioned, different from most vertical FL algorithms focus-
ing on shared samples, our mechanism aims to improve
the learning performance on different parties’ local sam-
ples via vertical knowledge transfer. In this way, a set of
parties with only a limited number of shared samples can
still benefit from our vertical FL process.

• Task-independent transfer. Our knowledge transfer pro-
cess is task-independent. That is, each party can lever-
age their enriched local samples’ representations for an
arbitrary (new) learning task.

• Salable to multiple parties. The complexity of our
mechanism is linearly proportional to the number of par-
ties. More importantly, our mechanism can be learned
in an online manner. That is, when a new party comes,
existing parties can efficiently update their local sample
representations by just learning with the new party.

In summary, this work makes the following contributions:

1. To the best of our knowledge, this work is the first one to
explore how to enable vertical knowledge transfer from
shared samples to each party’s local samples in a task-
independent manner.

2. We propose a novel federated-representation-distilled
auto-encoder framework to transfer knowledge from
shared samples to local samples. This framework in-
cludes the following main steps. First, a federated rep-
resentation learning method is applied to extract shared
samples’ representations. Second, each party can enrich
their local feature auto-encoder by knowledge distilling
on the shared samples’ federated representations. The
distilled auto-encoder can then be leveraged to enrich
local samples’ feature representations.

3. Experiments on three real-life datasets have verified the
effectiveness of our mechanism in knowledge transfer.
Specifically, by varying a spectrum of experimental pa-
rameters, we have verified the generalizability of our en-
riched feature representations of local samples.

2 Problem Formulation
In this section, we clarify the definitions of key concepts used
in this paper. Afterward, we formulate our research problem.

2.1 Concepts
For all the parties in a vertical FL campaign, we classify them
into two types, the task party and the data party.

Task Party. A task party t has a set of samples with features
Xt and a task label Yt to predict. The task party sample IDs
are denoted as It.

Data Party. A data party d has a set of samples with fea-
tures Xd. The data party d’s sample IDs are denoted as Id.

Figure 1: Overview of our mechanism.

2.2 Research Problem
Multi-Party Vertical Federated Knowledge Transfer Problem.
Given a task party t and n data parties di(i = 1, 2, ..., n),
t has certain shared samples with any data party di (It ∩
Idi

̸= ϕ), and t’s features are distinct from any data party
di (Xt ∩ Xdi = ϕ), the objective is to design a federated
knowledge transfer algorithm to predict the task label Yt of
t’s (non-shared) local samples as accurately as possible.

Remark. Traditional vertical FL problem often requires
that It = Idi

. However, our vertical federated knowledge
transfer setting only needs that It ∩ Idi

̸= ϕ . The objective
of our proposal is to improve the task performance of t’s local
samples (It \ Idi

) by transferring the knowledge from shared
samples (It ∩ Idi

). This is complementary to traditional ver-
tical FL, thus extending FL’s application scope in practice.

3 Mechanism Design
3.1 Overview
We demonstrate the overall process of our mechanism, which
includes three main steps (Fig. 1). Note that before our mech-
anism runs, we suppose that shared samples between the
task party t and any data party di are known, which can be
learned by PSI (private set intersection) methods [Kamara et
al., 2014].

• Step 1. Federated Representation Learning. First, the
task party and data parties collaboratively learn feder-
ated latent representations for shared samples. In brief,
these federated latent representations would incorporate
the hidden knowledge among multiple parties, while not
leaking these parties’ raw features.

• Step 2. Local Representation Distillation. Second,
the task party trains a federated-representation-distilled
auto-encoder that can distill the knowledge from shared
samples’ federated representations to enrich local sam-
ples’ representations.

• Step 3. Learning on Enriched Representations. After
Step 2, the auto-encoder is distilled and ready for lo-
cal feature enrichment. Then, given an arbitrary label
yt to predict, the task party can use local samples’ en-
riched representations (i.e., task party’s local features +
enriched representations) to conduct training and infer-
ence with state-of-the-art machine learning algorithms.

