
RRCM: A Fairness Framework for Federated Learning

Jianyi Zhang1,2,∗ , Wenxin Wang1 , Zhi Sun1 , Zixiao Xiang1 Yuyang Han1 ,
1Beijing Electronic Science and Technology Institute, Beijing 100070, China

2University of Louisiana at Lafayette, Louisiana 70503, US.
∗Corresponding author

zjy@besti.edu.cn

Abstract
In recent years, federated learning still suffers from
unfair incentive mechanisms in industrial systems.
This situation will result in data owners in the sys-
tem that may no longer actively contribute higher
weighted local models to the central server. In
this paper, we propose a method to achieve fair-
ness in federated learning processing by setting
a reputation system, reward-punishment and cost-
interest compensation mechanism. Moreover, we
have introduced a method of compensating for
costs and interest to rationalize the commercializa-
tion process for the federal system. Experiments
on fairness, accuracy, and compensation trends on
benchmark datasets show that the proposed method
can achieve higher fairness than traditional frame-
works.

1 Introduction
With the promulgation of the data protection regulations

GDPR[Yang et al., 2019] and CCPA[Truex et al., 2020], fed-
erated learning (FL) has received extensive attention from all
walks of life because of its ability to protect data informa-
tion through the transfer of models[Hard et al., 2018]. For
example, WeBank officially open-sourced the world’s first
industrial-grade FL framework FATE in 2019[Kholod et al.,
2021]. Although the research on communication routing and
backdoor defense of federation technology continues to ma-
ture in recent years, the incentive mechanism may become
a shortcoming that restricts its future development[Li et al.,
2021]. In a typical commercialized scenario of federated
learning, the central coalition makes multiple iterations of
the contributions uploaded by each alliance to form a global
model. The global model can be used as a commercial prod-
uct to obtain revenue. All clients obtain rewards from the cen-
tral alliance by sharing data resources. Since the data owners
in the alliance are independent communities of interest, they
are rational and selfish. When the rewards obtained by the
data owners do not match their contributions (the incentives
are not fair), independent members of the alliance may pur-
sue the maximization of short-term benefits. This situation
puts the cooperation of the federal system at risk. However,
the existing algorithms do not reasonably address the rational

distribution of incentives in current federated learning[Khan
et al., 2020]. Hence, one of the most significant technical
challenges in the federal system is how to design a proper
incentive mechanism to keep the system’s fairness.

Nowadays, the FL incentive mechanism’s reward meth-
ods mainly include income reward and gradient reward.: in-
come reward and gradient reward. The former provides bi-
ased information and financial tips. For example, Xu Xinyi’s
team rewards each participant with biased information[Xu
and Lyu, 2020]. However, the introduction of unbiased in-
formation may lead to the impact of the overall system fair-
ness. From the perspective of economics and game theory,
Tu Xuezhen’s team solves the distribution problem of incen-
tive mechanisms through economic rewards[Tu et al., 2021].
However, this method introduces other variables, which in-
crease the communication burden of the system and commu-
nication loss. The latter mainly relies on each round of partic-
ipants to obtain gradient model formation optimizations com-
mensurate with their contributions. However, some of the lit-
erature does not discuss the Non-IID problem of FL[Xinyi
et al., 2021]. The federated system assigning different mod-
els to each participant will result in the participants produc-
ing different types of data items and characteristic attributes.
Therefore, the central unit cannot simply adopt the Fed-avg
aggregation mode in the second iteration. Besides, most liter-
ature does not consider the drawbacks of gradient reward. For
example, assigning a weight with less similarity to a partici-
pant with a lower contribution will worsen the next round of
the global model[Lyu et al., 2020]. This situation will even-
tually lead to lower weights for participants with higher con-
tributions in subsequent gradient assignments than expected.

In addition, since there is no protection mechanism, there is
a risk of being attacked by adversaries in the multi-party co-
operation under the traditional FL framework. Opportunists
can influence the global model of the central server by up-
loading uncorrelated gradients or gradients with low contri-
butions. Therefore, the federal system needs to design penal-
ties to prevent abnormal participants from joining[Kotsogian-
nis and Schwager, 2006].

