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Abstract

Federated learning is the distributed machine learn-
ing framework that enables collaborative training
across multiple parties while ensuring data privacy.
Practical adaptation of XGBoost, the state-of-the-
art tree boosting framework, to federated learning
remains limited due to high cost incurred by con-
ventional privacy-preserving methods. To address
the problem, we propose two variants of federated
XGBoost with privacy guarantee: FedXGBoost-
SMM and FedXGBoost-LDP. Our first protocol
FedXGBoost-SMM deploys enhanced secure ma-
trix multiplication method to preserve privacy
with lossless accuracy and lower overhead than
encryption-based techniques. Developed indepen-
dently, the second protocol FedXGBoost-LDP is
heuristically designed with noise perturbation for
local differential privacy, and empirically evaluated
on real-world and synthetic datasets.

1 Introduction
As a distributed machine learning (ML) model, FL benefits
from the variety of multiple data holders and facilitates col-
laborative training. Its widespread usage can be found in
credit card fraud detection [Yang et al., 2019b], banking pre-
diction [Shingi, 2020], and health care application by [Xu
and Wang, 2019]. Nevertheless, participants of a FL model
are required to share the knowledge of their data, leading to
the threat of privacy leakage. Privacy-preserving in Feder-
ated Learning (FL) is thus one of the key challenges. Sev-
eral anonymization approaches that cover users’ identifica-
tion are shown to be insufficient [Narayanan and Shmatikov,
2006]. Furthermore, the European Union recently imposed
General Data Protection Regulation (GDPR) to increase the
privacy protection of user’s private data. Therefore, any FL
framework must satisfy privacy-preserving criteria while of-
fering high-quality ML service. An informative overview
of privacy-preserving under FL is provided in [Yang et al.,
2019a].
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XGBoost - Gradient boosted decision trees by [Chen and
Guestrin, 2016] is a novel tree ensemble model that achieves
state-of-the-art results on a variety of machine learning prob-
lems. In this paper, we aim to bring the benefits of XGBoost
to the FL settings with privacy-preserving guarantees. Many
existing work of FL-based gradient boosting methods require
different types of encryption-based protocols: homomorphic
encryption [Liu et al., 2020] [Aono et al., 2016] [Fang et al.,
2020a], secret-sharing [Fang et al., 2020b] and locality sen-
sitivity hashing [Li et al., 2019], all of which result in signif-
icant communication/computation overhead. Applying Ho-
momorphic Encryption (HE) , [Cheng et al., 2019] provides
SecureBoost that offers high degree of privacy-preserving but
requires high communication cost. Other approaches utilize
Differential Privacy (DP) and perform the analysis directly
with the perturbed data as studied in [Li et al., 2021] , [Shi et
al., 2021]. Despite the reduction in training time, the model
suffers accuracy loss by the injected noise. Our approach de-
viates from all the previous work. We study a protocol that
has lossless accuracy and achieves a compromise between
model complexity and privacy-preserving. We first formu-
late the evaluation of splitting score, the major step requir-
ing privacy guarantee in XGBoost, as the multiplication of a
categorical matrix and a vector, and then deploy a modified
version of secure matrix multiplication (SMM) introduced in
[Karr et al., 2007]. We show that if SMM is naively ap-
plied, due to its categorical entries the privacy guarantee of
the matrix can be violated. We further point out the anal-
ogous scenario of privacy leakage that could be inherent in
HE, yet neglected by the literature. To address the challenge,
we enhance the SMM protocol to provide additional denia-
bility and propose FedXGBoost-SMM, XGBoost for FL over
vertically partitioned data with privacy-preserving guarantee.
In addition, utilizing noise perturbation with local differential
privacy (LDP), we introduce FedXGBoost-LDP, which is a
heuristic for practical perspective. Our contributions can be
summarized as follows:

• FedXGBoost-SMM: a linear algebra based approach
designed to achieve lossless model accuracy and more
efficient in comparison to HE. We vertically encode the
categorical matrix and show that the extremely curious
party can infer the true value of the matrix with low



probability, while the overhead is negligible. We pro-
vide modifications to enhance the privacy-preserving.

