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Abstract
By combining user feedback on items with so-
cial networks, cross-domain social recommenda-
tions provide users with more accurate recommen-
dation results. However, traditional cross-domain
social recommendations require holding both data
of ratings and social networks, which is not easy to
achieve for both information-oriented and social-
oriented websites. To promote cross-domain social
network collaboration among the institutions hold-
ing different data, we propose a federated cross-
domain social recommendation (FCSR) algorithm.
The main innovation is applying Random Response
mechanism to achieve sparsely maintained differ-
ential privacy for user connections and proposing
Matrix Confusion Method to achieve efficient en-
crypted user feature vector updates. Our exper-
iments on three datasets show the practicality of
FCSR in social recommendation and significantly
outperforms baselines.

1 Introduction
Nowadays, recommendation systems are playing an essen-
tial role in modern business. It can accurately predict users’
preferences and recommend items of interest to them, which
undoubtedly brings excellent business value to websites that
hold users’ feedback. Besides users’ feedback, the social con-
nections of users have been proven to improve the quality of
recommendations [Guo et al., 2015], which has attracted the
attention of several studies [Fan et al., 2019; Liu et al., 2020;
Wang et al., 2017] for cross-domain social recommendations.
Unfortunately, user feedback and social networks are often
not in the hands of one site. The information-oriented web-
sites (IOW) that only hold users’ feedback have to seek coop-
eration with social-oriented websites to improve the quality
of recommendations. However, collaborative modeling is of-
ten not easy to implement. Most websites cannot freely share
user information due to policy or privacy concerns, which
leads to traditional centralized modeling techniques failing to
be implemented due to a lack of necessary data.

Federated learning [Yang et al., 2019] (FL) has recently
been shown to be a promising learning framework for facil-
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itating collaborative modeling among multiple parties with-
out sharing any raw training data. For cross-domain so-
cial recommendations, FL allows the information-oriented
websites and the social-oriented websites to collaboratively
build more accurate recommendation models without expos-
ing their respective data. However, federated cross-domain
social recommendations are currently facing the following
multifaceted challenges. First, although some centralized
social recommendation methods [Fan et al., 2019; Wang et
al., 2017] and purely federated recommendation algorithms
[Yang et al., 2020] have been proposed, they cannot be di-
rectly applied to federated cross-domain recommendations.
The key challenge is how to ensure the security of users’
individual privacy in social networks. Second, FL requires
applying privacy-preserving techniques to secure local data,
but some techniques trade off at the cost of significant com-
putational overhead, such as homomorphic encryption [Pail-
lier, 1999]. Since federated cross-domain social recommen-
dations involve complex algebraic operations, achieving high
enough computational efficiency while ensuring security is
another important challenge we face. Besides, the sparsity
of data is an essential characteristic of social recommenda-
tions [Cui et al., 2021]. Effectively exploiting the sparsity
to achieve high efficiency is a fundamental problem faced in
social recommendations.

In response to the challenges, we contribute the following:
1) We propose a federated cross-domain social recommen-

dation (FCSR) algorithm that treats the social-oriented web-
site as a social services platform (SSP) and applies a FL
framework to train social recommendation models without
each participant’s data.

2) We introduce a Random Response Mechanism to pre-
serve individual privacy in SSP and design an efficient so-
cial network perturbation method, which avoids perturbing
all possible social connections.

3) We propose a Matrix Confusion Method, which enables
SSP to correctly update user feature vectors with high ef-
ficiency while the encrypted user feature vectors cannot be
identified.

4) Facing the challenge of computing equations with large-
scale sparse matrices, we propose a scheme to apply LU
decomposition to improve the computational efficiency and
study the impact of various decomposition strategies on the
sparsity of the decomposed matrices.



2 Preliminaries
2.1 Social Recommendation System
Given a set of user ratings for items such as (ui, vj , rij), in-
dicating that user ui rates item vj as rij , a typical recom-
mendation system tries to predict the users’ potential ratings
for each item and then recommends items of interest to users
from the predicted ratings.