Step 3 generally follows traditional supervised learning
methods to train a task-specific prediction model, where vari-
ous machine learning algorithms can be applied, such as ran-
dom forest and neural networks. Next, we illustrate more
details about Step 1 and 2. For brevity, we first assume that
only one data party d exists. Then, we discuss how to deal
with multiple data parties {d1, d2, ..., dn}.

3.2 Federated Representation Learning
The purpose of Step 1 is to extract latent representations of
shared samples by considering both task and data parties’
features. Literature has shown that singular vector decom-
position is effective to extract meaningful latent representa-
tions for machine learning tasks [Kosinski et al., 2013]. To
this end, based on a federated singular vector decomposition
method, FedSVD [Chai et al., 2021], we design a process to
learn shared samples’ federated representations by consider-
ing both task and data parties’ features.

Suppose the task party holds the shared samples’ feature
matrix St ∈ R|Is|×|Xt|, and the data party d holds the shared
samples’ feature matrix Sd ∈ R|Is|×|Xd| (Is = It ∩ Id is
the shared sample ID set). Denote S = [St|Sd] (combination
of both task and data parties’ feature matrices), we want to
leverage SVD to learn the latent representations,

S = UΣV T (1)

where U is thus the latent representations of shared samples.
Inspired by FedSVD [Chai et al., 2021], we use a randomized
masking method to learn U as,

1. A trusted key generator generates two randomized or-
thogonal matrices A ∈ R|Is|×|Is| and B ∈ R|Xtd|×|Xtd|

(|Xtd| = |Xt| + |Xd|). B is further partitioned to two
parts Bt ∈ R|Xt|×|Xtd| and Bd ∈ R|Xd|×|Xtd|, i.e.,
BT = [BT

t |BT
d].

2. A and Bt are sent to the task party; A and Bd are sent to
the data party.

3. Each party does a local computation by masking their
own feature matrices with the received matrices:

Ŝk = ASkBk,∀k ∈ {t, d} (2)

4. Both task and data parties send Ŝt and Ŝd to a third-
party server3 and the third-party server runs SVD on the
combined data matrix Ŝ = ÛΣV̂ T , where Ŝ = [Ŝt|Ŝd].
Û is then sent to the task party.

5. The task party can recover the federated latent represen-
tation of shared users, denoted as xfed

s , by

xfed
s = U = AT Û (3)

Compared to the original FedSVD which aims to recover
both U and V [Chai et al., 2021], we only need to recover U .
Hence, in our method, only U ′ is transmitted to the task party
to reduce the communication cost. The correctness of the

3The third-party server needs to be semi-honest. Note that in
FL, such a security configuration (i.e., the information aggregation
server is semi-honests) is widely accepted [Yang et al., 2019].

above process depends on the fact that S and Ŝ (multiplying
S by two orthogonal matrices) must hold the same singular
value Σ. For the proof on the correctness and security of
FedSVD, please refer to [Chai et al., 2021].

3.3 Local Representation Distillation
After obtaining xfed

s for shared samples, Step 2 aims to en-
rich the task party’s local sample representations. We thus
design a novel local feature extracting strategy, which is com-
bined with knowledge distilling from shared samples’ xfed

s .
Specifically, for a certain unsupervised local representation
learner, we enhance it by adding a new loss function, i.e.,
making the shared samples Is’s learned representations be
close to xfed

s , thus enabling the knowledge distillation effect.
In our mechanism implementation, we consider one of

the most widely-used unsupervised representation extraction
methods, auto-encoder [Hinton and Salakhutdinov, 2006].
Especially, if the input features are from a shared sample, we
add a new knowledge distillation loss function by comparing
the encoder’s output to the shared sample’s federated repre-
sentation (learned from Step 1),

Ldistill(x
t
s) = |Enc(xt

s)− xfed
s | (4)

where xt
s is the shared samples’ local features in the task

party. Hence, the complete loss function of the distilled auto-
encoder is,

loss =

{
Lrecons(x

t
i) + θLdistill(x

t
i) i ∈ Is

Lrecons(x
t
i) i ∈ It \ Is

(5)

That is, for the task party’s (non-shared) local samples, the
loss function is the same as the original auto-encoder. For the
shared samples, a new knowledge distillation loss is added to
the original reconstruction loss; θ is the weight parameter to
balance two loss function parts.

