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Abstract

Federated learning (FL) aims to protect data pri-
vacy by cooperatively learning a model without
sharing private data among users. However, there
can still be privacy risks because the server or dis-
tributed systems may not be trusted platforms. The
attacker may infer the private data by attacking the
released model or updated gradients. Splitting the
network into private layers and public layers and
only implementing FL in public layers could be
against attack partially. In this paper, we propose
a novel privacy-preserving method based on Fed-
erated Deep Learning with Private Passport(FDL-
PP). By embedding the passport into the private
layers of the network, private data security for each
participant is guaranteed. Our empirical experi-
ments, on MNIST and CIFAR10 dataset with mul-
tiple clients, demonstrate that embedding passports
resist deep leakage attack and model inversion at-
tack without affecting model classification perfor-
mances. What is more, the proposed method is as
efficient as distributed learning.

1 Introduction

Since the introduction of Federated learning (FL) [Konecny
et al., 2015; McMahan et al., 20171, a variety of technolo-
gies have been adopted to improve the privacy-preserving
capability, the efficiency and the reliability of FL process.
For instance, homomorphic encryption (HE) [Gentry and oth-
ers, 2009] protects exchanged information and training data
from being espied by semi-honest parties. Nevertheless, ex-
tremely heavy computation and communication overhead in-
curred by HE make it unsuitable for Federated DNN model
learning. On the other hand, differential privacy (DP) [Dwork
et al., 2014; Abadi et al., 2016] has been adopted for feder-
ated deep learning because deep learning algorithm with DP
can run almost as fast as without DP. However, it was shown
that attackers may infer training images at pixel level accu-
racy even random noise are added to exchanged gradients
[Geiping er al., 2020; Zhao et al., 2020; Zhu and Han, 2020;
Yin et al., 2021]. Moreover, exceedingly large noise jeop-
ardise learning reliability and lead to significant degradation

of model accuracy (as shown in Figure 1(c). It remains an
open question as how to train federated DNN models in an
efficient, reliable and privacy preserving manner.

Inspired by previous works in which only a small fraction
of (DNN) models are shared with the aggregator while the
rest of model parameters are kept secret (splitfed [Thapa et
al., 2020]) or simply skipped [Shokri and Shmatikov, 2015],
we propose to split DNN models into public and private lay-
ers and adopt a passport layer between the private and public
layers to provide secure privacy preserving capability. This
novel solution, named Federated Deep Learning with Private
Passport (FDL-PP), addresses the aforementioned challenge
in three aspects. First, FDL-PP is efficient since public layers
are directly shared with the aggregator without using compu-
tational demanding encryption. Second, the private passport
layer blocks information leakage to semi-honest adversaries
and guarantees privacy of training data. Third, the learning
of federated DNN models with FDL-PP is reliable and no
noticeable performance degradation are incurred.

The proposed FDL-PP not only demonstrates high model
accuracy but also exhibits superior robustness against various
privacy attacks, which are detrimental to existing methods un-
der certain conditions (as shown in Figure 1 (a) and (b).

Overall, the propose method provides a balanced solution
that improves model learning efficiency without compromis-
ing model accuracy and data privacy.

1.1 Related work

In contrast to FL, SL [Gupta and Raskar, 2018] enables ML
training with clients having low computing resources as the
client trains only the partial model of the split ML global
model. Splitfed integrates the advantages of FL and SL by
splitting the network architecture between the clients and
server as in SL, which provides more privacy than FL and
better efficiency than SL through collaborative training in FL.

With many clients for collaborative training and exposure
of model parameters, FL makes itself vulnerable to various
attacks and open to risks. On the one hand, the attacker could
influence the model through the Poisoning. Since the central
server cannot access the private data of clients, the malicious
clients can cheat the server by sending modified and harm-
ful model updates, initiating adversarial attacks on the global
model [Nasr et al., 2019; Kairouz et al., 2019].
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Figure 1: The results of reliability and privacy-preserving of different methods including distributed learning (DL), splitfed, FL-DP (applying
DP in FL by adding different noise o, FL-DP-v1 is adding noise as Gaussian ¢ 0.002, FL-DP-v2 is adding noise as Gaussian o 0.128)
and FDL-PP. Respectively, figure (a) shows the results of LeNet on MNIST classification task, figure (b) shows the results of AlexNet on
CIFARI1O classification task: each horizontal axis describes the classification accuracy (Reliability) of different privacy preserving methods,

each vertical axis describes the privacy-preserving of varying methods.