• FedXGBoost-LDP: a heuristically designed protocol
with LDP that yields acceptable practical results.

• Practicality: We experiment on real-world data and
evaluate the utility of the heuristic FedXGBoost-LDP.

The remainder of the paper is organized as follows. Sec-
tion 2 represents the preliminaries and the problem state-
ment. Section 3 introduces the applied privacy-preserving
techniques and analyzes the potential information leakage of
the proposed algorithms. Section 4 describes the procedures
of FedXGBoost. The experiments and the evaluation of the
protocols are provided in section 5. Section 6 concludes the
study.

2 Preliminaries
2.1 XGBoost - Gradient Tree Boosting
2.1.1 Regularized Learning Objective of Tree Boosting
Given a dataset D = {(xi, yi), xi ∈ X, yi ∈ R}, xi denotes
feature vectors in feature space X and yi is the label of the ith
instance. Let n = |D| be the total amount of instances and
K be the amount of constructed regression trees. We have a
regression model φ(.) for an instance xj ∈ X from multiple
regression trees as follows

ŷj = φ(xj) =

K∑
k=1

fk(xj), fk ∈ F , (1)

The set of regression trees F is defined as

F = {f(x) = wq(x)}, q : Rm −→ T,w ∈ R

where q denotes the tree structure that maps the instance to
an unique leaf, w is a weight of leaf, and T is the amount of
leaves of one tree. For any differentiable convex loss function
l : R × R → R, the objective function L(φ) for the model
training process is defined as

L(φ) =

n∑
i=1

l(ŷi, yi) +
∑
k

Ω(fk) (2)

in which the term Ω(fk) = γT + 1
2λ ‖w‖

2 is the regulariza-
tion term to avoid over-fitting.

2.1.2 XGBoost: Regression Tree Boosting
[Chen and Guestrin, 2016] applied iterative optimization pro-
cedure to minimize the objective function (2). At the tth it-
eration, new tree ft is constructed and contributes to the re-
gression model. Therefore, the objective function at the tth
iteration is formulated as

L(t) =

n∑
i=1

(l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (3)

The learning process aims to minimize the second order ap-
proximation of the objective function

min
ft

n∑
i=1

(l(yi, ŷ
(t−1)) + gift(xi) +

hif
2
t (xi)

2
) + Ω(ft) (4)

where gi = ∂ŷ(t−1)
l and hi = ∂2ŷ(t−1)

l are the first and second
derivative of the loss function at ŷ(t−1), respectively. Then
the optimal candidate is selected to split the instances into
left and right nodes. [Chen and Guestrin, 2016] used the fol-
lowing score to evaluate the splitting candidates
Lsplit = −γ+

1

2

[
(
∑
i∈IL gi)

2∑
i∈IL hi + λ

+
(
∑
i∈IR gi)

2∑
i∈IR hi + λ

−
(
∑
i∈I gi)

2∑
i∈I hi + λ

]
(5)

where IL, IR indicate the obtained left and right nodes by
splitting the node I . Then, it continues to split from the new
constructed nodes until reaching the maximum depth of the
tree. The node at the last layer is the tree leaf that represents
the weight for the common instance in this node. The leaf
weight w is equivalent to the prediction of a new tree and
contributes to the minimization of (4) via ft = w.

2.2 Federated Learning (FL) over vertically
partitioned data

Our proposed protocols focus on FL over vertically parti-
tioned data, in which multiple databases own different fea-
tures of the same sample instances. We introduce the concept
of Active Party and Passive Party proposed by [Cheng et al.,
2019] through the following definition
Definition 1. Active Party and Passive Party

• Active Party (AP): The party that holds both feature
data and the class label.

• Passive Party (PP): The data provider party, which has
only the feature data.

The protocol studied by [Liang and S.Chawathe, 2004] is
applied to determine the common database intersection be-
tween participants and align the features and class label with
the corresponding sample ID securely. The main concern
of XGBoost under this configuration is how to conduct the
training process jointly between participants with the aligned
database.