To predict the ratings more accurately, collaborative filter-
ing methods based on feature representations are widely used.
The basic idea is to represent each user ui and item vj as fea-
ture vectors ui and vj , respectively, and then train a modelM
such that the predicted rating r̂ij =M (ui,vj) is as close as
possible to the true rating rij .

The work close to ours is the cross-domain social recom-
mendation approach proposed by [Wang et al., 2017]. The
main idea is to build training models for user ratings from
the information-oriented domain and social networks from
the social-oriented domain separately, and then exchange the
common users’ (bridge users in [Wang et al., 2017]) feature
vectors of both to achieve cross-domain social recommenda-
tion. However, the work only focuses on centralized learning,
meaning rating data and social networks have to be aggre-
gated together before learning. Unfortunately, users’ ratings
or social connections are often privacy-sensitive. The cross-
domain social recommendation will not be achieved when
data providers are reluctant to share data due to policy or com-
mercial competition.

2.2 Vertical Federated Learning
As an emerging machine learning paradigm, FL can build a
learning model exploiting distributed datasets of all partici-
pants without revealing private datasets [Yang et al., 2019].
There are three categories of FL, i.e., horizontal federated
learning (HFL), vertical federated learning (VFL) and fed-
erated transfer learning (FTL).

VFL can mainly be applied in two or more different collab-
orating institutions, which hold heterogeneous user data, but
some of the users involved are common. In the VFL scenario,
participating institutions are assumed to be untrustworthy and
attempt to mine others’ privacy through the learning process.
For data privacy and security reasons, the participants of VFL
cannot directly exchange data. Some privacy security meth-
ods are applied to VFL to preserve each participant’s privacy,
such as homomorphic encryption [Paillier, 1999], differential
privacy [Dwork et al., 2014], secure multi-party computation
[Bogdanov et al., 2008], and Diffie-Hellman Key Exchange
[Raymond and Stiglic, 2000].

2.3 Differential Privacy
Differential privacy (DP) [Dwork et al., 2006a] is a theoreti-
cally provable technique for protecting individual privacy and
is widely used in Federated Learning. It protects individual
privacy through data perturbation, defined as follows:
Definition 1 (ε-Differential Privacy). Given two neighboring
datasets D and D′, a random algorithm A satisfies ε-DP if
its all outputs O ∈ Range (A) satisfies

Pr (A (D) = O) ≤ eε Pr (A (D′) = O) . (1)

Traditional DP mechanisms are mostly for continuous and
discrete data, such as Laplace mechanism [Dwork et al.,
2006b] for continuous data and Exponential mechanism [Mc-
Sherry and Talwar, 2007] for discrete data. By studying
the Rényi Differential Privacy [Mironov, 2017], Mironov
proposed a random response mechanism (RRM) [Mironov,
2017] applicable to the binary release, which is defined as
follows.
Definition 2 (Random Response Mechanism ). Given a func-
tion f : D 7→ {0, 1}, RRM achieves f̃ (D) satisfying ε-DP by

f̃ (D) =
{

f (D) with probability p
1− f (D) with probability 1− p , (2)

where p = eε

1+eε ≥ 0.5.

In general, DP algorithm consists of several sub-
algorithms. They satisfy the serial combination theorem [Mc-
Sherry, 2009] as follows.
Theorem 1 (Serial Combination). Given k random algo-
rithms A1, A2, . . . , Ak where Ai satisfies εi-DP, their com-
bination satisfies

(∑k
i=1 εi

)
-DP.

3 Problem Formulation
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Figure 1: System model of FCSR

3.1 System Model
The system model of our FCSR is shown in Fig. 1. In the sys-
tem model, we consider two FL participants: the information-
oriented website (IOW) and the social service platform (SSP).

IOW: IOWs hold a large amount of user feedback data by
providing information services. Using these data, they can
realize recommendation systems by user ratings. IOW is the
service requester, which initiates social service requests to
SSP to improve recommendation quality.

SSP: SSP holds the users’ social connections by provid-
ing social services. It is the service provider and is in charge
of applying the privacy-preserving social relationships to im-
prove the quality of the recommendation of collaborators.