Finally, traditional incentives only consider the cost of
joining a federated system for the technical challenge of fair-
ness in federated learning. For example, Ye’s team proposes
that model training and commercialization will take time, re-
sulting in delays in federal system compensation[[Yu et al.,



2020a]]. However, it does not take into account that costs will
accrue interest over time, and existing dividend schemes have
not yet reasonably addressed temporary mismatches. The
participant will not join the federation system if the total cost
and interest are more significant than the respective benefits.
At this point, the actual benefits of data owners in the federal
system should include costs, profits, and incentives. There-
fore, this paper makes the proposed framework more reason-
able by adding a compensation mechanism.

Our contributions can be summarized as follows:

• We propose a Reputation, Reward-punishment, and
Cost-interest Mechanism (RRCM) framework to achieve
fairness of the federated learning incentive mechanism.

• RRCM iteratively calculates participants’ contributions
through a reputation system and assigns differentiated
rewards to each participant according to different per-
formances.

• Experiments on benchmark datasets show that our
framework can achieve high fairness and satisfied re-
sults. Moreover, by introducing the cost-profit model,
the incentive mechanism of federated learning becomes
more reasonable.

To the best of our knowledge, this paper is the first to com-
bine the dynamics of reputation systems, reward-punishment
measures, and cost-interest mechanisms. It provides a novel
framework for the federated federation to achieve a more ra-
tional distribution of FL incentives.

The remaining chapters of this paper are as follows: ”Re-
lated Work” reviews the fairness standards and incentive
mechanisms in the existing literature to provide the basis for
the research in this paper; ”Fairness Definition” describes the
different fairness measures and the cooperative fairness of
this paper. ”RRCM Framework” details the design of each
module and the inter-module relationships; ”Experiments”
include The data set settings and experiments are compared,
and it is concluded that the RRCM framework proposed in
this paper is more reasonable. Finally, this paper concludes
with ”Conclusion” which is used to discuss the incentive
mechanism of federated learning in this paper.

2 Related Work
In this section, we review the literature on incentives for

FL in to link our research with existing research.
Existing research will classify federated learning incentive

mechanisms into five categories: Stackelberg game, auction,
contract theory, Shapley value, and reputation system[Zeng
et al., 2021]. The Stackelberg game[Xiao et al., 2020] is
often used during the sale or purchase phase. Sarikaya et
al.[Sarikaya and Ercetin, 2020] used the Stackelberg game
model to incentivize the CPU supply of multiple workers to
reduce the budget of the FL major league with fully syn-
chronized SGD’s local training time. An auction[Le et al.,
2020] is a mathematical tool for pricing, task assignment,
and node selection. Zeng’s team proposed a federated learn-
ing lightweight multi-dimensional incentive scheme Fmore
based on procurement auction in the mobile edge comput-
ing scenario[Zeng et al., 2020]. Contract theory[Kang et

al., 2019] is how participants construct and develop optimal
agreements in the case of conflicting interests and unequal in-
formation levels. A contract menu is provided to participants
on a public procurement timing server, and each participant
proactively selects a different option without informing par-
ticipants of private costs. Shapley values[Wang, 2019] de-
rived from cooperative game theory are widely adopted for
contribution evaluation and profit distribution in FL. The ben-
efit distribution of alliance members based on the Shapley
value reflects the contribution of each member to the overall
goal of the alliance, which can avoid egalitarianism in distri-
bution; In the paper[Song et al., 2019], Wang et al. adopted
a variant of the Shapley group value to measure the utility of
a subset of features. They merge some private features into a
standard joint part and then compute the Shapley group value
of this collaborative feature in the case of two participants.
The reputation system mechanism[ur Rehman et al., 2020] is
a common method of FL incentives. Teacher Yang Qiang’s
team conducts research on incentive fairness in this way. For
example, the paper[Yu et al., 2020b] forms a fairer incentive
method by adding the reputation dynamic and regret models.

