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Abstract
Federated learning has attracted increasing atten-
tion to building models without accessing the raw
user data, especially in healthcare. In real appli-
cations, different federations can seldom work to-
gether due to possible reasons such as data het-
erogeneity and distrust/inexistence of the central
server. In this paper, we propose a novel framework
called MetaFed to facilitate trustworthy FL be-
tween different federations. MetaFed obtains a per-
sonalized model for each federation without a cen-
tral server via the proposed Cyclic Knowledge Dis-
tillation. Specifically, MetaFed treats each federa-
tion as a meta distribution and aggregates knowl-
edge of each federation in a cyclic manner. The
training is split into two parts: common knowledge
accumulation and personalization. Comprehensive
experiments on three benchmarks demonstrate that
MetaFed without a server achieves better accuracy
compared to state-of-the-art methods (e.g., 10%+
accuracy improvement compared to the baseline for
PAMAP2) with fewer communication costs.

1 Introduction
Machine learning, especially deep learning, has become
prominent in people’s daily lives [Lu et al., 2022a; Lu et
al., 2022b; He et al., 2021]. It is applied to many health-
related fields such as human activity recognition [Lu et al.,
2021], medical images [Li et al., 2021a], and other fields [Ma
et al., 2021]. However, with the increasing awareness of
data privacy and security, some countries and organizations
released policies to prevent data leakage [Inkster, 2018;
Voigt and Von dem Bussche, 2017]. In this situation, fed-
erated learning (FL) [Yang et al., 2019] was proposed and
has attracted increasing attention recently.

Google [McMahan et al., 2017] proposed the first FL al-
gorithm called FedAvg to aggregate clients’ information. Fe-
dAvg replaces direct data exchanges with model parameter
communication to preserve data privacy. Although FedAvg
achieves promising performance in many applications, it may
not be feasible in more challenging trustworthy FL situations,
e.g. medical institutions may be grouped into multiple feder-
ations and no higher level governing organizations exist. As
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Figure 1: Issues in meta federated learning.

shown in Figure 1, a certain number of clients form a feder-
ation, and different federations are independent enough that
do not use a central server, but communicate with each other
instead. Inside each federation, different FL algorithms can
be used to train a model. However, it remains unclear how to
build personalized FL models outside the federations, i.e., FL
among different federations. Moreover, data heterogeneity
widely exists in these federations. We view each federation
as a meta distribution and view the problem in this situation
as meta federated learning.1

In this article, we propose MetaFed, a meta federated
learning framework for cross-federation federated learning.
We focus on inter-federation federated learning in this paper
and each federation can be viewed as an independent indi-
vidual. To implement MetaFed, we propose a cyclic knowl-
edge distillation method. MetaFed can solve data islanding
and data statistical heterogeneity without requiring a server or
sacrificing user privacy. Specifically, MetaFed consists of two
stages, common knowledge accumulation stage and person-
alization stage. In the first stage, the model trained on the pre-
vious meta federation serves as the teacher for the next fed-
eration and knowledge distillation (KD) [Hinton et al., 2015;
Romero et al., 2014] aims to make use of the common in-
formation. Several rounds with fixed hyperparameters for
knowledge distillation are performed to ensure enough com-
mon knowledge. In personalization stage, we utilize KD with
adapted hyperparameters to obtain personalized model for

1We use meta and federation interchangeably.



each federation. Through knowledge distillation, it can not
only acquire common knowledge among federations but also
cope with feature shifts and label shifts. Moreover, MetaFed
is extensible and can be deployed to many applications. The
code for MetaFed is released at https://github.com/microsoft/
PersonalizedFL.

Our contributions are as follows.

1. We propose MetaFed, a novel meta federated learning
framework via cyclic knowledge distillation for health-
care, which can accumulate common information from
different federations without compromising privacy se-
curity, and achieve personalized models for each federa-
tion through adapted knowledge distillation.