As shown in Fig. 1, an IOW and SSP consist of a VFL
system with two parties. They employ appropriate privacy



security schemes to protect their respective local data. As a
service requester, IOW encrypts the submitted data via en-
cryption to ensure that SSP cannot obtain any available infor-
mation. However, SSP cannot wholly hide its information as
a service provider. Thus, we introduce DP to protect users’
individual privacy in social networks.

3.2 Threat Model
In FCSR, SSP is considered to be semi-honest, i.e., SSP
follows protocols to return the correct results, but actively
try to learn the private information form the uploaded data.
Meanwhile, we consider IOW as potentially malicious. IOW
expects to mine users’ social connections through machine
learning or algebraic analysis. For this purpose, IOW may
violate protocols by uploading some special constructed user
features to capture users’ social connections, or even directly
invading SSP to illegally access the serving social network.

4 The Scheme of Federated Cross-Domain
Social Recommendation

4.1 The Algorithm Framework
As shown in Fig. 1, our scheme consists of two parts: training
the secure recommendation model on IOW and the individual
privacy-secure social network service for SSP.

The rating data of IOW can be represented as the set

Dr =
{(
u
(k)
i , v

(k)
j , r

(k)
ij

)}m
k=1

with m elements. We denote
the set of users and items involved as Ur, Vr respectively.
Thus, IOW expects to train a group of user feature vectors
{ui}i∈Ur and a group of item feature vectors {vj}j∈Vr to
accurately predict the rating (ui, vj , rij) that are not in Dr,
where ui,vj ∈ Rd×1, which are both d-dimensional feature
column vectors.

In contrast, the social network data held by the SSP is rep-

resented asDs =
{(
u
(k)
i , u

(k)
j

)}n
k=1

with n elements, where(
u
(k)
i , u

(k)
j

)
satisfying u

(k)
i < u

(k)
j indicates that the user

u
(k)
i and u(k)j are friends or know each other. Thus, the social

network in SSP can be represented as an undirected graph G.
We denote the set of users involved in the social network as
Us, which contains ps users. The adjacency matrix of G can
be denoted as SG ∈ Rps×ps , which satisfies

SG =

{
1 if (ui, uj) or (uj , ui) ∈ Ds
0 otherwise (3)

By Exp. (3), we know that SG is symmetric and contains
only 0 or 1. Besides, in practical social networks, SG is usu-
ally highly sparse. The density of 1 can be expressed as

ρG =
n

C2
ps

=
1TSG1

2C2
ps

, (4)

where C2
ps = 1

2ps (ps − 1), indicates the all possible social
relationship pairs.

The federated cross-domain social recommendation should
work on the common users between IOW and SSP. Thus,
we denote the common users as the set Uc = Ur ∩ Us.
As the overall algorithmic workflow shown in Fig. 2, IOW
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Figure 2: The workflow of our algorithm framework

trains a collaborative filtering model and obtains a group of
user feature vectors of Ur. And then, it submits the fea-
ture vectors {ui}i∈Uc of common users to SSP and receives
{u′i}i∈Uc from SSP after updating by the social network. To
describe the update of {ui}i∈Uc more effectively, we stacks
{ui}i∈Uc , {ui}i∈Uc vertically and denote them as feature ma-
trices Uc,U

′
c ∈ Rpc×d.

4.2 Learning of Social Networks with Differential
Privacy

To learn user feature vectors by social networks, we adopt
the semi-supervised learning method on graph proposed by
[Wang et al., 2017]. It considers that if two users are strongly
connected, they are more likely to have similar feature repre-
sentations. Based on this consideration, two objective func-
tions are proposed for optimizing U′c. One is the objective
function for smoothness constraint, which is expressed as

f1 (U
′
c) =

1

2

∑
i,j∈Uc

sij

∥∥∥u′i/√di − u′j/
√
dj

∥∥∥2, (5)

where sij is the i-th row and j-column element of SGc and
di denotes the degree of user ui. As shown in Fig. 2, SGc is
the adjacency matrix of sub-networks Gc involved the users
in Uc, i.e., a sub-matrix of SG . Another objective function
is to keep the consistency of the user feature representations,
which is expressed as

f2 (U
′
c) =

1

2
‖U′c −Uc‖

2
F . (6)

Combining the above two objective functions, [Wang et
al., 2017] developed the following optimization equation to



obtain U′, which is

min
U′

c

f1 (U
′
c) + µf2 (U

′
c), (7)

where µ > 0 is a parameter to control the tradeoff between
two objective functions. Since (7) is a quadratic equation, it
has a closed-form solution as