After training the federated-representation-distilled auto-
encoder until convergence, the encoder part Enc can be a
feature enrichment function for the task party’s local sam-
ples. That is, for i ∈ It \ Is, Enc(xt

i) can be used to enrich
the original local feature xt

i. In other words, the enriched lo-
cal samples’ representations x∗

i = ⟨xt
i, Enc(xt

i)⟩ are given to
Step 3 for training a task-specific machine learning model.

When there are n data parties, the task party can repeat the
aforementioned Step 1 and 2 with each data party. Specifi-
cally, for each data party di, the task party can learn a local
feature enrichment function Enci. Then, by aggregating n lo-
cal feature enrichment functions learned from n data parties,
the local samples’ final enriched representations become,

x∗
i = ⟨xt

i, Enc1(x
t
i), Enc2(x

t
i), ..., Encn(x

t
i)⟩ (6)

3.4 Mechanism Updating
In general, our mechanism is efficient to update without the
need of completely re-running three steps for all the parties.

• Local Incremental Learning - New task party samples.
Note that the representation distillation is conducted lo-
cally at the task party. Then, if the task party t has a
number of new local samples, t can locally re-conduct
the representation distillation to learn an updated local

Dataset #Samples #Features #Shared Samples

HAPT 5,000 250 3,000
Gisette 4,000 2,500 1,000
RNA-Seq 600 8,000 500
PCam16k 8,000 20,000 5,000
SUSY 1,500,000 6 20,000

Table 1: Default data samples and features held by a data party or
the task party. The shared samples are the samples shared by the
task party and an arbitrary data party.

feature enrichment function. The task party t does not
need to communicate with any data parties for this up-
dating, which is very efficient and convenient.4

• Task Independence - New tasks. Similar to new sam-
ples, if the task party t has a new task label to predict, t
also does not need to communicate with other parties. t
only needs to repeat Step 3 with the new task label.

• Knowledge Extensibility - New data parties. As we
have discussed for the scenario of multiple data par-
ties, it is easy to update our mechanism for new-coming
data parties. In particular, the task party can learn a
new local feature enrichment function Enc′ from the
new data party (repeat Step 1 and 2 with the new data
party), and then enrich the local feature representation
as x∗

i = ⟨x∗
i , Enc′(xt

i)⟩.

4 Evaluation
In this section, we empirically verify the effectiveness of our
mechanism with three real-life datasets. Our experiments
were performed on the workstation using Intel(R) Xeon(R)
Silver 4210R CPU @ 2.40GHz, 50GB RAM, PyTorch 1.10.0,
Python 3.8 and Cuda 11.3.

4.1 Datasets
We evaluate our mechanism on the following datasets.

• Human Activities and Postural Transitions (HAPT)
[Reyes-Ortiz et al., 2016] is an activity recognition
dataset based on smartphone sensor readings. The
dataset dimension is R10929×561. The task label is the
activity type (12 types).

• Gisette [Guyon et al., 2006] is a handwritten digit
dataset containing the confused ‘4’ and ‘9’ samples with
5000 features (pixels). The dimension is R13500×5000.
The task is a binary classification to identify ’4’ or ’9’.

• Gene Expression Cancer RNA-Seq (RNA-Seq) [Chang
et al., 2013] dataset includes gene expressions in pa-
tients with different types of tumor. The dimension is
R801×20531 and there are 5 tumor types to predict.

4In practice, for new samples, the existing local feature enrich-
ment function (without updating) can still be used. Our evaluation
would test this setting (Sec. 4.5).

• PCam16k [Singh, 2021] is a supervised binary classi-
fication dataset published on OpenML with dimension
R16000×27648.

• SUSY [Baldi et al., 2014] dataset describes a binary clas-
sification problem for distinguishing signal processes
that produce supersymmetric particles from background
processes that do not. Its dimension is R5000000×19,
where the first 8 features describe the kinematics of the
particle and the last 10 features are functions of the first
8 features.

Table 1 shows the default data split to different parties in
the experiments. We suppose that there exist one task party
and one data party by default. Due to the page limitation, for
most experiments, we show the results on HAPT and Gisette
datasets.