Benefit-sharing schemes can be divided into equal gain,
marginal contribution, and marginal loss[Stark et al., 2015].
Equal benefit means that the user-generated by the central
server of the federated system is equally distributed among
the data contributors participating in the system federation.
Marginal contribution implies that the benefit of the partici-
pants in the system alliance is the overall increase in the ben-
efit value of data contributors when they join the system al-
liance. Marginal loss means that the participants’ profit in the
system alliance is the overall loss value when the data con-
tributor leaves the system alliance.

To sum up, the federated learning incentive mechanism can
combine the reputation system and benefit-sharing schemes.
For example, the contribution of allies is calculated by rep-
utation trust to allocate different rewards. In addition, the
incentive mechanism of federated learning can be improved
by introducing discrimination rate, reward rate, punishment
measures, etc.

3 Fairness Definition
A reasonable federated learning incentive mechanism

needs to be fair to every participant. Fairness classification at
different stages is depicted in Table 1. The primary represen-
tative of the early fairness mechanism is egalitarianism[Mohri
et al., 2019], and differentiated allies get the same incentives
for training iterations in the system.

Today, different federated learning fairness articles have
different standards for fairness measurement. According to
formalizing fairness, Gajane and Pechenizkiy divide fairness
into individual fairness, group fairness, unconscious fairness,
preference-based fairness, and counterfactual fairness[Ga-
jane, 2017]. Individual fairness means that if a pair of in-
dividuals have similar attributes, the federated learning algo-
rithm should input similar probabilities[Binns, 2020]. Group
fairness implies that a specific attribute should present the
same possibility among different groups through the FL
algorithm[Binns, 2020]. Unconscious fairness means that in-



Method Fairness classification Reference
Equal incentive Egalitarianism [Mohri et al., 2019]

Formalization fairness Individual fairness [Binns, 2020]
Group fairness [Binns, 2020]

Unconscious fairness [Hardt et al., 2016]
Preference-based fairness [Zafar et al., 2017]
Counterfactual fairness [Kusner et al., 2017]

Training process Cognitive representation fairness
Algorithm modeling fairness [Shin, 2020]
Decision evaluation fairness

Algorithm level Contribution fairness
Regret distribution fairness [Shi et al., 2021]

Expectation fairness
Reputation, Reward, and Cost Contribution difference Ours

Table 1: Thematic taxonomy of machine learning fairness.

dividuals with the same type of attributes (protected attributes
and general attributes) appear similar decisions in the feder-
ated learning process[Hardt et al., 2016]. Preference-based
fairness indicates that when multiple choices are given among
different groups, individuals in the group spontaneously
choose decisions that are beneficial to their development[Za-
far et al., 2017]. Counterfactual fairness means that the re-
sults of the protected data in the real world are consistent with
the predicted results in the counterfactual world[Kusner et al.,
2017].

According to the training process of machine learning
pre-processing, processing and post-processing, Shin di-
vides fairness into three parts: cognitive representation fair-
ness, algorithm modeling fairness, and decision evaluation
fairness[Shin, 2020].

In terms of federated learning incentive mechanisms, most
studies divide the fairness of incentives into contribution fair-
ness, regret distribution fairness, and expectation fairness[Shi
et al., 2021]. Contribution fairness means that the data
owner’s benefit must be positively related to its assistance.
Regret distribution fairness minimizes the difference in regret
and temporal regret among data owners. Desired right refers
to minimizing fluctuations in data owner regret and temporal
regret.

The RRCM framework proposed in this paper includes
three mechanisms: reputation system, reward-punishment
measure, and cost-interest. The fairness of its incentive
mechanism mainly includes determining the size of the ben-
efits based on the participants’ contributions. In addition to
this qualitative relationship, we also consider the relation-
ship between the data owner’s grant and reward described by
the Pearson correlation coefficient, which is used to quan-
titatively represent the cooperative fairness of the federated
learning incentive mechanism.