U′c =
µ

(2 + µ)

(
I− 2

(2 + µ)
D−1/2 SGcD

−1/2
)−1

Uc

(8)where D is a diagonal matrix whose diagonal elements are
consisted of di, i ∈ Uc. Note that we corrected an error in
[Wang et al., 2017] on computing U′c. Thus, our Exp. (8) is
different from Exp. (15) in [Wang et al., 2017].

Since the calculation of U′c involves SGc , unprotected SG
will lead to leakages of users’ social connections. Consider-
ing the characteristics of SG , we adopt the random response
mechanism (RRM) as Def. 2 to provide individual privacy
guarantees. The process of obtaining the perturbed SG̃ satis-
fying ε-DP is shown in Fig. 3.
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Figure 3: Flowchart to Achieve ε-DP with RRM

In Fig. 3, we divide the perturbation process into two parts,
satisfying ε1-DP and ε2-DP, respectively, where ε1 + ε2 =
ε by Thm. 1. The first part satisfies ε1-DP. Regarding all
elements in SG above (or below) the main diagonal as a series
of independent responses, we directly apply RRM on SG to
achieve ε1-DP. The element s̃ij of SG̃ can be calculated by

s̃ij =

{
sij with probability p if i < j
1− sij with probability 1− p if i < j
s̃ji otherwise

. (9)

where p = eε1

1+eε1 .
Note that after sanitization, the density of SG will be

changed. Denoting SG̃ as ρG̃ , we have

E
(
ρG̃
)
= ρGp+ (1− ρG) (1− p) . (10)

Since SG is highly sparse, even if p is close to 1, E
(
ρG̃
)

still changes dramatically. For example, ρG of FilmTrust is
0.34%. When ε1 = 5, p = 0.9933 is close to 1 (only a
tiny part of elements in SG̃ return fake responses). We calcu-
late that E

(
ρG̃
)
= 1.01%, which is nearly twice more than

the original ρG . To keep the original density, we introduce
the second perturbation process that satisfies ε2-DP. It com-
putes a noisy connection count ñ = |Ds| + Lap (1/ε2) by
Laplace mechanism and then computes ρ̃G satisfying ε2-DP
by ρ̃G = ñ/C2

ps . Using ρ̃G , we can keep ρG̃ reach ρ̃G by
randomly adding or removing 1s in SG̃ . It is post-processing
and does not lead to any more privacy leakage [Dwork et al.,
2014]. Usually, we can allocate most of the privacy budget
to ε1, e.g., 99% of ε, because even if ε2 is allocated a ex-
tremely small privacy budget, the deviation of ρG̃ is still not

significant. For instance, ε = 1 and ε1 is 50% of ε, we
have p = 0.62 and ρG̃ of the dataset FilmTrust satisfying
(3.4± 0.0074)× 10−3. However, if ε1 is changed to 99% of
ε, we have p = 0.73 and ρG̃ satisfying (3.4± 0.37) × 10−3,
which shows that increasing the ratio of ε1 can improve p up
to 0.11 but the deviation of ρG̃ still remains in a small range.