4.2 Baselines
As far as we know, no existing methods are designed specifi-
cally for the multi-party vertical knowledge transfer problem
(Sec. 2.2). Hence, to verify the effectiveness of our mecha-
nism, we compare it with the baseline method using only the
task party’s local features. Moreover, we assume that sam-
ples’ full features are known and thus build a baseline as the
upper bound of the knowledge transfer performance.

• LOCAL: This baseline leverages only the task party’s lo-
cal features for training the task-specific model.

• FULL: For this baseline, we assume that full features of
the task party’s samples are known for training a ma-
chine learning model. This baseline is not a valid solu-
tion to our vertical federated knowledge transfer prob-
lem, but it can be seen as the upper bound of the knowl-
edge transfer performance.

Note that we can leverage various machine learning algo-
rithms to train the task-specific model. In our experiments,
we use the random forest as the default machine learning al-
gorithm. We also test the other popular algorithms including
KNN, XGBoost [Chen and Guestrin, 2016], and neural net-
works for robustness check.

4.3 Training Configurations
We choose Adam optimizer for training auto-encoder, with
learning rate = 0.001, batch size = 100, epoch = 20. The
default layer number is 3 and the activation function is SIG-
MOID. Meanwhile, we also carry out experiments under the
different numbers of hidden layers with three activation func-
tions to verify the mechanism’s robustness.

For all the datasets, when training the task-specific predic-
tion model, we choose 80% of the data as the training set and
20% as the test set. In order to prevent the interference of
random seeds, we carry out experiments under 30 different
random seeds and compute the average results.

4.4 Main evaluation
We first report the results when there is only one data party.
Fig. 2 and 3 show the prediction performance on HAPT by
varying the number of features in the task and data party, re-
spectively. Our mechanism can obtain the similar good per-
formance on Gisette (Fig. 5 and 6). Results show that our

50 100 150 200 250
Task party's feature number

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960
Ac

cu
ra

cy

Our
FULL
LOCAL

Figure 2: Prediction accuracy by varying the
task party’s feature number (HAPT).

200 250 300 350 400 450
Data party's feature number

0.92

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 3: Prediction accuracy by varying the
data party’s feature number (HAPT).

750 1000 1250 1500 1750 2000
Number of shared samples

0.92

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 4: Prediction accuracy by varying the
number of shared samples (HAPT).

1000 1250 1500 1750 2000 2250 2500 2750
Task party's feature number

0.948

0.950

0.952

0.954

0.956

0.958

0.960

0.962

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 5: Prediction accuracy by varying the
task party’s feature number (Gisette).

1000 1250 1500 1750 2000 2250 2500 2750
Data party's feature number

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 6: Prediction accuracy by varying the
data party’s feature number (Gisette).

750 1000 1250 1500 1750 2000 2250 2500
Number of shared samples

0.93

0.94

0.95

0.96

0.97

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 7: Prediction accuracy by varying the
number of shared samples (Gisette).

#Method RNA-Seq PCam16k SUSY

Our 0.9667 0.7425 0.7311
FULL 0.9689 0.7432 0.7990
LOCAL 0.9556 0.7250 0.7189

Table 2: Prediction accuracy on other datasets.

mechanism can consistently outperform the LOCAL base-
line, which verifies the generalizable effectiveness of our ver-
tical knowledge transfer mechanism. Besides, when the fea-
ture number increases (either the task party or the data party),
our mechanism’s accuracy gradually goes up.

Fig. 4 and 7 show how our mechanism performs by chang-
ing the number of shared samples between the task party and
the data party. As expected, if there are fewer shared sam-
ples, the transfer performance degrades. This is because the
knowledge transfer source is the shared samples — the more
shared samples exist, the better knowledge transfer performs.

Fig. 8 and 9 explore our mechanism’s performance with
the different number of data parties. With the increase of data
parties, the performance of our mechanism grows obviously.
This means that our mechanism can obtain effective informa-
tion from multiple data parties to make up for the shortcom-
ings of insufficient data volume or fewer features.

