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Abstract
Despite federated learning endows distributed
clients with a cooperative training mode under the
premise of protecting data privacy and security, the
clients are still vulnerable when encountering ad-
versarial samples due to the lack of robustness.
The adversarial samples can confuse and cheat the
client models to achieve malicious purposes via in-
jecting elaborate noise into normal input. In this
paper, we introduce a novel Ensemble Federated
Adversarial Training Method, termed as EFAT, that
enables an efficacious and robust coupled training
mechanism. Our core idea is to enhance the di-
versity of adversarial examples through expanding
training data with different disturbances generated
from other participated clients, which helps adver-
sarial training perform well in Non-IID settings.
Experimental results on different Non-IID situa-
tions, including feature distribution skew and label
distribution skew, show that our proposed method
achieves promising results compared with solely
combining federated learning with adversarial ap-
proaches.

1 Introduction
Federated learning is a general distributed framework that can
train large-scale distributed deep learning models with a fed-
eration of participants[McMahan et al., 2017]. The central
server will randomly select several clients meeting eligibility
requirements in each round and broadcast the model param-
eters to these selected clients. Each selected client locally
computes an update based on the global model with its local
dataset and then send their model parameters to the server.
The server then collects an aggregate of these updated mod-
els. It locally updates the shared model based on the aggre-
gated update computed from the clients that participated in
the current round. As this process occurs multiple times it-
eratively, all clients collectively train the centralized shared
model. During this process, clients keep their private training
datasets locally throughout, thereby ensuring a basic level of
privacy.
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Several motivating applications of federated learning in se-
curity territories have been extensively used, including hu-
man trajectory prediction [Feng et al., 2020], visual inspec-
tion task [Han et al., 2019], medical disease prediction [Feki
et al., 2021], etc. These domains attach high importance to
data privacy and emphasize model reliability and robustness.
However, although federated learning protects the security of
data privacy, it is shown that clients’ local deep neural net-
work models are still vulnerable to different attacks.

Specifically, these attack approaches can be broadly cat-
egorized into two classes: backdoor attacks during training
time and adversarial attacks during inference time. The goal
of the backdoor attacks is to damage the performance of the
model on targeted tasks while maintaining good performance
on the main task by injecting “poison” training data. On the
other hand, adversarial attacks aim at misleading the model
to misclassify the well-designed inputs called adversarial ex-
amples, which are nearly indistinguishable from raw data in
human eyes but fool the trained model. This kind of attack
demonstrates that these networks perform computations that
are dramatically different from those in human brains. The
adversary adds small perturb actions to the natural datasets
that lead these systems into making incorrect predictions to
achieve the goal. While the perturbations are often impercep-
tible or perceived as small “noise” in the dataset, these attacks
are highly effective against the deep neural network.

Up to now, a range of backdoor attacks and defense meth-
ods in federated learning settings have been introduced in
previous literature, while how to defend against adversarial
attack is worth considering here due to the security threat. In
this paper, we are mainly concerned about improving the ro-
bustness of each node during inference time. It is still an open
question whether federated learning systems can be tailored
to be robust against adversarial attacks.

Adversarial attacks can be broadly classified into two types
based on the knowledge of the attacked model, white-box or
black-box attacks. Under white-box attacks, adversaries are
necessary to have complete knowledge of the policy network,
whereas black-box attacks require only access to the target
model label predictions which are more applicable in many
scenarios. The most simple yet efficient approach to perform
defense is adversarial training, which injects adversarial ex-
amples into training data to fine-tuning network parameters.
Nevertheless, solely adapting adversarial training to feder-



ated learning brings a range of problems. General adversarial
training was developed primarily for IID data, while in fed-
erated learning, each client’s data distribution is in non-IID
settings. The mechanism of adversarial training in federated
learning remains to be studied.

We propose the Ensemble Federated Adversarial Training
(EFAT) method to improve the robustness of models against
black-box attacks with non-IID training data to attack the
above problems. How to resist white-box attacks is not the
focus of our research because, in practice, the attacker does
not know the specific parameters of the model in normal con-
ditions. In the setting of EFAT, the central server first pre-
trains the initial model on the labeled public dataset and dis-
tributes the model and the parts of the public dataset to each
client. Then each client generates adversarial examples based
on their public data and exchanges their adversarial exam-
ples with others during the training process. Each client per-
forms ensemble adversarial training using their training sets
and adversarial examples generated by itself and the other lo-
cally distributed public data. During this process, each client
is both an attacker as well as a defender. Thus, EFAT im-
proves the robustness of clients against adversarial attacks by
enhancing the adversarial data distribution diversity.