4.3 Highly efficient SG̃ construction and
calculation for U′c

Since there is only a tiny part of elements in SG̃ return fake
responses in general, it is unnecessary to traverse all pos-
sible connections and check whether they return a fake re-
sponse. To construct SG̃ more efficiently, we first gener-
ate a random integer Nfake satisfying binomial distribution
B
(
C2
ps , 1− p

)
to denote the number of fake responses. And

then, we randomly choose a group of
{
s
(t)
ij

}Nfake

t=1
, i < j

to change their and the symmetric elements’ values. Since
the generation of Nfake is O (1), the fake responses can
be achieved by a random sampling algorithm [Meng, 2013].
Thus, the overall computational complexity of generating SG̃
is O

(
(1− p+ ρG) p

2
s

)
, which is usually much lower than

O
(
p2s
)

of traversal.
In addition, Exp. (8) involves the process of solving an

equation. Specifically, denoting

Q = I− 2

(2 + µ)
D−1/2 SGD

−1/2, (11)

we can describe the calculation of U′c as solving the following
equation for U′c,

QU′c =
µ

(2 + µ)
Uc. (12)

Solving equations is an algebraic calculation with high
computational overhead. Even though SG̃ is usually highly
sparse, the traditional linear solution methods for sparse ma-
trices cannot support large-scale social networks. Facing the
challenge of solving large-scale sparse equations, we adopt
LU decomposition to improve the computational efficiency
of U′c. Since Q is symmetric, we can express it as the fol-
lowing LU decomposition form

Q = PLLTPT , (13)

where L is a lower triangular matrix; P is a permutation ma-
trix. Since the multiplication with the permutation matrix P
is equivalent to rearranging the elements of the matrix, the
calculation of U can be equivalently converted into solving
the equations about the triangular matrix twice after LU de-
composition, i.e.,

LU(2)
c = U(1)

c and LTU(3)
c = U(2)

c . (14)

where U
(1)
c = µ

(2+µ)P
TUc, U

(3)
c = PTU′c. Compared to

the regular sparse equations, solving equations on triangular
matrices is far more efficient. Its computational overhead de-
pends on the density of L. That is, fewer non-zero elements
imply a smaller computational overhead.

Our study shows that different permutation strategies dur-
ing LU decomposition will result in different density of L.



Table 1: The Number of Non-zero Elements of L under Different
Permutation Strategies for the Three Datasets

FilmTrust CiaoDVD Epinions
PS.1 42, 672 4, 677, 004 Failed
PS.2 5, 236 564, 080 43, 108, 346
PS.3 3,115 232,645 16,030,689
PS.4 5, 070 839, 656 142, 441, 761

Here, we compared four different strategies, which are natural
ordering (PS.1), minimum degree ordering on the structure of
QTQ (PS.2), minimum degree ordering on the structure of
QT +Q (PS.3), as well as approximate minimum degree col-
umn ordering (PS.4). As shown in Tab. 1, we test the density
of L after LU decomposition with different strategies (PS.1
to PS.4) for the three classical datasets FilmTrust, CiaoDVD,
and Epinions. The results show that L always has the least
number of non-zero elements with PS.3, which means it is
the most optimal LU decomposition strategy for social net-
works and can solve U′c with the highest efficiency.

4.4 Privacy-Preserving User Feature Vector
Update with Matrix Confusion Method

To avoid privacy leakage by directly uploading user features,
IOW needs to encrypt them while maintaining computabil-
ity before uploading. Completing the update efficiently of
Uc without any privacy available to SSP is a critical chal-
lenge faced by federated cross-domain social recommenda-
tions. We propose Matrix Confusion Method according to the
update of Uc, which enables the SSP to compute U′c despite
the inability to identify the received Uc.
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Figure 4: Matrix Confusion before Uploading

As shown in Fig. 2, IOW encrypts Uc and obtains U
(enc)
c ,

and then replaces Uc by U
(enc)
c to upload to SSP. As shown

is Fig. 4, in our Matrix Confusion Method, U
(enc)
c is con-

structed as the following step:
1) IOW randomly generates a matrix Ψ ∈ Rpc×d (the

crimson vectors in Fig. 4) of the same shape as Uc and an
invertible random matrix Φ ∈ R2d×2d.

2) IOW stacks Uc and Ψ horizontally and then multiplies
Φ right to obtain U

(enc)
c .

3) IOW uploads U
(enc)
c to SSP.