On the other hand, attackers may infer data distribution
even reconstruct other clients’ data through the model gra-
dients and weights. [Shokri ef al., 2017] revealed the origi-
nal data distribution by membership attack, and [Melis et al.,
2019] recovered the position distribution of original data in
federated learning. What’s more, deep leakage attack (DLG)
was proposed by [Geiping et al., 2020; Zhao et al., 2020;
Zhu and Han, 2020; Yin et al., 2021], which enables pixel-
level detailed image reconstruction based on gradients of
model weights. In addition, Emerging research on model in-
version techniques [Fredrikson er al., 2015; He et al., 2016]
offered insights into this task. Model inversion (MI) attack
could retrieve the images via back-propagating gradients on
appropriate loss functions to the learnable input.

Passport is used to verify ownership and claim legitimate
intellectual property rights (IPR) [Fan et al., 2019], in case
that models are illegally copied, re-distributed, or misused.
In order to alleviate the influence of model performance
the passport brings, [Zhang et al., 2020] proposes a gen-
eral passport-aware normalization formulation to increase the
classification accuracy.

2 Federated Deep Learning with Private
Passport (FDL-PP)

The proposed FDL-PP method takes advantages of two strate-
gies. First, FDL models are separated as public and private
layers, with parameters in private layers being kept secret
to persevere data privacy and parameters in public layers are
shared without encryption. However, splitting models alone
does not defense well privacy attacks since training data can
still be inferred from the public parameters (as shown our ex-
periment). To this end, we employ a private passport layer

to guarantee that training data and private parameters cannot
be inferred from the publicly shared parameters. The struc-
ture of Federated DNN models with separated parameters and
passport layers is illustrated in Figure 2.

2.1 Modified splitfed

The notion of keeping part of model parameters secret while
learning the rest of model parameters in a federated setting
has been explored before ([Thapa er al., 2020]). However,
this method alone is insufficient to provide secure protection
of training data as shown by experiment results in our study.
The proposed FDL-PP method consists of three steps as
shown in Figure 2: (1) All clients carry out the forward and
backward propagation on a global model in parallel and up-
load their last few layers (named public layers) of the model
to the server. (2) The center server process the aggregation
of the public layers and update. (3) Clients download the up-
dated public model and train their first several layers (named
private layers) without modifying the published layers.

2.2 Threat Model

In this work, for our architecture, we consider all participants,
including K clients and the server, are honest-but-curious ad-
versaries. They possibly do some calculations to obtain the
private data of clients by observing the model weights and
updates, but they do not maliciously modify their own inputs
or parameters for the attack purpose. There are considered in
our study: DLG and MI attack.

DLG Deep leakage attack is firstly proposed by [Zhu and
Han, 2020], where the server tries to recover the original data
based on updates and model weights. Consider k;j, client who
submit its gradient VW, of public model. To reconstruct
the raw data of client k, firstly initializing a dummy input x’
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Figure 2: The structure of FDL-PP. The local model is split into private layers and public layers. Only public layers are aggregated by
FederatedAvg algorithm, private layers are kept private in local(the left panel). In the private layers, the client embeds private passport
into the parameters of each local model to protect the privacy of local data(the right panel).

with label y’. Then, feeding the dummy data into the model
and get the dummy gradient:

(’M(F(x’,W),y’).

6]

X,y = argmin ||V}, — VW, | @
x'y’

where ¢ is the classification loss, F’ is the forward function.

By minimizing the differences between the dummy gradi-
ents and the original gradients (as shown in equation 2), the
attackers could learn a good input x'* and y’*. In particu-
lar, DLG could easily recover the private model’s output and
even recover the original image if the private model is leaked,
which is similar to the white-box attack.
MI However, sometimes, the attacker may not know the
weights of the private model. In this case, model inversion
attack (MI [He et al., 2019]) provides a strategy to recon-
struct the original image. MI attack attempts to recover the
original input given the private model output as the following
two cases: (1) In the white-box setting, the adversary knows
the private model on the participant. (2) In the black-box set-
ting, the model parameters on the participant are unavailable
for the adversary. In our setting, we mainly consider the sec-
ond case. The server may conspire with the curious client to
obtain other clients’ data. The server provides the updated
weights and gradients of the public model to reconstruct the
output of the private model, and the curious client offers his
own private model as the target model.