Contributions. To the best of our knowledge, our work
is the first to enhance the robustness of adversarial training
in the federated learning setting by taking advantage of im-
proving adversarial data diversity between models from dis-
tributed clients. In summary, our contributions include the
following:

• We explore the impact of adversarial training on the fed-
erated training paradigm and find it plays an important
role. To this end, we develop a novel ensemble federated
adversarial training (EFAT) methodology by incorpo-
rating adversarial examples generated by other clients’
models to improve each client’s robustness.

• Building on the above insight, we demonstrate our
methodology’s effectiveness and robustness against
black-box attacks during inference-time on two kinds
of Non-IID settings, including feature distribution skew
and label distribution skew. The evaluation result shows
that EFAT reaches higher adversarial accuracy on both
Digit-Five and CIFAR10 than baseline.

2 Related work
Federated Learning. Federated learning has gained in-
creasing attention in recent years due to its role in privacy
protection [Li et al., 2020]. One of the most common ap-
proaches to optimizing federated learning is the Federated
Averaging algorithm [McMahan et al., 2017], which com-
bines local stochastic gradient descent (SGD) on each client
with a server that performs model weighted averaging with
weights proportional to the size of each client’s local data.
Secure aggregation (i.e. SecAgg) [Bonawitz et al., 2017] is
a tool used to ensure that the server only sees an aggregate
of the client updates, not any individual client updates during
FedAvg. Several alternative aggregation schemes to address
this challenge have been proposed recently due to the directly

weighted averaging of model parameters that may have some
adverse effects on model performance.[Wang et al., 2020]

Adversarial Attack. Adversarial attacks refer to any al-
teration of the training and inference pipelines of a feder-
ated learning system designed to degrade model performance
somehow. Adversarial attacks can be broadly classified into
training-time attacks and inference-time attacks[Kairouz et
al., 2019].

Training-time attacks can be further classified into data
poisoning [Bagdasaryan et al., 2020] and model update poi-
soning [Bhagoji et al., 2019; Szegedy et al., 2013] based
on the adversary’s capability. Unlike data poisoning attacks,
model update poisoning attacks can directly corrupt derived
quantities within the learning system.

We will concentrate on inference-time attacks and meth-
ods to defend them in this paper. Inference-time attacks gen-
erally refer to adversarial examples [Szegedy et al., 2013;
Goodfellow et al., 2014] that will be purposefully misclas-
sified at runtime. Different from poisoning attacks, adver-
sarial examples compromise the testing phase of machine
learning. In these attacks, an adversary may attempt to cir-
cumvent a deployed model by carefully manipulating sam-
ples fed into the model. These are a perturbed version
of test inputs that looks and feels the same as their origi-
nal test inputs to a human, but that completely throws off
the classifier [Goodfellow et al., 2014]. The perturbations
mentioned above can be generated by maximizing the loss
function subject to a norm constraint via constrained opti-
mization methods based gradient [Goodfellow et al., 2014;
Madry et al., 2018]. In the context of l∞ -bounded attacks,
the Fast Gradient Sign Method(FGSM) [Goodfellow et al.,
2014] is one of the most popular methods using a single gradi-
ent step to perturb the inputs fed to the model. Later, the Basic
Iterative Method(BIM) [Kurakin et al., 2016] have been pro-
posed, which is improved upon FGSM by applying the same
step as FGSM multiple times with a small step size. The Pro-
jected Gradient Descent (PGD) attack, a variant of BIM, fur-
ther strengthens this iterative adversarial attack by initializing
examples to a random point in the ball of interest and adding
multiple random restarts. Such attacks can frequently cause
naturally trained models to achieve zero accuracies on im-
age classification benchmarks such as CIFAR10 or ImageNet
[Carlini and Wagner, 2017], which is recognized to be one of
the most potent first-order attacks.