2. Comprehensive experiments on image and time-series
datasets illustrate that MetaFed has remarkable perfor-
mance in each federation without a server compared to
state-of-the-art methods. Moreover, MetaFed reduces
the number of rounds, thus saving communication costs.

3. MetaFed is extensible and can be applied in many
healthcare applications, which means it can work well
in many circumstances. We can even replace the knowl-
edge distillation with some other incremental learning
methods for specific applications.

2 Related Work
2.1 Federated Learning
To make full use of data in different separate clients and pro-
tect data privacy and security simultaneously, Google [2017]
first proposed FedAvg to train machine learning models via
aggregating distributed mobile phones’ data with exchanging
model parameters instead of directly exchanging data. Fe-
dAvg can work well with data islanding problems in many
applications although it is simple. Subsequently, Yang et
al. [2019] wrote the first survey of FL research.

Federated learning has attracted growing attention in many
applications. And the traditional and simple FedAvg can-
not satisfy complicated realistic scenes. When meeting data
statistical heterogeneity, FedAvg may converge slowly and
acquire large amounts of communication cost. Moreover,
since only a shared global model is obtained, the model
may degrade when predicting in personalized clients. Some
work tries to cope with these problems. FedProx [Li et al.,
2018] added a proximal term to FedAvg which referred to
the global model and allowed slight differences when train-
ing local models. Yu et al. [2020] combined three traditional
adaptation techniques: fine-tuning, multi-task learning, and
knowledge distillation into federated models. Most recently,
FedBN [Li et al., 2021b] tried to cope with feature shifts
among clients via preserving local batch normalization pa-
rameters which can represent data distributions to some ex-
tent. Some other work made an effort to utilize personaliza-
tion federated learning in the healthcare field [Chen et al.,
2020; Lu et al., 2022c]. [Chen et al., 2020] proposed a feder-
ated transfer learning framework which needs some sharing
data while [Lu et al., 2022c] proposed FedAP which could
achieve remark personalized performance with few rounds
via aggregating with clients’ similarities. However, these

methods need a server and have some limits in communica-
tion costs.

In this situation where no server exists, FedAvg even can-
not be implemented. Sequential training may be a reason-
able solution. [Kopparapu and Lin, 2020] proposed FedFMC
that dynamically forked devices into updating different global
models and merged models in a lifelong way. [Zaccone et
al., 2022] leveraged the sequential training of subgroups of
heterogeneous clients to emulate the centralized paradigm.
[Zeng et al., 2022] assigned clients to homogeneous groups to
minimize the overall distribution divergence among groups.
These methods still rely heavily on parallel federated learn-
ing where sequential training round style with only one round
and no closed loop is just an aid.

Some other work, e.g. [Roy et al., 2019; Rieke et al., 2020;
Li et al., 2021c], communicated in a peer-to-peer environ-
ment without a server. BrainTorrent [Roy et al., 2019] pre-
sented a highly dynamic peer-to-peer environment, where all
centers directly interacted with each other without depend-
ing on a central body. It seemed disorderly and chaotic,
and it required lots of communication costs. Nicola Rieke
et al. [Rieke et al., 2020] considered key factors to federated
learning while FedH2L [Li et al., 2021c] utilized mutual dis-
tillation to exchange posteriors on a shared seed set between
participants in a decentralized manner. However, these meth-
ods often require large communication costs, and few are de-
signed for personalization federation federated learning. No
work pays attention to proposing a new paradigm for person-
alized federated learning among federations without a server.

2.2 Knowledge Distillation
Knowledge distillation has been a well-known technique
to transfer knowledge since birth [Hinton et al., 2015].
In the original version, the knowledge was transferred
by mimicking the outputs of the teacher model on the
same data. Later, besides imitating outputs, some work
demonstrated that feature imitation could also guide the
student model training [Romero et al., 2014]. Nowadays,
as a common technique, knowledge distillation is also
applied to federated learning [Usmanova et al., 2021;
Afonin and Karimireddy, 2021]. Though mimicking the
global model and the local previous model, different imple-
mentations can be flexibly applied to different situations.