Specifically, given the private model output O,,; and tar-
get model F, MI attack learns a good dummy input x’* by

solving the equation 3.

x"* = argmin | F(x') — Op,,t||2 3)

2.3 FDL-PP

Inspired by the [Fan et al., 20191, we embed the passports in
the federated learning. Concretely, we add a passport layer
after the convolution layer. Similar to the batch normaliza-
tion layer, the output of the passport layer is scale factor ~y
and bias shift term /3, which are dependent on both the con-
volution kernels W, and the designated passport P. In order
to increase the complexity of the passport layer and keep the
model performance, we add a fully connected autoencoder
(Encoder E and Decoder D) into the passport layer. More-
over, the details of passport layer based on Equation 4 and
5.

0'(X,) =1'X, + 8 =7/ (W,x X)) + 5 &

7' =D(E(W, «P)),' = D(E(W} xP})) (5
where * denotes the convolution operations, [ is the layer
number, X, is the input to the passport layer, and X, is the
input to the convolution layer. O() is the corresponding lin-
ear transformation of outputs, while Pfy and Pé are the pass-
ports used to derive scale factor and bias term respectively.
The right part of Figure 2 illustrates the procedure of pass-
port embedding.

We embed the passport into the private layers. Each client
reserves their own passport and does not leak to the server. In
fact, it is hard for attackers to reconstruct the original input.
Firstly, adversaries don’t know what the passport is, so the
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Figure 3: The illustration of reliability and privacy-preserving of different methods based on FL including DL, splitfed, FL-DP (varying
noise o) and FDL-PP with different total client number and training setting. Respectively, figure (a)(b) show the results of LeNet on MNIST
classification task with 5 clients and 10 clients, figure (c)(d) show the results of AlexNet on CIFARI1O0 classification task with 5 clients and
10 clients: each horizontal axis describes the classification accuracy (Reliability) of different privacy preserving methods, each vertical axis

describes the privacy performance (Security) of varying methods.

reconstruction they do is a mixture of passport and original
input. Secondly, the way to inserting a passport is complex.
For example, adversaries don’t know how to insert the pass-
port because the passport not only relies on learned weights
E and D but also relates to the model convolution weights
Wé) Finally, the position of inserting a passport is varied.
Each client could choose any position of private model to in-
sert. Therefore it is not easy to learn the passport and recover
the original images.

3 Experimental Results

This section illustrates the empirical study of our privacy-
preserving method (FDL-PP). We investigate the typical clas-
sification problems in MNIST and CIFRA 10 by applying two
well-known networks (LeNet and AlexNet). In particular, we
test the result by splitting the network into the first convolu-
tion and activation layers as the private layer, the rest layers
as the public layer. Also, we insert the passport layer factors:
~v and § into the first layer of the private layer in AlexNet
(FDL-PP) and three layers of the private layer separately in

LeNet.

We simulate K = 10, 5 clients’ horizontal federated learn-
ing system in a stand-alone machine for the federated learning
setting. In each communication round, we were uniformly
sampling the public layers of clients to average in the server.
In addition, the optimization algorithm we choose SGD and
learning rate is 0.01.

3.1 Evaluation matrix

We will evaluate the effectiveness in three aspects: privacy-
preserving, the efficiency and the reliability.

Reliability For reliability, we use classification accuracy
1(y, f(z)) to evaluate, where y is targeted label, x is input
image, f is deep learning model. The classification accuracy
is between 0 and 1, the closer to 1 the classification accuracy
is, the more the reliability is;

Privacy-preserving We apply f(reconstruction MSE) to eval-
uate the privacy-preserving in different approaches, where re-
construction MSE is ¢2 distance between reconstruction im-

o . . . . . . 21(1
ages and original images, f is fixed increasing function 55=




aimed to transfer the reconstruction MSE to the range of
(0,1) as shown in Equation 6. In our paper, we pick o« = 0.1
What’s more, the higher the reconstruction MSE is, the more
the privacy is preserved.

f(Rec.MSE) = f(”IOM' - IreC||2)
2(21‘]\1’1]2:1(1-07%(2.73‘) - Irec(iaj))z)a

T (SN Torii05) — Lree(5,3))7)°
(©)

Efficiency For efficiency, we evaluate different approaches
by calculating the consuming time of training.

3.2 Comparison of Privacy Preserving
Mechanisms

We compare the reliability of different approaches via clas-
sification accuracy under two cases: five and ten clients par-
ticipate the federated learning. Figure 3 demonstrates the DL
and splitfed doesn’t protect privacy even they keep high re-
liability. Introducing DP more in FL influence the reliability
although it could protect the privacy. And our method FDL-
PP is the only one could obtain good performance in both
reliability and privacy-preserving (red star in the top right po-
sition).