In addition to HAPT and Giesette, Table 2 shows the ex-
periment results on the other three datasets. Our mechanism
consistently outperforms LOCAL, verifying the generalized

effectiveness of our knowledge transfer method in various
datasets.

4.5 Inductive Learning Results
Moreover, we check how our mechanism can facilitate induc-
tive learning, i.e., new samples of the task party (the samples
not used in training the encoder model). In reality, new sam-
ples are often with a different feature/label distribution from
old samples since many factors may change with time going.
We thus also purposely choose new samples so that their label
distribution is obviously different from old samples as a non-
IID experiment setting. Fig. 10 demonstrates that our mech-
anism can achieve better performance than LOCAL for both
IID and non-IID new samples. Specifically, while the pre-
diction accuracy decreases for both our method and LOCAL
when the experiment setting changes from IID to non-IID,
the loss of accuracy is much smaller for our method. This re-
veals the good generalizability of our mechanism’s enriched
representations.

4.6 Robustness Check
There are certain experimental hyper parameters. Here, we
change such parameters to verify the robustness of our ex-
perimental results. Table 3 illustrates the prediction accuracy
change when we modify the structure of auto-encoders in our
mechanism. We can see that the resultant accuracy is robust
to such modifications. Fig. 11 plots the prediction accuracy
when applying different machine learning algorithms to train
the task-specific prediction model. The results verify that our

3 4 5 6 7
Number of data parties

0.90

0.92

0.94

0.96

0.98
Ac

cu
ra

cy

Our
FULL
LOCAL

Figure 8: Prediction accuracy by varying the
number of data parties (Gisette).

3 4 5 6 7
Number of data parties

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Our
FULL
LOCAL

Figure 9: Prediction accuracy by varying the
number of data parties (HAPT).

IID Non-IID
Type of new sample

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Our(HAPT)
LOCAL(HAPT)
Our(Gisette)
LOCAL(Gisette)

Figure 10: Prediction accuracy of new sam-
ples.

#Layers Sigmoid ReLU Tanh Leaky-ReLU

2 0.9504 0.9506 0.9501 0.9503
4 0.9510 0.9520 0.9504 0.9505
6 0.9501 0.9508 0.9505 0.9510
8 0.9503 0.9511 0.9509 0.9513
10 0.9505 0.9513 0.9513 0.9510
12 0.9516 0.9518 0.9510 0.9514

Table 3: Prediction accuracy by changing the layers and activation
functions in the auto-encoder (Gisette).

mechanism can consistently outperform LOCAL under an ar-
bitrary machine learning model, indicating the robustness of
our knowledge transfer mechanism.

4.7 Viability Analysis
In order to further verify the effectiveness of our mecha-
nism on knowledge transfer, we compared the changes in pre-
diction accuracy before and after using our newly designed
loss function, i.e., |Enc(xt

s) − xfed
s |. As Fig.12 shows, the

prediction accuracy was significantly improved with the use
of the novel loss component for knowledge transfer. Sim-
ilarly, Fig.13 and 14 show that when the features of the
task party change, our mechanism always performs better
than the mechanism without knowledge transfer. The re-
sults show that the proposed penalty is effective and can
carry out reasonable knowledge transfer. In particular, adding
|Enc(xt

s) − xfed
s | into the loss function of auto-encoder as

penalty can provide a more reasonable auxiliary conversion
means for knowledge transfer. xfed

s can be regarded as the
teacher and Enc(xt

s) as the student. Students use their own
data and the teacher’s shared data xfed

s to conduct knowledge
distillation. This process makes the generated representations
benefit from the teacher’s shared knowledge (which is learned
from both task party and data party’s raw features).

4.8 Computation Time
We record the computation time of our mechanism by varying
the number of data parties and the number of shared samples.
To keep the computation time to an order of magnitude, we

calculated the time to run our mechanism 10 times on HAPT
dataset. The results are shown in Fig. 15 and 16, respectively.
In general, the computation time of our mechanism is linearly
proportional to the number of data parties and the number of
shared samples. This linear relationship indicates the good
scalability of our mechanism.