2.3 Secure Multi-party Computation (SMC)
[Cramer et al., 2015] defines SMC as techniques that allow
multiple participants to compute accurately the final output
without revealing private information. SMC protocols require
the participants to follow a particular procedure that leads to
the final result and guarantee under some assumptions that
the private data can not be reconstructed. The SMC proto-
col applied in this paper is the Secure Matrix Multiplication
(SMM) protocol motivated by [Karr et al., 2007] as follows
Protocol 1. SMM by [Karr et al., 2007]
Let the parties A and B possess the private data matrix DA ∈
Rn×m andDB ∈ Rn×l, respectively. They want to obtain the
result S = (DA)TDB ∈ Rm×l without knowing the private
information of the other participant.

1. Party A finds the set U = {ui ∈ Rn|(DA)Tui =
0}, which contains orthonormal null space vectors of
(DA)T . Then it selects r kernel vectors to construct the
matrix Z = [u1 · · ·ur] ∈ Rn×r. We have

(DA)TZ = 0m×r



2. Party A sends the matrix Z to party B, then party B com-
putes the matrix W ∈ Rn×l as

W = (In×n − ZZT )DB

3. Party B sends W back to party A to compute the true
result of the multiplication by
(DA)TW = (DA)T (In×n − ZZT )DB = (DA)TDB

The designed protocol assumes that all participants are
semi-honest, i.e., they honestly follow the protocol but they
are curious about the private data of other participants. The
private data can not be uniquely reconstructed from the data
exchange of Z, W in step 2 and 3 thanks to the rank defi-
ciency of the linear equation systems.

2.4 Local Differential Privacy (LDP)
Differential Privacy by [Dwork and Roth, 2014] guarantees
privacy-preserving by introducing deniability in the private
data. Informally, DP mechanisms inject calibrated noise into
the query of the private dataset to make individual’s data in-
distinguishable. This allows statistical analysis to be con-
ducted while individual data is protected. A stronger DP ap-
proach is LDP, which perturbs the private data directly.
Definition 2. LDP, [Úlfar Erlingsson et al., 2014]
The perturbation mechanism π(.) satisfies ε- local differential
privacy if for any two input t, t′ in the domain of π(.) and any
output t∗ in the range of π(.), there is an ε > 0 that

Pr[π(t) = t∗] ≤ exp(ε)Pr[π(t′) = t∗]

LDP perturbation mechanisms are studied in [Duchi et al.,
2013], [Wang et al., 2019]. In comparison to SMC, LDP
methods offer efficient computational costs with trade-off in
model accuracy due to injected noise. This motivates our de-
sign of FedXGBoost-LDP, a heuristic approach that finds the
compromise between model complexity and accuracy.

3 Main Results
To construct the new tree nodes, passive parties first (PP) an-
alyze their user’s distribution according to their feature data.
They they propose splitting candidates that separate the cur-
rent node (the set of users being analyzed) into left and right
nodes. The distribution analysis over a large data set is ex-
ecuted by the efficient Approximate Quantile algorithms as
studied in [Karnin et al., 2016], [Li et al., 2008], [Tyree et
al., 2011]. Afterward, the optimal splitting candidate is de-
termined by comparing the loss reduction between splitting
candidates as shown in (5). For brevity, in XGBoost under
FL settings, PP plays a role as a splitting candidate owner.
On the other side, the active party with the private class label
owns the confidential gradient and hessian values of users.
During the regression learning, AP and PP desire to compute
the optimal splitting candidate securely.
Remark 1. The description of the Approximate Quantile al-
gorithm to analyze the users’ distribution and propose split-
ting candidates are introduced in [Chen and Guestrin, 2016].
Note that we apply the trivial Quantile algorithm instead of
the Weighted Quantile Sketch.

We introduce the concept of the splitting operator and split-
ting matrix to formulate the private information of the passive
parties as follows

3.1 Splitting Matrix - Passive Party’s Private Data
We simplify the notations during the formulation by consid-
ering only one AP that has the true label of users, and one PP
that constructs the splitting matrix based from one feature.
The complete procedure for multiple PP with many features
are described in section 4.