Definition 1 (Cooperative Fairness of Federated Learning
Incentive Mechanism). Assuming that the actual contribu-
tion of the participants is a group of α, and the rewards ob-
tained by them are distributed to a group of σ, the cooperation
fairness of the FL incentive mechanism can be expressed as
ρρ(α, σ). ρρ(·, ·) is Pearson correlation coefficient[Mu et al.,
2018]. The larger ρρ(·, ·) is, the more cooperative fairness the

RRCM framework proposed in this paper is.

4 RRCM Framework
This section will introduce three mechanisms of a reputa-

tion system, reward-punishment measure, and cost-interest in
the FL system. In this way, a federated learning incentive
optimization based on the Reputation, Reward-punishment
system, and Cost-interest Mechanism (RRCM) framework is
formed. The core principle we follow is that the rewards ob-
tained by each participant from the central alliance are related
to their contribution[Nishio et al., 2020].

4.1 Overall Framework

Figure 1: FL incentive mechanism RRCM framework.

The overall training process of the FL incentive mechanism
RRCM framework is shown in Figure 1.

First, Data owners train local data to become local models.
Local models can be divided into two categories: normal and
abnormal models (a). Data owners needs to pass the threshold
detection of the reputation system when passing local models
(b). And then, RRCM framework federal system eliminates
data owners with abnormal reputations (c). Reputable local
models are uploaded to the cloud server after many iterations
of training to form the global model (d). Then, cloud server
trades with external systems through commercial activities to



generate profits (e). A portion of the commercialization prof-
its is compensated to reputable data owners (f). And a portion
of the commercialized profits will be temporarily held in a
staging box (g). Then funds from the staging box can be used
to increase the cost of commercializing the investment (h). At
the end of the federated system training, the staging box will
return the remaining funds to the reputable data owner (i). For
example, suppose that in an industry alliance system, the nor-
mal data model aggregated by local enterprises reaches the
cloud server through the reputation system and participates
in multiple aggregations of the central alliance. Each time a
round of aggregation is completed, the Federal Center will
give the enterprise part of the commercialization benefits. If
the participant data models remain in good shape throughout
the iterations, the Federal Center will return the remaining
commercialization proceeds to individual enterprises.

The Federated learning RRCM framework incentive mech-
anism includes the reputation system, reward-punishment
measures, and cost-interest. They are independent of each
other yet connected. Cost-benefit helps the federal system
more reasonably compensate data owners for costs and ben-
efits through incentives and penalties. Benefit distribution
can be rewarded and punished through the reputation system.
Among them, penalties include excluding low-contributors
from the RRCM framework federal system. Second, when
the reputation of the data owner falls below the reputation
threshold, the staging box will no longer compensate abnor-
mal participants with staging earnings.

4.2 Reputation System
The reputation system[Gupta et al., 2003] is a redirected

self-feedback mechanism, which can reflect the state of its
credit through the collaborative approval of related parties.
It aims to show the influence of the reputation of the par-
ticipants on the decision of the system. This paper adopts
the reputation system as the criterion. Then, according to
different standings, the central server gives each participant
a profit commensurate with the contribution through differ-
ent reputations. According to the study of cosine similarity
representing gradient quality[Cao et al., 2020] :cos(u, v) =
⟨u, v⟩/(∥u∥ × ∥v∥), The contribution of each participant in
this paper is represented by the cosine similarity of the local
weight and the center weight :α(t)

i = cos(△ω(t)
i ,△ω). In the

initial stage of the federation system, we set the same value
(reputation threshold A) for each participant’s initial reputa-
tion. Assuming that there is a certain positive relationship be-
tween the temporary reputation r and the contribution degree
α in this round (r ≃ α), r can be equal to cos(△ω(t)

i ,△ω).
The actual reputation can be obtained from the historical rep-
utation and temporary reputation of this round. The reputa-
tion for each round is calculated as follows:

r
(t)
i = βr

(t−1)
i + (1− β)r

(t)
i (1)

Where β is a settable weight coefficient. r
(t−1)
i is the

reputation value of the previous round. overliner
(t)
i is the

temporary reputation of the current round. As a result, this
framework assigns different incentives to different data own-
ers through reputation and contribution links.