5 Related Work
Vertical FL focuses on cross-organization collaborative learn-
ing. The common setting is that different organizations
hold different features of the same set of samples, which is
also often known as vertical FL [Yang et al., 2019]. An-
other mainstream of FL algorithms, known as horizontal FL,
have general-purpose optimization algorithms such as Fe-
dAvg [McMahan et al., 2017] for building various machine
learning models; however, for vertical FL, up to date, there
is no such general-purpose learning algorithms. In particular,
for different machine learning models, researchers have pro-
posed diverse mechanisms, such as tree-based models [Cheng
et al., 2019; Wu et al., 2020] and neural networks [Hu et al.,
2019].

Compared to these existing vertical FL algorithms, the key
difference of our mechanism is the application scope. Ex-
isting vertical FL algorithms focus on improving the predic-
tion performance on shared samples. In contrast, our mech-
anism aims to improve the prediction performance of each
party’s local (non-shared) samples by transferring the knowl-
edge from shared samples. We believe that our mechanism
can be a good complement to existing vertical FL algorithms,
thus boosting the practicability of FL in reality.

A prior study close to our research is the FTL (federated
transfer learning) framework [Liu et al., 2020]. However, our
knowledge transfer process is task-independent, which means
that the distilled representation of the task party’s samples
(i.e., learned from the distilled encoder) can benefit an arbi-
trary machine learning task for the task party; in comparison,
FTL works only for a predefined machine learning task.

6 Conclusion
In this paper, we propose a vertical federated knowledge
transfer mechanism to transfer the knowledge from cross-
party shared samples to each party’s local samples. Our

Random Forest KNN XGBoost Neural Network
Method

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Ac

cu
ra
cy

Our(Gisette)
LOCAL(Gisette)
Our(HAPT)
LOCAL(HAPT)

Figure 11: Prediction accuracy of different
machine learning models.

RNA-Seq Gisette HAPT PCam16k SUSY
Dataset

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Our
Without knowledge transfer

Figure 12: Changes in prediction accuracy
with different datasets before and after knowl-
edge transfer.

50 100 150 200 250
Task party's feature number

0.925

0.930

0.935

0.940

0.945

0.950

0.955

Ac
cu

ra
cy

Our
Without knowledge transfer

Figure 13: Changes in prediction accuracy
with different task party’s feature number be-
fore and after knowledge transfer (HAPT).

1000 1250 1500 1750 2000 2250 2500 2750
Task party's feature number

0.9425

0.9450

0.9475

0.9500

0.9525

0.9550

0.9575

0.9600

0.9625

Ac
cu

ra
cy

Our
Without knowledge transfer

Figure 14: Changes in prediction accuracy
with different task party’s feature number be-
fore and after knowledge transfer (Gisette).

2 3 4 5 6 7
Number of data parties

200

400

600

800

1000

1200

1400
Co

m
pu

ta
ti

on
 t

im
e

(s
)

HAPT (10 times)
Gisette

Figure 15: Computation time by varying the
number of data parties.

1000 2000 3000 4000
Number of shared samples

500

1000

1500

2000

Co
m

pu
ta

ti
on

 t
im

e
(s

)

HAPT (10 times)
PCam16k

Figure 16: Computation time by varying the
number of samples per party.

mechanism can significantly improve the application scenar-
ios of vertical FL as it is complementary to the traditional
solutions that only work for shared samples. Experiments on
five real-life datasets and varying configurations verify the ef-
fectiveness of our mechanism.

In the future, we aim to explore more possible techniques
used in Step 1 and 2 of our mechanism to improve the knowl-
edge transfer performance. For instance, contrastive learning
has become a popular way for self-supervised representation
learning, and researchers have recently studied certain feder-
ated contrastive learning methods [Li et al., 2021]. We would
like to explore whether it is possible to incorporate federated
contrastive learning into our mechanism for further enriching
local samples’ representations.

References
[Baldi et al., 2014] Pierre Baldi, Peter Sadowski, and Daniel

Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature communications,
5(1):1–9, 2014.

[Chai et al., 2021] Di Chai, Leye Wang, Lianzhi Fu, Junxue
Zhang, Kai Chen, and Qiang Yang. Federated singular
vector decomposition. ArXiv, abs/2105.08925, 2021.

