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Abstract
Natural gas load forecasting is essential to retail-
ers in terms of profit-making and service quality.
In practice, a retailer has limited consumer load
data to build an accurate prediction model. Fed-
erated learning enables retailers to train a global
model collaboratively, without compromising data
privacy. However, it could not behave well on all
consumers due to their diversity, e.g., different load
patterns. To address this data heterogeneity issue,
we propose a cluster-driven personalized federated
learning (CPFL) framework. Firstly, a knowledge-
based federated clustering is proposed to categorize
similar consumers from different retailers into clus-
ters in a privacy-preserving manner. Then, vanilla
federated learning is adopted to pre-train a global
model, leveraging all available data from retail-
ers. Finally, the pre-trained model is fine-tuned
and personalized to each cluster respectively, us-
ing an attention-based model aggregation strategy
according to the contribution difference of individ-
ual consumers in the cluster. Comprehensive ex-
periments are conducted using a real-world data set
with 2000 consumers from eight retailers, and the
results show our proposed CPFL framework out-
performs the state-of-the-art personalized federated
learning approaches for time-series forecasting.

1 Introduction
Natural gas load forecasting [Liu et al., 2021; Wei et al.,
2019] is essential to retailers in terms of profit-making (e.g.,
demand management, resource coordination, and pipeline
network planning) and service quality (e.g., safety manage-
ment, personalized contract and proactive scheduling). With
the rapid development of AI technologies, complex deep
learning models trained by large amounts of data extract time-
series features and thus enable accurate forecasting. How-
ever, the retailer usually serves a certain number of consumers
within a region or even a small city. Its data is likely insuffi-
cient to support a high-performance deep learning model. In
addition, it is probable to deduce consumers’ operation and
business confidential information through their energy load.
Retailers are committed to preserve consumers data privacy

Figure 1: Vanilla federated learning leverages data from different re-
tailers but could not address data heterogeneity issues among them.
Experiments show that the federated model is even worse than the
solo models trained using the data of individual consumers respec-
tively.

without sharing to any others. Consequently, reputable retail-
ers are reluctant to upload data for centralized model training
in practice.

A new AI paradigm federated learning (FL) is proposed
in [McMahan et al., 2017], which enables participants to
jointly train a model without sharing their data. It has ob-
tained great achievements in various industry domains, in-
cluding healthcare, finance service and smart cities [Yang et
al., 2019]. Recently, federated learning has also been used
in load forecasting [Taı̈k and Cherkaoui, 2020; Husnoo et
al., 2022; Fekri et al., 2022]. However, most FL application
scenarios assume data from all participants are independent
and identically distributed (IID). In real-world cases, this as-
sumption is hard to be satisfied due to the diversity among
participants. We conduct experiments with vanilla federated
learning using federated average (FedAvg) model aggrega-
tion strategy on 2000 consumers. As shown in Figure 1(b),
the federated model trained by all available data performs
even worse than individual models trained for each consumer.

In order to alleviate the impact of data heterogeneity and
thus improving model performance, several personalized fed-
erated learning mechanisms have been proposed for vari-
ous application domains including CV and NLP [Tan et
al., 2022]. Specifically, in the time series forecasting field,
[Wang et al., 2022] propose to fine-tune the global federated
model to personalized models for individual electricity con-
sumers. Unfortunately, the very limited data of each con-
sumer make the personalized model prone to bias and over-



fitting. Moreover, a large number of models can also increase
the management cost of the retailers. In addition, [Guo et al.,
2022] propose to build personalized federated models using
similar data within the cluster only. However, this method
could not fully exploit the advantages of federated learning
as retailers’ data out of the cluster are not used. Furthermore,
the proposed similarity-based methods are data-driven with-
out exploring the domain knowledge (e.g., time-series data
processing and pattern recognition). Therefore, designing an
effective personalized federated learning framework that can
adapt to individual consumers properly remains crucial.