3 Method
3.1 Problem Formulation
In a personalized federated learning among federations set-
ting, N different federations, denoted as {F1, F2, · · · , FN},
have data, denoted as {D1,D2, · · · ,DN} with different dis-
tributions, which means P (Di) ̸= P (Dj). For simplicity,
we only study the case where the input and output spaces
are the same, i.e. Xi = Xj ,Yi = Yj ,∀i ̸= j. Each
dataset, Di = {(xi,j , yi,j)}ni

j=1, consists of three parts, a

train dataset Dtrain
i = {(xtrain

i,j , ytraini,j )}n
train
i

j=1 , a validation

dataset Dvalid
i = {(xvalid

i,j , yvalidi,j )}n
valid
i

j=1 and a test dataset

Dtest
i = {(xtest

i,j , ytesti,j )}n
test
i

j=1 . We have ni = ntrain
i +
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Figure 2: The structure of MetaFed for federated learning among federations. Stage I is the common knowledge accumulation stage where
the model is sent after local training. Stage II is the personalization stage where the common knowledge model is sent before local training.

nvalid
i + ntest

i and Di = Dtrain
i ∪ Dvalid

i ∪ Dtest
i . We aim

to combine information of all federations without data ex-
change to learn a good model fi for each federation on its
local dataset Di:

min
{fk}N

k=1

1

N

N∑
i=1

1

ntest
i

ntest
i∑
j=1

ℓ(fi(x
test
i,j ), ytesti,j ), (1)

where ℓ is a loss function.

3.2 Overview of MetaFed
Consider the union of different federations where there is no
server among them and distribution shifts exist. How to make
them communicate equally without any other governors and
share common knowledge without direct data exchange is
the key. MetaFed aims to accumulate common knowledge
and preserve personalized information without compromis-
ing data privacy and security via knowledge distillation in a
cyclic way. Figure 2 gives an overview.

Without loss of generality, we assume there are four feder-
ations, and it can be extended to the more general case easily.
As shown in Figure 2, the whole training process is split into
two stages, common knowledge accumulation stage (blue ar-
rows) and personalization stage (green arrows). In common
knowledge accumulation stage, the federations are trained in
order and the previous trained one serves as the teacher for
the next one. The common knowledge accumulation stage
lasts for several rounds to ensure each federation’s common
knowledge are extracted completely. Personalization stage
is also trained in the same style but the model is sent to the
next federation without local training for losing no common
knowledge. From Figure 2, we can see no server participates
in the training process. The two stages are both based on fea-
ture knowledge distillation (as shown in Figure 3),

ℓdist(gtea, gstu;x) = ||gtea(x)− gstu(x)||22, (2)

where gtea is the feature extractor of the previous federa-
tion while gstu is for the current training federation, and x
is a sample of data from the current federation. Through
knowledge distillation, we can make good use of knowledge,
viewed as common knowledge, from the previous federation.
Therefore, the total loss to train the local model,fi, is,

ℓitotal =
1

ntrain
i

∑
(x,y)∈Dtrain

i

ℓcls(fi;x, y)+λℓdist(gtea, gi;x),

(3)
where λ is a trade-off of knowledge transfer and focusing the
current data while ℓcls is the cross-entropy loss. fi = ci ◦
gi where ci is the classification layer and gi is the feature
extractor. In the following, we will specify the two stages
respectively and illustrate how to design λ in detail.

FC FC Model A

New Model B

B
N

p
o

o
l

C
o

n
v 

B
N

p
o

o
l

C
o

n
v 

FC FC

Data B

B
N

p
o

o
l

C
o

n
v 

B
N

p
o

o
l

C
o

n
v 

Knowledge distillation

Figure 3: The knowledge transfer between two federations.