Compared to the inefficient calculation on homomorphic
encryption, our method only requires twice the calculation of
unencrypted Uc to achieve the calculation on encrypted data.

After SSP finishes calculating U
′(enc)
c , IOW can restore U′c

by the following step:
1) IOW multiply U

′(enc)
c right by Φ−1 to get [U′c,Ψ

′].
2) IOW retain the first d columns of [U′c,Ψ

′] to obtain U′c.

5 Security Analysis
The security consists of two aspects, i.e., the security of user
features for IOW and the social network’s security for SSP.

In our scheme, our Matrix Confusion Method avoids Uc

from being identified while updating. Since IOW always
keeps the random matrices Ψ and Φ locally during the feder-
ated learning, SSP cannot infer the true value of Uc from the
received U

(enc)
c . Furthermore, our Matrix Confusion Method

provides a non-analyzable guarantee for Uc. Due to the ran-
domness of Ψ, stacking it horizontally with Uc and engaging
in confusion destroys the properties originally held by Uc.
Attackers cannot analyze U

(enc)
c effectively, which ensures

the security of the uploaded Uc.
The security of social networks comes from the privacy

guarantees provided by DP. As a proven DP method in
[Mironov, 2017], RRM provides sufficient security. Even if
an attacker maliciously accesses G̃, he still cannot effectively
infer individual privacy. Notice that our proposed DP ap-
proach provides static sanitized social networks for FL. Even
if IOW requests updates for Uc multiple times, the privacy
budget will not be consumed additionally. It prevents privacy
leakage caused by IOW maliciously submitting multiple up-
date requests.

6 Experiments
6.1 Experimental Setting
Table 2: The Number of Non-zero Elements of L under Different
Permutation Strategies for the Three Datasets

FilmTrust CiaoDVD Epinions
pr 1, 508 17, 615 40, 163
ps 874 4, 658 49, 287
pc 740 2, 740 40, 162
vr 2, 071 16, 121 139, 738
m 35, 497 72, 665 664, 823
n 1, 309 33, 116 381, 035

Notes. “pr”: the rated user number in IOW; “ps”: the social
user number in SSP; “pc”: the common user number; “vr”: the
item number in IOW; “m”: the rating number in IOW; “n”: the
number of social connection pairs.

In this section, we evaluate the effectiveness of our pro-
posed FCSR by experiments. The experiments run on a com-
puter with Dual 4 Core 3.9GHz AMD Ryzen CPU, 32GB
RAM and NVIDIA GeForce RTX 2080 Ti GPU. To fully
evaluate our scheme, we experiment with three classic social
recommendation datasets with different data scales, which
are small-scale FilemTrust1, medium-scale CiaoDVD1, and
large-scale Epinions2. Among them, Filmtrust comes from

1https://guoguibing.github.io/librec/datasets.html
2https://www.cse.msu.edu/∼tangjili/datasetcode/truststudy.htm

https://guoguibing.github.io/librec/datasets.html
https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
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Figure 5: RMSE for The Three Experimental Datasets

online film rating website which contains the social connec-
tions between users; The user ratings of CiaoDVD and Epin-
ions are crawled from shopping websites and the social con-
nections are constructed from the users’ trust links. The de-
tails are shown in Tab. 2. We adopt NCF proposed by [He
et al., 2017] as the recommended model of our FCSR and ε1
and ε2 are taken as 99% and 1% of ε. To test the generaliz-
ability of the training models, we randomly divide the rating
data into a training set D(train)

r , and a test set D(test)
r with a

proportion of 9 : 1. Then, we perform multiple experiments
on the same experimental parameters and take their average
experimental results as our final experimental results.