Adversarial Training. Adversarial training was first pro-
posed by [Goodfellow et al., 2014], in which produced ad-
versarial examples and injected them into original samples
to strengthen a model. The robustness against white-box at-
tacks achieved by adversarial training depends on the strength
of the adversarial examples used. Intuitively, adversarially
trained models with FGSM or R+FGSM adversaries are only
robust to single-step perturbations but remains vulnerable to
more costly multi-step attacks [Madry et al., 2018]. To this
end, adversarial training with a PGD adversary has been pro-
posed to tackle this challenge. Since then, the PGD based
adversarial training has been enhanced through various tech-
niques, such as optimization tricks like momentum to im-
prove the adversary, combination with other heuristic de-
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Figure 1: Illustration of the proposed EFAT framework. The EFAT method involves 4 phases: (1) Distribute: Distributing the shared model
and parts of global public dataset L to all the clients. P is the clients’ private data. (2) Ensemble: Integrating adversarial samples Adv
generated from the local public dataset L of other clients to form ensemble training data E. (3) Fuse: Fusing the various data distribution
including the potential knowledge of other clients by adversarial training. (4) Communicate: Client model updates are aggregated on the
central server using the FedAvg algorithm.

fenses like matrix estimation or logit pairing, and gener-
alization to multiple types of adversarial attacks [Papernot
et al., 2017; Suciu et al., 2018; Augenstein et al., 2019;
Shafahi et al., 2019; Xie et al., 2019].

Despite all this, some previous work indicated that adver-
sarially trained models might remain vulnerable to black-box
attacks, where using the transferred perturbations computed
on undefended models. It has been found that an adversar-
ial network on MNIST has a slightly higher error on trans-
ferred examples than white-box examples[Goodfellow et al.,
2014]. Since these adversarial attacks have been observed
to be transferable, adversarial training using samples gener-
ated from a single model provides robustness to other models
performing the same task[Athalye et al., 2018]. To improve
the robustness of black-box attacks, [Tramèr et al., 2018]
proposed an Ensembling Adversarial Training method that
trained the model by injecting adversarial examples trans-
ferred from several fixed pre-trained models into the original
training data. In our work, we will further strengthen the ro-
bustness of the model to defense against black-box attacks in
federated learning settings.

3 Methodology
We consider the notations and definitions of federated learn-
ing as defined in [McMahan et al., 2017]. To be specific,
there are K clients connected to a central server in feder-
ated learning. At each round t, the server randomly selects
N = bC × Kc clients for some 0 < C < 1.We assume
that for every 1 ≤ i ≤ N the ith node has access to private
training samples in Pi = {(xi, yi) ∈ Rd ×R}.

3.1 Intuitive Federated Adversarial Training
In this paper, we mainly study how to adapt adversarial train-
ing to federated learning. We first introduce the intuitive
federated adversarial training method combining federated
learning with adversarial training directly.

Local PGD Attack For each selected client node in the fed-
erated learning model, we perform a PGD attack locally to
generate their own basic adversarial examples.

The PGD attack first performs a gradient ascent step in the
loss function w.r.t. the image pixel values. For the ith client,
PGD attack performs multi-steps update on the original sam-
ple xi along the direction of the gradient of a loss function.

We use local private dataset Pi as input of the client model
M i. In each iteration, PGD adversarial examples P advi =
{xadvi , yi} follows the update rule:

xadvt+1 = Πclip(x
adv
t + αsign(∇xJ(xadvt , y))) (1)

where α controls the maximum L∞ perturbation of the ad-
versarial examples, and the clip function forces x to reside in
a certain range.

Local Adversarial Training Follow the work of [Kurakin
et al., 2016], we first group examples into batches contain-
ing both normal and adversarial examples before taking each
training step. We use a loss function that allows independent
control of the number of adversarial examples in each batch:

Loss =
∑
xi∈Pi

L(xi|yi) +
∑

xadv
i ∈Padv

i

L(xadvi |yi) (2)

where L((x|y) is a loss on a single example x with true class
y.

After the loss function is determined, we perform adver-
sarial training on the ith local client, which can be formu-
lated as a robust optimization problem [Madry et al., 2018;
Tramèr et al., 2018].

min
θi

max
D(xi,xi

adv)<α
Loss (3)

The inner maximization problem synthesizes the adversarial
counterparts of clean examples, while the outer minimization
problem finds the optimal model parameters over perturbed
training examples.