3.3 Common Knowledge Accumulation Stage
This stage happens in the first part of the whole training pro-
cess. In this stage, federations are trained sequentially in a
cyclic way and the previous meta knowledge is transferred
to the next one via knowledge distillation. The knowledge
which is useful for the current federation will be preserved
via knowledge distillation while the others that are useless
will be discarded. With several rounds of cyclic training, the
knowledge that is useful for all federations will be preserved



and we denote this type of knowledge as common knowledge.
Our first stage is just to accumulate common knowledge and
the specific detail can be found in Algorithm 1.

Algorithm 1 Common knowledge accumulation stage
Input: N federations’ datasets {Di}Ni=1, λ0, lt1
Output: A common model f

1: Initial λ = λ0

2: Train local models, fi using ℓcls with Dtrain
i in each fed-

eration
3: Send the current model fi to the next federation i+ 1
4: Evaluate fi+1 on Dvalid

i+1 and obtain accvalidi+1

5: if accvalidi+1 > lt1 then
6: Train fi+1 with Eq. (3)
7: else
8: Use fi to initial fi+1

9: Train fi+1 using ℓcls with Di+1

10: end if
11: Repeat steps 3 ∼ 10 until convergence
12: The last model fN serve as the final common model, f

As shown in Algorithm 1, the valid accuracy on the current
federation’s valid data is used to determine whether to com-
plete preserve the previous federation’s knowledge. When
accvalidi+1 > lt1, we think the training data on the current feder-
ation have enough knowledge to train a model, which means
we can discard some unless knowledge via knowledge distil-
lation. When accvalidi+1 < lt1, the training data on the current
federation has too little information. We need to make full use
of the previous knowledge and thereby we directly initial the
current model with the previous one. To preserve the person-
alization, we may preserve the local BN following FedBN [Li
et al., 2021b]. Since we want to accumulate common knowl-
edge in this stage, we fix λ = λ0 to ensure enough common
knowledge preserved.

3.4 Personalization Stage

This stage happens in the second part of the whole training
process. In the above stage, we obtain the common model f
which contains enough common knowledge. Since no server
exists, we have to obtain the personalization models in the
same style (sequential) as the first stage. To prevent common
knowledge loss, we transmit the common f to the next feder-
ation before local training. The specific detail of the second
stage can be found in Algorithm 2.

When the common model performs seriously terribly on
the validation data of the current federation, we want to re-
fer little on it and thereby set λ = 0. In the first stage, the
current fi has contained other federations’ knowledge. When
the common model’s performance is acceptable on the cur-
rent validation data, we adapt λ for personalization:

λ = λ0 × 10min(1,(accvalid
i,i+1−accvalid

i+1,i+1)∗5)−1. (4)

Compared to the local model’s performance, the better the
common model’s performance is, the larger λ will be.

Algorithm 2 Personalization stage
Input: N federations’ datasets {Di}Ni=1, λ0, lt2, f
Output: Meta models {fi}Ni=1

1: Send the common model f to the next federation i+ 1
2: Evaluate fi on Dvalid

i+1 and obtain accvalidi,i+1

3: Evaluate fi+1 on Dvalid
i+1 and obtain accvalidi+1,i+1

4: if accvalidi,i+1 ≤ accvalidi+1,i+1 and acci,i+1 < lt2 then
5: Set λ = 0
6: else
7: Set λ via Eq. (4)
8: end if
9: Train fi+1 with Eq. (3)

10: Repeat steps 1 ∼ 9 until all fi are trained

4 Experiments
We evaluate the performance of MetaFed on three bench-
marks, including time series and image modalities. One is
a famous benchmark (VLCS) about feature shifts while the
others are both healthcare related.

We compare our method with three state-of-the-art meth-
ods including common federated learning methods and some
federated learning methods designed for non-iid data,

• FedAvg [McMahan et al., 2017]. Directly aggregate
models’ parameters without personalization.