Definition 3. Splitting Operator and Splitting Matrix
Let X be the feature space, fk = [x1 x2 · · ·xn]T ∈ Xn
be the values of the kth feature of n users, and
S = {s1, s2, · · · , sl} ⊆ Xl be the set of l splitting candidates.
The splitting operator Split(fk,S) : Xn × Xl −→ {0, 1}n×l
performs the splitting operation by comparing all feature
data with all splitting candidates and outputs the splitting
matrix M ∈ {0, 1}n×l as

M = Split(fk,S) =

u1s1 u1s2 · · · u1sl
...

...
...

...
uns1 uns2 · · · unsl

, where

uisj =

{
1 , xi ≤ sj
0 , xi > sj

Each column of the splitting matrix represents one splitting
candidate, which labels any user as ”1” if they belong to the
left node and ”0” for the right node. The following exam-
ple depicts the functionality of the splitting operator and the
splitting matrix.

Example 1. Let the feature vector be fk =
[1, 11, 9, 4, 2, 12, 17, 13, 5]T . The PP proposes a set of
three splitting candidates S = {s1 = 11, s2 = 6, s3 = 12}.
The result of the splitting operator applied to the feature
vector fk and the candidate set S is the following splitting
matrix M

M = Split(fk,S) =

(
1 1 1 1 1 0 0 0 1
1 0 0 1 1 0 0 0 1
1 1 1 1 1 1 0 0 1

)T
According to (5), the evaluation of each splitting candi-

dates require the aggregated gradients and hessians of in-
stances in the left and right nodes. These are computed
through the multiplication of the splitting matrix and the data
vector. Particularly, let i ∈ {1 · · ·n} denote the user index,
N indicate the set of all users being analyzed and n = |N |.
The two subsets NL, NR are obtained by the splitting oper-
ator, such that NL ∩ NR = ∅, NL ∪ NR = N . Let the
gradient and hessian vector of n users with numerical values
be g = (g1 · · · gn)T , h = (h1 · · ·hn)T ∈ Rn. From the set
S = {s1, · · · , sl} that represents l splitting candidates, we
use the index si to indicate one particular candidate. The ag-
gregated gradients and hessians by each splitting candidate
si are GL = (GLs1 · · · G

L
sl

)T , HL = (HL
s1 · · · H

L
sl

)T and
GR = (GRs1 · · · G

R
sl

)T , HR = (HR
s1 · · · H

R
sl

)T . They are
computed from M, g, h as follows

G =
∑
i∈N

gi ∈ R, GL = MT g, GR = G.1l −GL

H =
∑
i∈N

hi ∈ R, HL = MTh, HR = H.1l −HL
(6)
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Figure 1: From Federated Learning XGBoost to SMM

After obtaining the result of the matrix multiplication, each
candidate si is then evaluated by comparing the splitting
score Lsisplit from (5). The best candidate s∗ has the highest
splitting score.

s∗ = arg max
si∈S

1

2

[
(GLsi)

2

(HL
si) + λ

+
(GRsi)

2

(HR
si) + λ

− G2

H + λ

]
− γ

(7)
If a splitting operator constructs the last layer of the tree, i.e.,
it constructs the tree leaves, the optimal weight for each leaf
is computed as shown in [Chen and Guestrin, 2016] as

w∗L = − GLs∗

HL
s∗ + λ

, w∗R = − GRs∗

HR
s∗ + λ

(8)

Remark 2. The previous studies use the addition operation
to compute the aggregated gradients and hessians between
multiple parties. We instead introduce the splitting matrix to
mathematically formulate the private data and the function-
ality of the PP.

3.2 Problem formulation - The relation between
FedXGBoost and Secure-Matrix Multiplication
From the concept of the splitting matrix, we reformulate
the challenges of FedXGBoost into an SMC problem that
can be solved by SMM protocols. Particularly, according
to (6), the AP has g, h, while the PPs own M and they
desire to compute MT g, MTh securely. Then the results
are applied to (6) and (7) to find the best splitting candidate
and the optimal leaf weights. Figure 1 illustrates the con-
cept. The next subsections use the introduced notations of
M ∈ {0, 1}n×l, g, h ∈ Rn to design two secure proto-
cols, which are FedXGBoost-SMM and FedXGBoost-LDP,
and analyze the information leakage of these two protocols.