According to our domain knowledge, consumers from dif-
ferent retailers may have similar load patterns, for instance,
if they are from the same region and/or the same indus-
try sector. Therefore, a cluster of similar consumers who
shares the same model could achieve higher prediction ac-
curacy, while avoiding over-fitting and reducing manage-
ment cost. From the other perspective, the data of con-
sumers from different clusters may also be valuable espe-
cially for extracting low-level common features. In order
to take advantage of both perspectives, we propose a two-
phase cluster-driven personalized federated learning frame-
work. Firstly, a global model is pre-trained using vanilla
federated learning by leveraging all available data from re-
tailers. Then, the global model is fine-tuned for each clus-
ter in a federated learning manner using its consumers’ data
from different retailers. In other words, consumers within
the same cluster cooperated with each other to build a ro-
bust and accurate personalized model, while keeping their
data within its retailer’s sovereignty. Furthermore, consumers
in the same cluster are not identical, and thus have dif-
ferent contributions to the personalized model. Hence, an
attention-based model aggregation strategy is adopted in the
fine-tuning federated learning phase, considering different
weights of consumers’ local model updates. Experimental
results on 2000 consumers from eight retailers show that our
proposed framework outperforms the aforementioned person-
alized federated learning approaches [Wang et al., 2022;
Guo et al., 2022]. Moreover, the performance of our frame-
work is less sensitive to the number of clusters, compared
with other cluster-driven personalized approaches.

The main contributions of this paper are as follows:
• A cluster-driven personalized federated learning for nat-

ural gas load forecasting is proposed to leverage all
available data while considering their heterogeneity.

• A knowledge-based federated clustering is proposed to
categorize similar customers into clusters in a privacy-
preserving manner, based on our industry domain
knowledge and time-series data analytic experiences.

• A two-phased federated learning mechanism is pro-
posed, enabling retailers to pre-training a global model
and then fine-tuning it to personalized models with re-
spect to consumer clusters collaboratively in a federated
learning manner.

• An attention-based model aggregation strategy is intro-
duced in fine-tuning phase, to capture the contributions
of individual consumers to the personalized federated
model of their cluster.

The rest of this paper is organized as follows. Section 2
reviews the related work on personalized federated learning
especially for time-series forecasting,. Section 3 introduces
CPFL framework and technical details of each module. Sec-
tion 4 reports experiments on a real-world dataset. Section 5
concludes this paper.

2 Related Work
2.1 Time-series Forecasting
Over the years, time series forecasting is a hot topic in both
industry and academy communities. The continuous efforts
could be classified into the following three groups with the
increasing model complexity: 1) statistical approaches such
as autoregressive integrated moving average(ARIMA) [Prad-
han et al., 2016], 2) machine learning models such as XG-
Boost [Li and Zhang, 2018], 3) deep learning models such as
LSTM [Peng et al., 2021] and transformer [Xu et al., 2021].
Complex deep learning models trained by large amounts of
data could extract time series features automatically, and re-
lieve the burden of time-consuming data pre-processing and
feature engineering. However, in practice, a retailer serving
parts of consumers within a region usually has insufficient
data to train a high-performance deep learning model. There-
fore, it is desirable to enable retailers to collaborate with each
other to train AI models using their data in a secure way.

2.2 Federated Learning
With the emergence of Federated Learning [McMahan et al.,
2017], participants could jointly train a model by exchang-
ing model updates instead of the raw data, reducing the risk
of confidential information leakage. As society is more and
more concerned with privacy protection, federated learning
becomes popular in various applications. The most relevant
studies to this paper are [Fekri et al., 2022; Wang et al., 2019]
apply federated learning to load forecasting with smart me-
ter IoT data. Despite the popularity of FL, researchers have
pointed out that the performance of vanilla FL models may
degrade significantly, in the case that data from different par-
ticipants could not satisfy IID assumption [Sattler et al., 2019;
Sattler et al., 2020; Briggs et al., 2020]. To address the is-
sue, different model aggregation strategies (e.g., FedProx [Li
et al., 2020]) and Scaffold [Karimireddy et al., 2020]) are
proposed to replace classical federate averaging. [Ji et al.,
2019] proposed an attention-based model aggregation strat-
egy considering different contributions of participant model
updates to the global model. However, the aggregated global
model could not obtain optimum performance for all partici-
pants due to high diversity. Consequently, it is still challeng-
ing to deploy FL models in real-world application scenarios.