• FedProx [Li et al., 2018]. Allow slight differences be-
tween the local model and the global model via a proxi-
mal term added to FedAvg.

• FedBN [Li et al., 2021b]. Preserve the local batch nor-
malization not affected by the other clients.

Since these methods all need a server, we ease this restric-
tion for them. Adapting these methods without a server will
increase communication costs with no performance improve-
ment. All methods use the same model for fairness.

4.1 Image Classification on Feature Shifts

VLCS. First, we adopt a public image classification dataset
called VLCS [Fang et al., 2013] due to few famous feature
shift datasets in the healthcare field. VLCS comprises four
photographic sub-datasets (Caltech101, LabelMe, SUN09,
VOC2007) with 10,729 instances of 5 classes. Each sub-
dataset serves as one federation and there are 4 federations
in total. Since each dataset contains too many images, we
choose 10% for training, 10% for validation, and 20% for
testing. The validation parts are utilized to guide training and
select the best model for each federation.

Implementation Details. For VLCS, we adopt
Alexnet [Krizhevsky et al., 2012] as the feature extrac-
tor and a three-layer fully connected neural network as the
classifier. For model training, we use SGD optimizer with
a learning rate of 10−2. All methods are implemented in
the same environment for fairness and we run three trials to
record the average accuracy.



method Caltech101 LabelMe SUN09 VOC2007 AVG

FedAvg 82.69 54.43 51.52 44.89 58.38
FedProx 83.04 55.74 51.98 47.70 59.62
FedBN 90.81 54.80 50.15 44.30 60.02
MetaFed 93.64 57.44 56.40 48.15 63.91

Table 1: Average accuracy on VLCS. Bold means the best result
while underline means the second-best result.

Results. The classification results for each federation on
VLCS are shown in Table 1. We have the following observa-
tions from these results. 1) Our method achieves the best ef-
fects on average with a remarkable improvement (over 3.89%
compared to FedBN). We even achieve the best performance
on each federation which demonstrates the superiority and the
capability of personalization of our method. 2) Since it is a
feature shift situation, FedBN has a better performance com-
pared to FedAvg. FedProx has an acceptable performance.

4.2 Human Activity Recognition
PAMAP. For the healthcare-related benchmark, we first
adopt a public time-series benchmark called PAMAP [Reiss
and Stricker, 2012]. PAMAP contains data of 18 human activ-
ities performed by 9 subjects. We use 3 inertial measurement
units’ data with 27 channels and utilize the sliding window
technique to preprocess data. 10 classes with 17639 instances
are selected. To simulate labels shift, we follow [Yurochkin
et al., 2019] and use Dirichlet distributions to create disjoint
non-iid. training data. Figure 4(a) visualized how samples
are distributed. For each federation, 40%, 30%, and 30% of
data are used for training, validation, and testing respectively.

Implementation Details. For PAMAP, we utilize a CNN
composed of two convolutional layers, two pooling layers,
two batch normalization layers, and two fully connected lay-
ers [Wang et al., 2019]. Other settings are similar to VLCS.
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Figure 4: The number of samples per class allocated to each federa-
tion (indicated by dot size).

Results. The classification results for each federation on
PAMAP are shown in Table 2. We have the following ob-

servations from these results. 1) Our method also achieves
the best effects on average with a remarkable improvement
(over 3.09% compared to FedBN) in this situation where la-
bel shifts exist. 2) In this situation, 20 federations in total
make the problem more complicated. Although our method
does not achieve the best performance on each federation, it
still achieves acceptable results on almost every federation. 3)
Compared to FedAvg and FedProx, FedBN and our method
achieve remarkable improvement, which may illustrate that
FedBN can also cope with label shifts sometimes.