3.3 FedXGBoost-SMM
FedXGBoost-SMM is motivated by the SMM protocols that
allow the participants to determine the optimal splitting can-
didate securely. Applying the Protocol 1, DA represents the
gradient and the hessian g, h vectors of the AP or combined
as a matrix [g h] ∈ Rn×2, while DB is the splitting matrix of
the PP.

Algorithm 1 FedXGBoost-SMM
Input:

• Active party (AP) has g, h ∈ Rn

• Total p passive parties (PPs), kth PP has splitting matrix
Mk ∈ {0, 1}n×l

Output of protocols: The optimal splitting operation
Procedures:

1: AP : Find the set orthonormal null-space vectors of
[g h]T : U ← {ui ∈ Rn|[g h]T (ui) = 0}, |U| = r

2: AP : Transmit U to all PPs
3: PPk: W k ∈ Rn×l Algo.2←−−−− Secure-Response(Mk, U)
4: PPk : Transmit W k to AP
5: AP : G←

∑n
i=1 gi, H ←

∑n
i=1 hi

/* AP finds optimal score from all PP */
6: (Lk)∗ ← −∞, (sk)∗ ← 0
7: for k = 1 to p do
8: for i = 1 to l do
9: { GLsi , H

L
si} ← {(W

k)T g}i, {(W k)Th}i
10: GRsi ← G−GLsi , H

L
si ← H −HL

si

11: L← 1
2

[
(GL

si
)2

HL
si

+λ
+

(GR
si

)2

HR
si

+λ
− G2

H+λ

]
12: if (Lk)∗ < L then
13: (Lk)∗ ← L, (sk)∗ ← i
14: end if
15: end for
16: end for
17: AP: k∗ = argmaxk∈{1···p} L

k, (sk)∗

Return: PPk∗ and its optimal splitting operation

3.3.1 Protocol description
Algorithm 1 describes the procedure of FedXGBoost-SMM.
The AP first determines the set of users being analyzed. Then
it announces this set to all PPs and transmits the generated
orthonormal null-space vectors of [g h]T ∈ Rn×2. Each PP
analyzes the feature of the announced user set and constructs
its private splitting matrix. Then it applies Algorithm 2 to
generate a secure response W ∈ Rn×l. The AP requests W
from all PPs to compute the aggregated gradients and hes-
sians of each splitting candidate, which are the elements of
WT g, WTh ∈ Rl. Afterwards, it computes the splitting
score and finds the optimal score between all PPs. The PP
with optimal score is requested to reveal the corresponding
splitting operation. The AP then constructs new nodes and
repeats the process with the new set of users.

3.3.2 Analysis of privacy-preserving
The study of SecureBoost provides a thorough analysis of po-
tential privacy leakage for the AP. In our study, we focus on
the private splitting matrix of the PPs. Despite these matrices
do not contain the real feature data, they reveal the user’s dis-
tribution. Such information allows the curious party to infer
the range of feature values. The potential privacy leakage of
FedXGBoost-SMM are caused by 1) The revealed null-space
vectors set U of AP; 2) The response W of PP; 3) AP knows
the aggregated gradients and hessians of all splitting candi-
dates;



Algorithm 2 Secure-Response
Input:

• Private data X ∈ Rn×p

• Received orthonormal U = {ui ∈ Rn, i ∈ {1, · · · , r}}
Output: W ∈ Rl×n
Procedures:

1: Select random r′ vectors ui ∈ U , with r′ ≤ r
2: Z ← [u1 · · ·ur′ ] ∈ Rn×r′

3: W ← (In×n − ZZT )X ∈ Rn×p
Return: W

1. PP knows the null-space vectors of AP
Let the set of r orthonormal null-space vectors construct
a matrix U ∈ Rn×r, with rank(U) = r, r ≤ n− 2, re-
constructing [g h] is equivalent to the following problem
Problem 1. Find x ∈ Rn×2 with a given U ∈
Rn×r, rank(U) = r that satisfies

UTx = 0r ∈ Rr (9)

There exist infinite solutions for (9) due to the rank defi-
ciency of the linear equation system. The span of x can
be inferred if r ≈ n − 2. However, it is sufficient to
choose 1� r � n− 2