2.3 Personalized Federated Learning
As data heterogeneity issue is very common in applica-
tions and critical to FL model performance, a number of
researches are conducted in these few years [Tan et al.,
2022] to address the issue. There are two research direc-
tions most relevant to our work. The first is to obtain a
personalized FL model for individuals [Wang et al., 2019;
Chen et al., 2020]. In the healthcare sector, [Chen et al.,



Figure 2: The framework of cluster-driven personalized federated learning.

2020] propose a federated transfer learning framework that
enables collaborations among large amounts of wearable de-
vices, which aggregates device local models through feder-
ated learning and then obtains a personalized model through
transfer learning. In the energy sector, [Wang et al., 2022]
propose a personalized federated learning for individual con-
sumer electricity load forecasting. The algorithm first trains
a global federated model and then performs fine-tuning with
each consumer’s data to obtain its personalized model. The
second is to obtain a personalized FL model for each cluster
of similar individuals. In the healthcare sector, [Huang et al.,
2019] propose to cluster the distributed data into clinically
meaningful communities and learnt one personalized model
for each community. In the manufacturing sector, [Guo et
al., 2022] propose a multi-task machinery fault diagnosis al-
gorithm, according to the similarity of equipment IoT data
features. In addition, [Sattler et al., 2020] propose a clus-
tered federated learning based on multi-task optimization.

The aforementioned personalized federated learning ap-
proaches are either prone to bias and over-fitting due to
very limited data of individuals or could not fully utilize the
valuable data from all participants. Instead, our proposed
framework enables natural gas retailers to participate in two-
phase federated learning, which could fully exploit feder-
ated learning advantages by leveraging all available consumer
data without compromising their privacy and improve perfor-
mance by fine-tuning the pre-trained model for each cluster
according to different contributions of its consumers.

3 Cluster-driven personalized federated
learning Framework

Figure 2 illustrates cluster-driven personalized federated
learning (CPFL) framework, which consists of the following
three key functional modules:

• Knowledge-based federated clustering: categorizing
customers into clusters in a privacy-preserving manner.

• Vanilla federated learning: pre-train a global federated

model across retailers collaboratively.
• Cluster-driven personalization: fine-tune the pre-trained

global federated model for each cluster in a federated
learning manner.

Our proposed framework has three important features to
distinguish from other personalized federated learning ap-
proaches for time-series forecasting in the literature. Firstly, a
knowledge-based federated clustering categorizes consumers
with similar load patterns into the same cluster, according to
our industry domain knowledge and time-series data process-
ing experiences. In addition, the federated clustering is pro-
posed to enable retailers to obtain global information for clus-
tering consumers without compromising their privacy. Sec-
ondly, retailers participate in two-phase federated learning,
pre-training global model by leveraging as much data as pos-
sible, and fine-tuning the model for each cluster to achieve a
robust and accurate personalized model. Thirdly, we intro-
duced an attention-based aggregation strategy in fine-tuning
phase to consider the contribution difference of consumers to
the cluster, for the purpose of improving performance further.

3.1 Knowledge-based Federated Clustering

Figure 3: The flowchart of knowledge-based federated clustering.

The goal of knowledge-based federated clustering is to cat-
egorize similar consumers into clusters without revealing the
private data of retailers. The algorithm, as shown in Fig-
ure 3, was developed based on our specific natural gas dis-
tribution domain knowledge (e.g., the seasonal pattern of do-
mestic heating and manufacturing factories) and data scien-
tists’ experiences in time series data processing.

The algorithm takes historical natural gas consumption
data and general information of different consumers into ac-



Algorithm 1 Federated clustering algorithm
Input: The dataset U = {π1, π2, ..., πp} from p retailers, number
of clusters k, initial cluster centroids Ci, local epochs L, and global
epochs G.
Output: Cluster centroids C = {C1, C2, ..., Ck} and clustering
labels.
1: Client initializes cluster centroids C and send to server.
2: for g = 1, 2, ..., G do
3: The server sends the cluster centroids C to the client.
4: for l = 1, 2, ..., L do
5: Assign cluster label for each samples.
6: Client update the cluster centroids using the formula (2).
7: end for
8: Client upload the cluster centroids to the server.
9: Server update the cluster centroids using the formula (3).