6.2 Evaluation on Training Effect

We use RMSE on D(test)
r as the evaluation metric to measure

the learning effect of FCSR, which is calculated by

RMSE =

√√√√ 1∣∣∣D(test)
r

∣∣∣
∑

k∈D(test)
r

(
r
(k)
ij − r̂

(k)
ij

)2
. (15)

The results in Fig. 5(a-c) test the impact of various privacy
budgets ε and the social learning parameters µ on RMSE. In
Fig. 5(a-c), we use the setting ε = 0 to indicate IOW trains
the recommendation model independently without interact-
ing with the SSP (non-FL scenario, i.e., No FL.), and ε =∞
to indicate Federated learning without DP (i.e., SSP directly
uses the original social networks, i.e., No Noi.). Fig. 5(a-c)
show that the cross-domain federation learning based on so-
cial networks effectively reduce the RMSE on D(test)

r . As
ε increases, RMSE tends to increase overall, which means
more accurate social networks will lead to more accurate pre-
dictions.

In addition, according to optimization (7), a smaller µ im-
plies a higher weight of the smoothing constraint. In other
words, the more significant the role of social network learn-
ing. Our experimental results show that smoothing con-
straints with higher weights (smaller µ) can reduce the RMSE
more, indicating that enhancing the role of social networks in
FL can effectively improve the learning effect.

6.3 Comparison with Existing Federated Schemes
We further compare our FCSR with the existing Feder-
ated recommendation, which are FedMF [Chai et al., 2020],
FedGNN [Wu et al., 2021], and FeSoG [Liu et al., 2022].
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Figure 6: RMSE for Dataset Epinions

Similarly, we use RMSE as the evaluation metric. The exper-
imental results are shown in Fig. 6. Since FCSR introduces
DP to protect individual privacy, we set ε = 1 facing the op-
timal case of µ in Fig. 5 to carry out the comparisons in Fig.
6. The results show that our proposed FCSR significantly
improves the accuracy of existing federated schemes on all
three datasets. The main reasons are as follows. First, we
only apply DP on social networks instead of applying DP on
both user feature vectors and social networks, as in [Liu et al.,
2022]. It guarantees the introduction of FL will not produce
worse results than recommendations without social networks.
Second, FCSR requires only one perturbation to achieve ε-
DP, which does not accumulate noise compared to the com-
mon gradient-based perturbations. In summary, FCSR is ef-
fective and practical.

7 Conclusions and Future Works
Our proposed FCSR effectively supports the participants to
collaboratively train better recommendation models with the
private data maintained locally. Through security analysis,
we ensure security during the FL process. Meanwhile, our ex-
periments show that FCSR is an effective and practical algo-
rithm. Currently, federated cross-domain social recommen-
dations are a promising direction with substantial potential
opportunities. In our future work, we will concentrate on re-
searching more effective federated cross-domain recommen-
dation algorithms and overcoming challenges from security
and efficiency.
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Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th
computer security foundations symposium (CSF), pages
263–275. IEEE, 2017.

Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In International conference on
the theory and applications of cryptographic techniques,
pages 223–238. Springer, 1999.

Jean-Fransico Raymond and Anton Stiglic. Security issues in
the diffie-hellman key agreement protocol. IEEE Transac-
tions on Information Theory, 22:1–17, 2000.

Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua.
Item silk road: Recommending items from information do-
mains to social users. In Proceedings of the 40th Interna-
tional ACM SIGIR conference on Research and Develop-
ment in Information Retrieval, pages 185–194, 2017.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang,
and Xing Xie. Fedgnn: Federated graph neural network
for privacy-preserving recommendation. arXiv preprint
arXiv:2102.04925, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology,
10, 2019.

Liu Yang, Ben Tan, Vincent Zheng, Kai Chen, and Qiang
Yang. Federated Recommendation Systems, pages 225–
239. 11 2020.


	Introduction
	Preliminaries
	Social Recommendation System
	Vertical Federated Learning
	Differential Privacy

	Problem Formulation
	System Model
	Threat Model

	The Scheme of Federated Cross-Domain Social Recommendation
	The Algorithm Framework
	Learning of Social Networks with Differential Privacy
	Highly efficient SG"0365G construction and calculation for U'c
	Privacy-Preserving User Feature Vector Update with Matrix Confusion Method

	Security Analysis
	Experiments
	Experimental Setting
	Evaluation on Training Effect
	Comparison with Existing Federated Schemes

	Conclusions and Future Works