2. AP knows the response W from PP
As described in Algorithm 1, PP randomly selects r′
vectors in U to construct Z, with r′ < r. Then it com-
putes

W = (In×n − ZZT )M ∈ Rn×l (10)
Property 1. [Karr et al., 2007] The constructed Z from
the received orthonormal null-space vectors satisfies
rank(In×n − ZZT ) < n so it is not invertible.
In the original protocol, [Karr et al., 2007] stated that
the information of rank(W ) contributes to the privacy
leakage. For this reason, the randomness introduced in
Algorithm 2 conceals the information of ZZT .

3. AP knows the aggregated gradients and hessians of all
splitting candidates
Consider the AP is curious about M . The effort to re-
construct possible splitting candidates is equivalent to
the following integer programming problem
Problem 2. Find {x1, · · · , xn} ∈ {0, 1} such that for
a given A = (a1 · · · an)T ∈ Rn and b ∈ R it satisfies

n∑
i=1

xiai − b = 0

From our understanding, Problem 2 belongs to the set
of NP-complete problems. This guarantees the privacy-
preserving under the assumption of bounded computa-
tional capability. This challenge also occurs in methods
applying homomorphic encryption techniques, yet was
not mentioned in the previous literature. In SecureBoost,
AP encrypts the gradients and hessians as 〈g〉 1, 〈h〉 be-
fore transmitting these to PP. Each PP aggregates the

1〈.〉 operator indicates encrypted data

encrypted gradients and hessians and sends back to the
AP, i.e., PP computes the multiplication of the splitting
matrix and the encrypted vectors to obtain the encrypted〈
MT g

〉
and

〈
MTh

〉
, respectively.

Observation 1. If there exists an efficient algorithm
that solves Problem 2 in polynomial time, the splitting
matrix can be reconstructed from the known aggregated
gradients

〈
MT g

〉
and hessians

〈
MTh

〉
.

To this end, we conclude that FedXGBoost-SMM achieves
equivalent privacy-preserving as SecureBoost that applies ho-
momorphic encryption techniques.

3.3.3 Enhanced FedXGBoost-SMM
This subsection proposes a more sophisticated protocol to
handle the Observation 1. We swap the role of participants,
i.e, the PP with its splitting matrix will generate the set of
null-space vectors. The reconstruction of the splitting ma-
trix from the generated null-space vectors is equivalent to
Problem 2. To handle this, we add calibrated random {0, 1}
columns before constructing the null-space, i.e.,

M∗ = [M M ′] ∈ {0, 1}n×(l+l1),
where M ′ ∈ {0, 1}n×l1 is properly generated. Assume that
the curious party has unbounded computational capability, if
there exists an efficient algorithm as declared in the Observa-
tion 1, the private splitting label can not be inferred with high
confidence. Figure 2 illustrates the concept.

Another possible problem is the sparsity of M . The con-
structed null-space of M is sparse so the private values of AP
at some users might be revealed. If this happens, AP must
refuse to response so the learning process is impaired. We
handle the sparsity by adding columns with random numeri-
cal values to M before generating the null-space vectors.

M∗ = [M M ′ Y ] ∈ {0, 1}n×(l+l1+l2), Y ∼ N (µ, σ) ∈ Rn×l2

Each column of M∗ are independent so the multiplication
result of columns in M ′ and Y are omitted in the final evalu-
ation. Note that M ′ must be properly generated to handle the
Observation 2, this results in higher model complexity.

3.4 FedXGBoost-LDP
FedXGBoost-LDP is a different approach from FedXGBoost-
SMM which perturbs the gradients and hessians to achieve
privacy-preserving, e.g Duchi’s method from [Duchi et al.,
2013], Piecewise or Hybrid mechanisms from [Wang et al.,
2019], etc. The perturbed data is then used directly for train-
ing, which reduces the training time in comparison to HE or
SMM methods. Nevertheless, due to the high non-linearity
of the splitting score function, the injected noise degrades the
utility strongly. For this reason, we use the first-order approx-
imation for (4) to evaluate the splitting score. Particularly, PP
received the perturbed gradient and hessian values from AP,
the optimal splitting score is estimated by

s∗ = arg max
si∈S
− 1

λ
GLsiG

R
si (11)