10: end for

count. It decomposes the time series data through Seasonal
and Trend decomposition using Loess (STL) and then cluster-
ing consumers based on the importance of these components.
The federated clustering(k-means) module is shown in Fig-
ure 2(a), supporting frequently used centroids initialization
and distance metrics.

As shown in Algorithm 1, the cluster centroids of partici-
pants are initialized using random or k-means++ algorithms.
Each participant updates local cluster centroids based on its
consumers, using a k-means clustering algorithm. The server
receives the cluster centroids from all the clients and aggre-
gates them to obtain global cluster centroids. This process it-
erates many times until the model converges, i.e., the updates
of cluster centroids are marginal.

Suppose that the training datasets from different retail-
ers U = {π1, π2, ..., πp}, where πl = {x1, x2, ..., xn} de-
notes the data from retailer l, are partitioned into K clusters
C = {C1, C2, ..., Ck}. The objective function of federated
k-means can be formulated as:

J =

p∑
l=1

k∑
j=1

n∑
i=1

||x(πl)j
i − Cj ||2 (1)

Here, x(πl)j
i denotes the training data in cluster centroid Cj

and belonging to retailer πl. ||x
(πl)j
i − Cj ||2 denotes the dis-

tance from x
(πl)j
i to Cj . Client and server update cluster cen-

troids Ci of retailer πl using formulates 2 and 3 respectively.

C
πl
i =

1

|Cπl
i |

∑
x∈C

πl
i

x (2)

Ci =
1

p

∑
C

πl
i ∈U

C
πl
i (3)

3.2 Two-phase Personalized Federated Learning
The proposed CPFL is as shown in Figure 2, adopting two-
phases personalized federated learning as shown in Algo-
rithm 2. A global federated model is first pre-trained across
different retailers, using following objective function:

argmin
wg

L(wg) =
∑
πl∈U

∑
xi∈πl

loss(f(xi), yi) (4)

Algorithm 2 Personalized federated learning
Input: Data from different retailers U = {π1, π2, ..., πp}, results of
federated k-means C = {C1, C2, ..., Ck}, global federated epochs
G, personalized federated epochs L.
Output: Personalized federated learning model for each clus-
ter.
1: //Federated learning
2: for g = 1, 2, ..., G do
3: for l = 1, 2, ..., p do
4: Client πl update model weights wπl .
5: end for
6: Server aggregates the model weights of each client to obtain

global model weights wg .
7: end for
8: //Cluster-specific personalization
9: for i = 1, 2, ..., k do

10: Cluster Ci initializes personalized model weights wci using
wg .

11: for j = 1, 2, ..., L do
12: for l = 1, 2, ..., p do
13: Client πl update model weights wπl .
14: end for
15: Server aggregates the model weights of each client to ob-

tain personalized model weights wci .
16: end for
17: end for

,where loss(f(xi), yi) denotes the loss function of the neural
network. In this paper, mean square error(MSE) is selected
as the loss function. f(xi) denotes the forecast result and yi
denotes the ground truth. wg denotes the parameters to be
learned. p denotes the number of participators.

The pre-trained global federated model is then fine-tuned
to a personalized federated model for each cluster. Because
consumers in the same cluster are considered similar, it re-
alizes personalization in the form of federated learning in-
stead of focusing only on the data of a specific consumer. The
personalized federated model can effectively integrate useful
knowledge from different consumers and meet the needs of
privacy-preserving. The objective function is formulated as:

argmin
wci

L(wci) =
∑
πl∈U

∑
ci∈πl

∑
xi∈ci

loss(f(xi), yi) (5)

,where wci denotes the parameter of ci to be learned.