4.3 Real Medical Image Classification
MedMnist. To further validate our method, we evaluate our
method on three public medical image classification bench-
marks. We choose 3 datasets, OrganAMNIST, OrganCM-
NIST, and OrganSMNIST [Bilic et al., 2019; Xu et al.,
2019], from a larger-scale MNIST-like collection of standard-
ized biomedical images, MedMNIST [Yang et al., 2021a;
Yang et al., 2021b]. These three datasets are all about Ab-
dominal CT images with 11 classes and they have 58,850,
23,660, and 25,221 samples respectively. Similar to PAMAP,
we utilize Dirichlet distribution to split data and Figure 4(b)-
Figure 4(d) visualize how samples are distributed. In each
federation, 40%, 30%, and 30% data are used for training,
validation and testing respectively.

Implementation Details. For these three datasets, we uti-
lize adapted LeNet5 [LeCun et al., 1998] due to the image
size with 28× 28. Other settings are similar to VLCS.

Results. The classification results for each federation on
OrganAMNIST, OrganCMNIST, and OrganSMNIST, are
shown in Table 3. We have the following observations
from these results. 1) Our method also achieves the best
effects on average with a remarkable improvement (over
3.07%, 3.08%, 12.44% respectively) in this situation where
label shifts exist. 2) When federation distributions have small
differences (Figure 4(b) and Figure 4(c)), three state-of-the-
art methods have similar performance and ours achieves re-
markable improvements. When federations have huge dif-
ferences from each other (Figure 4(d)), FedBN can achieve
a remarkable improvement compared to FedAvg and Fed-
Prox while ours shows another crazy improvement compared
to FedBN 3) The above experiments demonstrate that our
method can achieve the best performance in both two settings.

4.4 Analysis
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Figure 5: Ablation study on PAMAP.



method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG

FedAvg 82.44 80.99 50.19 91.25 81.99 68.97 76.63 90.08 74.71 90.46 68.20 67.82 92.02 79.62 58.17 92.78 79.09 71.65 87.79 97.70 79.13
FedProx 82.44 81.37 52.49 92.02 82.38 70.50 77.78 90.84 78.16 89.31 69.35 70.88 90.87 79.62 63.88 93.92 77.95 71.26 85.88 96.93 79.89
FedBN 84.73 84.79 81.61 93.54 81.23 80.08 89.27 94.66 80.08 95.80 87.36 78.16 86.69 88.08 86.31 96.58 93.54 80.08 87.02 99.23 87.44
MetaFed 91.60 98.48 90.80 91.25 85.06 74.71 92.34 95.42 87.36 98.09 95.02 79.69 90.49 84.62 90.87 95.44 92.40 86.97 90.84 99.23 90.53

Table 2: Average accuracy on PAMAP. Bold means the best result while underline means the second-best result.

Bechmark Method 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 AVG

O
rg

an
A fedavg 94.20 91.23 92.61 89.85 96.25 88.62 90.44 94.65 92.84 89.29 91.81 92.94 89.62 93.84 93.86 89.65 93.52 90.43 92.26 92.38 92.01

fedprox 93.75 91.34 92.95 90.76 96.47 89.65 90.79 94.65 93.30 89.29 91.81 91.69 90.99 93.50 92.83 89.65 92.83 90.43 92.04 91.92 92.03
fedbn 94.09 92.03 93.40 90.31 97.27 88.96 92.49 95.90 94.89 89.18 92.15 91.69 91.11 92.25 92.72 90.33 93.52 91.00 92.04 91.13 92.32
MetaFed 96.59 93.39 97.27 94.30 97.84 90.79 94.31 96.47 97.16 94.42 96.47 94.87 93.84 96.47 97.16 94.20 96.47 94.65 95.79 95.34 95.39