4.3 Reward-punishment Measure
Reward-punishment measures are divided into two parts:

reward and punishment. Rewards are mainly given incentives
to data owners through the commercialization of the federal
system. By definition 1, the framework proposed in this pa-
per can allocate incentives to various participants more rea-
sonably. In this way, participants who contribute more can
get more rewards.

Punishments are mainly done by setting a reputation
threshold of A. The central federation removes data owners
that fall below the reputation threshold each round from the
federation system. This measure prevents low-contribution
participants (such as free riders or hostile participants) from
undermining the results of joint training of the system.

In addition, the federal system will temporarily store part
of the incentives. When the federated learning training is
over, the central server will return the temporary incentives
to the reputable participants. Participants with lousy reputa-
tions will not refund the stash of incentives.

4.4 Cost-interest Mechanism
In the traditional FL system, the participation of differ-

ent allies in joint training needs to be paid to the central al-
liance in advance. These fees are mainly used for the con-
tinuous reproduction process of the federal system. For ex-
ample, data owners build local models and upload them to
a central coalition. The jointly trained global model can also
benefit from transactions with companies outside the alliance.
However, model aggregation and commercialization will take
time, which will result in the central collaboration needing to
accumulate enough budget to reimburse the participating par-
ties for the franchise cost.

The existing federated learning incentive mechanism
solves the temporary mismatch between partner fees and in-
centives by researching incentive reward sharing schemes[Yu
et al., 2020a]. However, this method ignores the role of in-
terest. The entire process takes time, from initial joining the
federation system to commercializing the federal system. So
over time, the central collaboration needs to repay the cost
of each participant and consider the interest generated by the
compensation cost.

The federated system can allow the appropriate data own-
ers to join the scheme by requiring parties wishing to join
the federation to pay the desired membership fee in advance.
In the compensation process, the benefits of the alliance sys-
tem first repay the cost-interest of the participants. Assuming
that Ci is the cost contributed by the i-th participant to the
federation, the repayment process of the i-th participant is as
follows:

Ci → St
i +

t∑
t=1

uti(1 + γ) (2)

Where St
i is the part of the cost of the i-th participant re-

maining in the central alliance in round t. uti is the cost com-
pensated to participant i by the central alliance in the t-th
round. γ is the cost rate, which can be set by parameters.
uti(1+ γ) represents the total return transferred to participant
i in round t.



4.5 The Implementation of the RRCM
The particular implementation of RRCM in Algorithm 1 is

as follows:

Algorithm 1 Reputation, Reward-punishment and Cost-
interest Mechanism (RRCM)

1: Input: investment cost of each participant joining the al-
lianceCi, federal system incentive uti, federal system rate
γ, reputation threshold A.

2: Participant i
3: Download the allocated gradient ∇w(t−1)

i , the allocated
reward σt

i , σ
t
i ∈ Tt

4: if
∑t

t=1 σ
t
i <

∑t
t=1 u

t
i(1 + γ) then

5: This stage is to repay the cost
6: else
7: This stage is the actual benefit
8: end if
9: Local training ∆w

(t)
i

10: Upload local gradients ∆w(t)
i to server

11: Server
12: Aggregation: ∆w(t) =

∑N
i=1 ψi∆w

(t)
i

13: αt = cov
(
∆w

(t)
i ,∆w(t)

)
14: for i ∈ R do
15: r̃ti = ρρ (α

t
i, σ

t
i)

16: r
(t)
i = βr

(t−1)
i + (1− β)r̃ti

17: if r(t)i < A then
18: R = R\{i} Remove too low reputations
19: Tt+1 = Tt −

∑i=N
i=1

∑t
t=1 σ

t
i + Si

20: end if
21: end for

In Algorithm 1, there are two punishment measures in the
RRCM framework: the first is to directly remove the partici-
pants whose reputation is lower than the reputation threshold
from the federation, thus ensuring the accuracy of the training
gradient aggregation of the federated system. The second is
the system to increase the cost-interest compensation mech-
anism. The partnership will keep a portion of the cost and
store it on a central server. Suppose the participant’s reputa-
tion r(t)i is always more significant than the reputation thresh-
old in the complete training. The central server will return
the reserved cost to the participant when the participant ex-
its the federation system. If a participant’s reputation r(t)i is
less than the reputation threshold, the cost compensation for
the remaining storage will not be returned to this participant.
This part of the money can be used for more commercial-
ization of the system or more compensation for good players.
Tt+1 = Tt−

∑i=N
i=1

∑t
t=1 σ

t
i+Si represents the total revenue

process of the central alliance.