ReliabilityFor reliability, table 1 shows the classification ac-
curacy only degrades no more than 1% for splitfed and our
proposed FDL-PP compared to the distributed learning. The
classification accuracy of DP decreases more than 3% when
adding noise o is 0.128.

Privacy-preserving Privacy-preserving is evaluated by the
reconstruction MSE. High MSE indicates that the attacker
is hard to recover the original images, which represents the
more security of the approach. We consider the DLG attack in
the white-box setting, where the attackers know the weights
of the public model and the private model and only know the
updated gradients of the public model. On the other hand,
we consider the MI attack in a black-box setting, where the
attacks don’t know any private model information.

For the DLG attack, table 1 demonstrates the recon-
struction MSE of different methods in LeNet-MNIST and
AlexNet-CIFAR10, figure 4 (a) shows the reconstructed im-
ages among various method. Both of them show that FL and
splitfed could not protect privacy because the MSE is low and
the reconstructed image is clear. And as adding more noise
in gradients in DP of FL, the privacy leaked less. Moreover,
our proposed method FDL-PP could protect privacy most via
the highest MSE. The attacker is hard to recover the original
image when applying FDL-PP.

For the MI attack, we suppose the server combines one
client to attack other clients. Concretely, we use the private
model of one client as the initial model to attack the original
images of another client. The result of Table 1 and 4 (b) illus-
trates FDL-PP have resist MI attack while splitfed could not.
Efficiency We compare the computation speed among vari-
ous methods, including FL, splitfed, FL-DP, FDL-PP, and HE
(CryptoNets [Gilad-Bachrach et al., 2016]) on MNIST. Table
1 shows the computation time (for one inference) and the ac-
curacy. We observe that the consuming time of our proposed

Figure 4: The reconstructed image of CIFAR10 after DLG and
MI attack. Figure (a) is the reconstructed image of the DLG at-
tack. From left to right, top to bottom, methods are original im-
age, splitfed, FL-DP-0.002, FL-DP-0.032, FL-DP-0.128, FDL-PP
separately. Figure (b) is the reconstructed image of the MI attack.
From left to right, methods are original image, splitfed, FDL-PP
separately.

method FDL-PP is comparable to other methods except HE
(CryptoNets). Actually, HE needs a large amount of time in
encrypting to be less efficient than other approaches.

4 Discussion and Conclusion

This paper illustrates a novel approach: FDL-PP to simulta-
neously improve privacy, efficiency, and reliability of feder-
ated DNN learning. Compared to the method based on HE,
FDL-PP is efficient since public layers are directly shared
with the aggregator without using demanding encryption.
What’s more, the application of FDL-PP in the federated
DNN model doesn’t sacrifice reliability. Finally, embedding
passports into the private layers block information leakage to
adversaries.

[Fan et al., 2019] analyzed robustness against DLG attack
in FL by building the systems of linear equations. Therefore,
further exploration focus on the theoretical proof about the
privacy protection of FDL-PP.



Table 1: The result of reliability, Privacy-preserving and efficiency of DL, splitfed, FL-DP, cryptoNets and FDL-PP

DL Splitfed FL-DP(0.002) | FL-DP(0.128) cryptoNets FDL-PP
Reliability MNIST |9.86e-1(1.17e-3) | 9.85e-2(1.80e-3) | 9.87e-1(2.13e-3) | 9.71e-1(4.23e-3) | 9.67e-1(3.00e-3) | 9.86e-1(1.01e-3)
(Classification acc) CIFARI0 | 8.88e-1(4.61e-3) | 8.79e-1(5.43e-3) | 8.82e-1(4.96e-3) | 5.78e-1(1.54¢-2) AN 8.76e-1(5.21e-3)

Privacy-preserving

MNIST

4.58¢-1(3.77¢-3)

5.21e-1(2.31e-2)

8.70e-1(5.10e-3)

9.31e-1(2.34e-3)

N

9.32e-1(1.17e-3)

(DLG attack) CIFARI0 [2.93e-1(7.50e-3) | 5.61e-1(5.68e-2) | 4.12e-1(7.00e-3) | 7.54e-1(2.74e-3) AN 8.55e-1(3.51e-3)
Privacy-preserving(MI attack) | CIFAR10 AN 5.00e-1(5.09e-2) AN AN AN 8.46e-1(3.99¢-3)
Efficiency MNIST 25.6(0.30) 53.2 (0.30) 26.7(0.30) 3009.6(1.70) 65.4(0.35)
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