O
rg

an
C fedavg 86.40 90.00 88.03 88.39 84.05 90.31 78.35 95.16 83.52 91.45 85.76 90.03 86.04 90.63 86.36 91.43 86.89 92.33 85.76 91.76 88.13

fedprox 87.25 90.29 85.76 87.82 85.47 89.74 79.20 96.58 84.09 90.88 86.89 91.74 87.18 91.76 87.50 92.29 87.75 90.91 86.04 92.33 88.57
fedbn 82.44 94.86 92.02 91.50 86.32 92.88 78.92 97.44 86.36 90.03 85.19 90.60 83.76 92.90 85.80 94.29 88.03 92.90 82.34 92.90 89.07
MetaFed 88.95 95.43 92.02 92.92 89.17 90.60 82.91 98.29 89.20 93.16 90.60 94.59 89.46 95.17 94.60 94.29 92.88 94.89 89.74 94.03 92.15

O
rg

an
S fedavg 52.39 50.26 67.47 67.82 75.67 53.33 82.98 61.97 82.35 90.72 65.78 83.42 73.53 90.13 83.11 46.42 44.80 61.17 56.38 79.41 68.46

fedprox 52.13 51.59 69.07 67.82 77.01 53.33 81.38 59.84 82.89 90.19 59.36 86.10 71.12 89.33 83.65 45.89 43.20 62.77 58.78 79.68 68.26
fedbn 75.00 76.98 75.20 79.79 79.95 54.13 86.97 67.29 92.51 99.20 75.67 86.90 76.47 90.93 89.28 72.15 57.87 69.95 73.67 87.43 78.37
MetaFed 97.07 97.62 81.07 85.37 86.36 89.87 97.34 98.14 95.19 99.73 85.83 88.24 83.96 97.07 90.08 81.96 86.13 85.37 96.28 93.58 90.81

Table 3: Average accuracy on three benchmarks of MedMnist. Bold means the best result while underline means the second-best result.

Ablation Study. We also perform ablation study to illus-
trate the effects of each part of our methods. As shown in
Figure 5(a) and Figure 5(b), we can see that both replacing
knowledge distillation with fine-tuning (Finetune) and train-
ing without common knowledge accumulation stage (W.O. I)
will make performance drop while common knowledge ac-
cumulation with slight adaptation (W.O. II) can achieve ac-
ceptable results. We do not use the common f for testing
but each local model with local adaptation brought by knowl-
edge distillation does testing. Personalization stage can fur-
ther bring slightly better performance, which demonstrates
that each part of our method can all bring benefits.
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Figure 6: Parameter sensitivity on PAMAP.

Parameter Sensitivity. In this part, we evaluate the two
main hyperparameters, λ0 and lt1, in MetaFed. We change
one parameter and fix the others. Figure 6(a) proves that our
method can achieve better performance than FedAvg what-
ever λ0 is while Figure 6(b) demonstrates that our method
may slightly drop with larger lt1 but it is still better than Fe-
dAvg. The results reveal that MetaFed is more effective and
robust than other methods under different hyperparameters in
most cases.
Communication Costs. To further prove that our method
can reduce communication costs, we increase the local train-
ing iteration number and decrease the total communication
rounds to evaluate our method and the baseline. As shown in
Figure 7, when communication costs are limited, our method
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Figure 7: Performance w. communication costs on PAMAP.

has related stable results while FedAvg drops seriously. In re-
alistic applications, communication cost is an important eval-
uation metric and there are often strictly limited costs. There-
fore, few communication costs with stable and acceptable
performance are vital.

5 Conclusion and Future Work
In this article, we proposed MetaFed which uses cyclic
knowledge distillation for meta federated learning. MetaFed
organizes federations in another novel style that does not
require a central server. Comprehensive experiments have
demonstrated the effectiveness of MetaFed. In the future, we
plan to combine MetaFed with common methods such as Fe-
dAvg, to implement a complete federated learning system,
including intra- and inter- federations. We also plan to extend
MetaFed for heterogeneity architectures and apply MetaFed
to more realistic healthcare applications.
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