5 Experiment
5.1 Dataset

We selected three datasets, MNIST[Lecun et al., 1998],
CIFAR-10[Zhao et al., 2018], and Movie Review (MR)[Pang

and Lee, 2005] to complete the control of this experiment.
MNIST is a handwritten image classification dataset that in-
cludes 55,000 training data and 10,000 testing data. CIFAR-
10 is a color image classification dataset with 50,000 training
data and 10,000 testing data. MR is a sentiment binary clas-
sification dataset that contains 25,000 training movie reviews
and 25,000 testing movie reviews.

In terms of standard IID, we choose a uniform cut of the
dataset and denote it as UNI; in terms of Non-IID, consid-
ering the heterogeneity of the data, we randomly distribute
among 5, 10, 20 participants according to the power-law
Split 3000, 6000, 12000 MNIST samples and record it as
POW[McMahan et al., 2017].

5.2 Experimental Settings
We use three metrics as evaluation criteria for this exper-

iment: accuracy, fairness and compensation trend. The ac-
curacy is obtained by comparing the output results of the
federated system with the test set. The RRCM framework
proposed in this paper uses the FedAvg algorithm combined
with the reputation system, reward-punishment measures,
and cost-benefit mechanisms. Therefore, this experimental
framework focuses on comparing with FedAvg in terms of
accuracy. Fairness is quantitatively represented by cooper-
ative fairness in Definition 1. The larger the Pearson co-
efficient (ρp(α, σ)) of contribution and incentive, the more
fair the federated learning framework is. For the FedAvg
framework[McMahan et al., 2017], the RRCM proposed in
this experiment is also compared with two fairness standard
frameworks, q-FFL[Li et al., 2019] and CFFL[Lyu et al.,
2020]. In addition, we also explored the accuracy of q-FFL
and CFFL in one hundred epochs of training. The compensa-
tion trend mainly compares the reward trend of the incentive
mechanism in the three schemes of the incentive mechanism
with no cost, cost and cost-interest, to determine the superi-
ority of our proposed framework.

Referring to the relevant literature on reputation incentives
for FL, we set the reputation threshold as A = 1/(3N). Ac-
cording to the salary distribution principle, we set the storage
cost of the central alliance as S = 1/(10T ). The federal
center stores part of the cost to prevent data owners from pro-
viding models with lower similarity.

5.3 Experimental Results
Accuracy comparison. Table 2 lists the accuracy of differ-

ent participants in the case of UNI and POW through RRCM
and FedAvg. According to experimental data, The accuracy
of RRCM is higher than that of the traditional fairness frame-
work, and it is roughly the same as the accuracy of FedAvg.
On the one hand, the higher accuracy of RRCM may be be-
cause q-FFL and CFFL are the frameworks that mainly ad-
dress fairness, and the improvement of fairness will inevitably
affect the accuracy. On the other hand, the accuracy rates of
the two frameworks are roughly similar, mainly because the
allocation of participants in the RRCM framework is based
on the FedAvg algorithm, so their accuracy rates are not much
different.

Fairness comparison. Table 3 lists the values of different
cooperative fairness of other numbers of participants under



Framework MNIST CIFAR-10 MR
N 10 20 10 5

Data Split UNI POW UNI POW UNI POW POW
FedAvg 93 92 93 92 48 47 50
q-FFL 85 32 90 51 42 38 15
CFFL 90 85 90 88 40 46 42
RRCM 93 92 93 91 48 47 50

Table 2: Accuracy[%] comparison of commonly used frameworks.

the MNIST and cifar10 datasets. The Pearson coefficient can
calculate the collaborative fairness value. According to the
content in the table, RRCM is better than FedAvg, q-FFL,
and CFFL in data training fairness on three datasets and two
cuts. The scheme proposed in this paper can give data owners
with higher contributions better incentives.