3.3 Attention-based Model Aggregation Strategy
Although we believe that consumers in the same cluster have
similar load patterns, it is necessary to analyze the contribu-
tions of consumers to the personalized federated model in a
more fine-grained manner. Because in a fine-grained view,
they are still not similar. The forecasting performance of the
personalized federated model may be sensitive to the number
of clusters. If we can consider the contribution of different
consumers to the personalized federated model in model ag-
gregation, the sensitivity may be reduced. [Ji et al., 2019]
introduce an attention mechanism into the model aggrega-
tion and propose a Federated Attention(FedAtt) algorithm.
The algorithm takes into account the distance between the
client model and server model, so that the learned features
of each client can be effectively selected to generate a better



server model. Inspired by this, this section introduces the Fe-
dAtt algorithm for personalized model aggregation. We use
euclidean distance to measure the distance between the lo-
cal model and the personalized model. Suppose that cluster
Ci = {x1, x2, ..., xn} has n consumers. At the t epoch, at-
tention score can be expressed as αt = {αt

1, α
t
2, ..., α

t
n}. for

consumer i, we calculate the euclidean distance between the
local model and personalized model as follows:

dti = ||wt+1
i − wt||2 (6)

The distance set between local model and personalized fed-
erated model can be expressed as dt = {dt1, dt2, ..., dtn}. The
attention score of i consumer on epoch t is as follows:

αi = dti/

n∑
i=1

dti (7)

The personalized model weights update is as follows:

wt+1 = wt −
n∑

i=1

αi(w
t − wt+1

i ) (8)

4 Case Studies
4.1 Experimental Settings
A real-world dataset with natural gas monthly consumption
of 2000 consumers from eight retailers is utilized in our ex-
periments. These consumers come from different sector (e.g.,
Residential, Industrial and Commercial). Since those con-
sumers may start natural gas service at different times, their
load data cover the different lengths of time periods. To en-
able meaningful training, all consumers in the dataset have at
least three years of load data. We choose the data from last
year as the test set and the data before that as the train set for
both knowledge-based federated clustering and personalized
federated learning. MSE, MAE, and MAPE metrics are used
to evaluate the performance of forecasting models with 1, 2
and 3 months forecasting horizons. In order to verify the per-
formance advantages of our proposed CPFL framework, sev-
eral model training methods are implemented and evaluated
based on the aforementioned dataset, using the same LSTM
network with a hidden layer and fully connected layer.

• Solo: train forecasting models for consumers individu-
ally.

• Centralized: collected data from all retailers and train a
centralized model.

• FedAvg [McMahan et al., 2017]: a vanilla feder-
ated learning among retailers using federated averaging
model aggregation strategy.

• FedAtt [Ji et al., 2019]: federated learning among retail-
ers using attention-based model aggregation strategy.

• PFL-Solo [Wang et al., 2022]: fine-tuning is used to per-
sonalize the global federated model for individual con-
sumers.

• CFL [Guo et al., 2022]: train a personalized federated
model for each cluster, without using data from other
clusters.

• CPFL-FedAvg: our proposed CPFL framework, without
attention-based aggregation strategy.

• CPFL-FedAtt: our proposed CPFL framework, with
attention-based aggregation strategy.

4.2 Forecasting Performance
Table 1 compares the performance of the aforementioned al-
gorithms with different forecasting horizons. FedAvg and
FedAtt perform even worse than Solo, although FL enables
them to leverage all available data. The data heterogeneity
makes them difficult to train optimum global federated mod-
els which are suitable for all consumers. Centralized model
with access to all data outperforms FedAvg and FedAtt. CFL
achieves better performance than Solo, Centralized, FedAvg
and FedAtt, as it alleviates data heterogeneity to a certain
extent through clustering. PFL-Solo achieves better perfor-
mance than Solo, Centralized, FedAvg, FedAtt and CFL, as
the pre-trained FL model fully leverages available data and
data heterogeneity issue is alleviated by fine-tuning the pre-
trained model for individual consumers. CPFL-FedAvg and
CPFL-FedAtt are our proposed algorithms without and with
an attention-based model aggregation strategy respectively.
Both of them outperform the aforementioned personalized FL
algorithms, as our CPFL adopts two-phase FL leveraging all
available data and fine-tuning personalized FL model to clus-
ters lowering the risk of over-fitting. CPFL-FedAtt outper-
forms CPFL-FedAvg, as it takes into account the contribu-
tions of different consumers to the personalized model in the
fine-tuning and personalization phase.

Figure 4: MAPE of CPFL-Att against Solo.