[Chang et al., 2013] Kyle Chang, Chad J Creighton, Caleb
Davis, Lawrence Donehower, Jennifer Drummond, David
Wheeler, Adrian Ally, Miruna Balasundaram, Inanc Birol,

Yaron SN Butterfield, et al. The cancer genome atlas pan-
cancer analysis project. Nat Genet, 45(10):1113–1120,
2013.

[Chen and Guestrin, 2016] Tianqi Chen and Carlos Guestrin.
Xgboost: A scalable tree boosting system. Proceedings
of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016.

[Cheng et al., 2019] K. Cheng, T. Fan, Yilun Jin, Yang Liu,
Tianjian Chen, and Qiang Yang. Secureboost: A lossless
federated learning framework. ArXiv, abs/1901.08755,
2019.

[Guyon et al., 2006] Isabelle Guyon, Jiwen Li, Theodor
Mader, Patrick A Pletscher, Georg Schneider, and Markus
Uhr. Feature selection with the clop package. Technical
report, Technical report, 2006.

[Hinton and Salakhutdinov, 2006] Geoffrey E. Hinton and
Ruslan Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313:504 – 507, 2006.

[Hinton et al., 2015] Geoffrey E. Hinton, Oriol Vinyals, and
Jeffrey Dean. Distilling the knowledge in a neural net-
work. ArXiv, abs/1503.02531, 2015.

[Hu et al., 2019] Yaochen Hu, Di Niu, Jianming Yang, and
Shengping Zhou. Fdml: A collaborative machine learning
framework for distributed features. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2232–2240, 2019.

[Kamara et al., 2014] S. Kamara, Payman Mohassel, Mari-
ana Raykova, and Seyed Saeed Sadeghian. Scaling private
set intersection to billion-element sets. In Financial Cryp-
tography, 2014.

[Kosinski et al., 2013] Michal Kosinski, David Stillwell, and
Thore Graepel. Private traits and attributes are predictable
from digital records of human behavior. Proceedings of the
national academy of sciences, 110(15):5802–5805, 2013.

[Li et al., 2021] Qinbin Li, Bingsheng He, and Dawn Xi-
aodong Song. Model-contrastive federated learning. 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10708–10717, 2021.

[Liu et al., 2020] Yang Liu, Yan Kang, Chaoping Xing,
Tianjian Chen, and Qiang Yang. A secure federated trans-
fer learning framework. IEEE Intelligent Systems, 35:70–
82, 2020.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[Reyes-Ortiz et al., 2016] Jorge-L Reyes-Ortiz, Luca Oneto,
Albert Sama, Xavier Parra, and Davide Anguita.
Transition-aware human activity recognition using smart-
phones. Neurocomputing, 171:754–767, 2016.

[Singh, 2021] Prabhant Singh. Pcam16k. https:
//www.openml.org/search?type=data&sort=runs&id=
42811&status=active, 2021. Accessed: 2021-03-08.

[Wu et al., 2020] Yuncheng Wu, Shaofeng Cai, Xiaokui
Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving
vertical federated learning for tree-based models. VLDB,
13(11):2090–2103, 2020.

[Yang et al., 2018] Timothy Yang, Galen Andrew, Hubert
Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. Applied federated
learning: Improving google keyboard query suggestions.
arXiv preprint arXiv:1812.02903, 2018.

[Yang et al., 2019] Qiang Yang, Yang Liu, Tianjian Chen,
and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Transactions on Intelligent Systems
and Technology, 10(2):12, 2019.

https://www.openml.org/search?type=data&sort=runs&id=42811&status=active
https://www.openml.org/search?type=data&sort=runs&id=42811&status=active
https://www.openml.org/search?type=data&sort=runs&id=42811&status=active

	Introduction
	Problem Formulation
	Concepts
	Research Problem

	Mechanism Design
	Overview
	Federated Representation Learning
	Local Representation Distillation
	Mechanism Updating

	Evaluation
	Datasets
	Baselines
	Training Configurations
	Main evaluation
	Inductive Learning Results
	Robustness Check
	Viability Analysis
	Computation Time

	Related Work
	Conclusion