It can be shown that the above estimator is unbiased, but
its variance depends strongly on the variance of the injected
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Figure 2: Splitting matrix with injected random columns

Adding random {0, 1} columns into the real splitting matrix pre-
vents users’ labels from being inferred with high confidence.

noise, which implies a compromise between privacy and the
accuracy. Nevertheless, this method accelerate the training
process significantly in comparison to encryption or linear
algebra techniques, thus it is a heuristic approach. A de-
tailed discussion of (11) description can be found in [Le et
al., 2021], which is the full version of this paper.

4 The complete FedXGBoost Protocols -
FedXGBoost-SMM & FedXGBoost-LDP

Firstly, the AP determines the set of users (the users in a
common node) being analyzed and announces this to all
PPs. Next, all parties follow either FedXGBoost-SMM or
FedXGBoost-LDP to find the best splitting candidate. After
determining optimal splitting score, AP requests the informa-
tion from the owner of the best score. Particularly, AP re-
quests the feature analyzed by that splitting operation and the
set of users in left and right nodes. After receiving the feature
information, AP constructs a look-up table to record the cor-
responding PP and the analyzed feature. On the other side,
the chosen PP also records the chosen feature and the best
splitting operation for the usage in the regression phase. The
training process continues from the split users’ space until the
tree reaches the maximum depth. At this stage, optimal leaf
weight is computed according to (8) and saved for the predic-
tion phase. This completes the construction of one tree.

The application of the regression of the trained model is
similar to the study by [Cheng et al., 2019]. When the AP
wants to make inference from a new instance, it uses its look-
up table and cooperates with the PPs to determine in which
tree leaf the instance belongs to. Next, it aggregates the op-
timal weight overall regression trees to obtain a final predic-
tion.

5 Experiments and Evaluation
We provide the experiments on two dataset 1) “Give Me
Some Credit” and 2) “Default of Credit Card Clients” pub-
lished on Kaggle. They contain 150000 instances with 10 at-
tributes and 30000 instances with 25 attributes respectively.

Dataset #Users XGBoost Paillier
Encryption

Fed-XGBoost
LDP

1 150K 260 1560 270
2 30K 69 354 73

Table 1: Time consumption of one iteration of different approaches
in seconds.
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Figure 3: Learning’s loss trajectory of approaches on dataset 2.

The experiments are conducted by two Linux machines,
with 16-Core, 64GB-memory, and network bandwidth of
25000Mb/s. We evaluate FedXGBoost-LDP by comparing
the model accuracy and the time consumption with the plain
XGBoost and the studied encryption techniques. FedXG-
Boost applies different LDP perturbation techniques, which
are Laplace mechanism (LM) and Duchi’s method (DM) with
varying privacy budget ε = {1, 3}. According to (11), we
also evaluate LDP mechanisms using first-order approxima-
tion, which is expected to reduce the accuracy loss.

Figure 3 depicts the loss trajectory the experiment on
dataset 2. Despite the injected noise causes a small perfor-
mance reduction, it is almost equivalent to the plain XG-
Boost. Table 1 depicts that FedXGBoost-LDP have negligible
overhead in comparison with plain XGBoost, both tremen-
dously accelerate the learning process in comparison to the
encryption method.

6 Conclusion
This paper studies two different protocols (FedXGBoost-
SMM and FedXGBoost-LDP) that enable the state of the
art tree ensemble model XGBoost to be conducted under
FL settings. Different from the previous work applying ho-
momorphic encryption, our linear algebra based protocol
FedXGBoost-SMM incurs lower overhead while maintaining
lossless accuracy. We also propose and empirically evalu-
ate the accuracy of the heuristic protocol FedXGBoost-LDP,
which relaxes the splitting score computation to first order ap-
proximation for computational speedup, and uses LDP noise
perturbation. For future work, we will experimentally eval-
uate the overhead of FedXGBoost-SMM. Further study of
scalable privacy-preserving XGBoost for FL is crucial for its
deployment in practice.
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