4.3 Forecasting Performance Distribution
Figure 4 illustrates the advantages of CPFL-FedAtt over Solo
in terms of MAPE for 2000 consumers. The red circle rep-
resents the performance enhancement while the blue star rep-
resents the performance degradation after participating in our
proposed federated learning framework using CPFL-FedAtt
algorithms. It is obvious that more consumers could achieve



Methods 1 month 2 month 3 month
MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

Solo 0.0148 0.0919 0.2152 0.0170 0.0990 0.2324 0.0188 0.1037 0.2433
Centralized 0.0138 0.0883 0.1991 0.0181 0.1030 0.2308 0.0209 0.1118 0.2484

FedAvg 0.0155 0.0990 0.2473 0.0212 0.1180 0.3047 0.0238 0.1252 0.3264
FedAtt 0.0154 0.0987 0.2453 0.0208 0.1168 0.2995 0.0237 0.1249 0.3237
CFL 0.0130 0.0863 0.2018 0.0155 0.0955 0.2274 0.0168 0.0999 0.2396

PFL-Solo 0.0129 0.0851 0.2000 0.0158 0.0954 0.2262 0.0174 0.1000 0.2370
CPFL-FedAvg 0.0129 0.0848 0.1982 0.0151 0.0930 0.2212 0.0162 0.0968 0.2321
CPFL-FedAtt 0.0126 0.0834 0.1930 0.0148 0.0911 0.2137 0.0161 0.0956 0.2261

Table 1: Performance Comparison among model training algorithms with different forecasting horizons.

higher performance using CPFL-FedAtt than Solo, and the
extent of performance improvement is also more significant.
Figure 5 reports the MAPE distribution of the Solo and
CPFL-Att. The number of consumers with MAPE less than
0.2 increased significantly after participating CPFL-FedAtt,
while consumers with MAPE greater than 0.3 decreased sig-
nificantly. In other words, CPFL-Att model enables more
consumers achieve desirable forecasting accuracy, which is
beneficial to both consumers and retailers for proper demand
management and resource scheduling.

Figure 5: MAPE distribution of our model and Solo.

4.4 Performance on Different Number of Clusters
The number of clusters is one of the most critical parame-
ters in cluster-driven approaches. With the increasing num-
ber of consumers in the same cluster, a better model general-
ization could be expected, but the data heterogeneity among
many consumers may affect forecasting performance. Fig-
ure 6 reports forecasting performance (in terms of MAPE) of
CFL, CPFL-FedAvg and CPFL-FedAtt with different num-
bers of clusters. CFL uses data within the cluster only, and
thus its performance is sensitive to the number of clusters. To
the extreme, if the number of clusters is very small, the CFL
performs similarly to vanilla federated learning. In contrast,
if the number of clusters is very large, CFL performs simi-
larly to Solo models. CPFL-Avg reports better performance
than CFL. If the number of clusters is very large, the CPFL-
Avg performs similarly to PFL-Solo. That is, fine-tuning the
global model for each consumer. This could lead to bias and
over-fitting. CPFL-Avg leverage all data from retailers and

fine-tune a personalized model for each cluster but ignores
the different contributions of consumers to the personalized
model. CPFL-Att not only uses the data of all consumers
but also takes into account the contribution of different con-
sumers to the personalized model. This makes the model
more robust and less sensitive to the number of clusters.

Figure 6: MSE with different number of clusters.

5 Conclusion and Future Work
In this paper, we proposed a cluster-driven personalized fed-
erated learning (CPFL) framework for natural gas load fore-
casting. It enables retailers to work together to categorize
their consumers into a number of clusters based on domain
knowledge, and then train a personalized model for each clus-
ter by two-phased federated learning, for the purpose of lever-
aging all available data and addressing data heterogeneity is-
sues properly. According to our experiments based on a real-
world dataset, the CPFL framework can achieve better perfor-
mance than other personalized FL approaches recently pro-
posed in the literature.

In the future, we will further improve the performance of
the CPFL framework from multiple perspectives. For exam-
ple, we will explore the feasibility of much larger deep learn-
ing networks (e.g., transformer) for datasets with more con-
sumers and daily (or hourly) energy consumption. We may
also consider the relationship among clusters to get the most
valuable knowledge selectively (e.g., using graph neural net-
work) for model performance enhancement.
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