Framework MNIST CIFAR-10 MR
N 10 20 10 5

Data Split UNI POW UNI POW UNI POW POW
FedAvg -30.2 77.3 3.8 -3.6 -38.6 40.1 22.1
q-FFL -44.7 39.1 -22.0 38.7 -17.6 49.7 54.3
CFFL 83.5 91.8 82.5 94.6 72.5 76.3 92.8
RRCM 84.6 96.5 87.2 97.8 81.2 85.4 93.4

Table 3: Fairness[%] comparison of commonly used frameworks.

Compensation trend. As shown in Figure 2, it is a simu-
lation graph of the compensation trend of the federated learn-
ing incentive mechanism in three cases. The left side repre-
sents the degree of compensation, and the right means the de-
gree of incentive. Min n represents the minimum number of
rounds for iterative aggregation of the federated system. Ac-
cording to the illustration, participants in the no-cost scheme
do not need the central server to compensate for the cost but
directly gain incentives from the alliance. The federal sys-
tem will reimburse participants for costs in the cost scheme
before providing incentives. In the cost-interest scheme, the
federal system pays the costs and interest caused by the costs
before distributing the rewards. Therefore, at the beginning
of training, the cost and interest scheme does not directly re-
ward each participant but first compensates each participant
for the sum of part of the cost and interest. Furthermore, the
cost-interest scheme does not gain as much compensation as
the cost-interest scheme by preventing participants from con-
tributing lower similarity weights in subsequent training. But
at the end of the training, the central server will reimburse the
reputable participants for the installment cost and interest.

In summary, according to fairness and accuracy, despite
the accuracy of RRCM and FAV, the fairness of RRCM is
higher, so the framework proposed in this paper works better.
According to compensation trends, introducing cost-interest
into an interest in this program can make the federal system
more realistic. Therefore, the RRCM incentive mechanism
proposed in this paper is superior and reasonable compared
with the traditional framework.

6 Conclusions
This paper proposes a federated learning incentive opti-

mization based on the reputation system, reward-punishment
measures, and cost-interest (RRCM). It improves the cooper-
ative fairness in FL accordingly. At the same time, the cost-

(a) (b)

Figure 2: Compensation trend simulation graph. (a) is the simulation
diagram of compensation in three ways. (b) is the compensation
excitation map under the mode.

interest generated by the data owner joining the federation
and the incentives obtained by the participants are positively
related to their contribution degrees. According to the ex-
periments, our proposed scheme can ensure lossless accuracy
and improve fairness. Therefore, the RRCM framework pre-
sented in this paper has more advantages. In terms of reward-
punishment measures, this paper proposes that the cost of
punishment can be used as a reward for the participants, but it
has no practical application. Subsequent experiments can fur-
ther improve the reward method. It is hoped that this frame-
work will be more optimized and perfected in the future and
applied in actual enterprise alliances.
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A Basic Formulas
Federated learning basic formulas. This paper adopts

the standard model trained on the local dataset of the FL
client: min{F (ω) :=

∑N
i=1 ψiFi(ω)}. F (ω)is the gradi-

ent of the global model. Fi(ω) is the trained model of the
local model. ψi is the weight of the i-th participant such
that ψi ⩾0 and

∑N
i=1 ψi = 1. In the t-th round of updates,

△ω(t)
i := ▽Fi(ω(t−1)) and △ωi :=

∑N
i=1 ψi △ ω

(t)
i . Please

refer to Table 1 for the meanings of the main symbols in this
paper.

B Symbolic Meaning
The following table indicates the meaning of the symbols

used in this paper.

Symbol Meaning
N number of participants
i i-th participant
ψ model weight
ω model
C total cost
S the cost of temporary storage
u compensation cost
γ intrest
R good reputation set
A reputation threshold
r reputation
r̃ temporary reputation
σ income distribution
α contribution
t number of rounds
T total center revenue
∆ upload
∇ download
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