Federated Averaging After each selected client performs
local adversarial training, these client model updates are sent
to the central server. The central server then aggregates these
local model parameters using the FedAvg [McMahan et al.,



Method
MNIST,SVHN,
MNISTM,USPS
→SYN

MNIST,SVHN,
MNISTM,SYN
→USPS

MNIST,SVHN,
USPS,SYN
→MNISTM

MNIST,USPS,
MNISTM,SYN
→SVHN

MNIST,SVHN,
MNISTM,SYN
→MNIST

Baseline 61.78% 78.06% 58.61% 27.15% 90.05%
EFNT 78.06% 82.50% 73.60% 33.75% 98.26%
EFNT+AT 82.30% 82.35% 73.60% 48.80% 98.55%
EFAT 85.84% 83.45% 71.65% 45.50% 98.65%

Table 1: Performance of clients trained with Digit-Five against black-box PGD adversaries. We assign four of them to conduct different
adversarial training methods while the rest are regarded as adversaries to perform black-box PGD-40 attacks. Our proposed methods EFNT,
EFNT+AT, and EFAT outperform the baseline among these five different dataset extraction schemes. In three-fifths of the data set extraction
situations, EFAT reached the highest robust accuracy.

2017] algorithm. The global averaging step in time step t can
be written as follows:

θt =

N∑
i=1

1

N
θit (4)

Thus, each local robust client model is trained individually.
Obviously, this training paradigm only considers the client-
specific loss, which leads to the federated model being still
vulnerable against adversarial examples generated with other
models.

3.2 Ensemble Federated Adversarial Training
In our proposed ensemble federated adversarial training
(EFAT) method, to tackle the challenge mentioned above,
we take advantage of extensive and diverse knowledge from
other clients to improve the robustness of previously lim-
ited models to small populations (Algorithm 1). The EFAT
method can be summarized 4 phases as follows(see Figure
1): (1) Distribute: Distributing the shared model and parts of
global public dataset to all the clients. (2) Ensemble: Inte-
grating adversarial samples generated from the local public
dataset of other clients. (3) Fuse: Fusing the various data dis-
tribution including the potential knowledge of other clients
by adversarial training. (4) Communicate: Client model up-
dates are aggregated on the central server using the FedAvg
algorithm.

Distribute In this stage, the pre-training shared model and
the part of public dataset are distributed to all clients. There-
fore, the training dataset in each client is partitioned into two
parts:(1) the client part P and (2) the public part G. P is
partitioned into participated clients taking feature distribution
skew and label distribution skew into consideration. G is the
globally public dataset that consists of a uniform distribution
over features or labels. A random α proportion of the global
public dataset G is distributed to each client. It can be con-
cluded that the data owned by each client consist of the pri-
vate data P and a random α proportion of G. We denote the
subset of P and a random α proportion of G by privated data
Pi and local public data Li in the ith client respectively.

Ensemble We use the local public data Li to generate the
corresponding adversarial examples denoted by local adver-
sarial public data Ladvi .Then we can get ensemble adversar-
ial public data {Ladv1 , Ladv2 , ...Ladvi−1, L

adv
i+1, ...L

adv
N } by en-

sembling the local adversarial public data generated by other

Algorithm 1: Illustration of EFAT on K homoge-
neous clients (indexed by k) for T rounds, nk de-
notes the number of data points per client and C the
fraction of clients participating in each round. The
server model is initialized as x0. G is the global pub-
lic dataset, L is the local public dataset, and P is the
client private data.

1 Server executes:
2 for each communication round t = 1, ..., T do
3 St← random subset (C fraction) of K clients
4 distribute part of G to K clients {L1, L2, ..., Lk}
5 for each client k ∈ St in parallel do
6 generate adversarial examples Ladvk by Eq.(1)
7 exchanges with other clients Eadvk =

{Ladv1 , ..., Ladvk−1}
8 xkt+1← Client-localSGDupdate(k, xt) using

ensemble {Pk, Ladvk , Eadvk }
9 xt+1 ←

∑K
k=1

nk

n x
k
t+1;

10 return xt+1;

clients except the current ith client. We denote ensemble ad-
versarial public data as Eadvi . In this stage, we can conclude
that the data composition of the ith client consists of three
parts: (1) private data, (2) local adversarial public data, (3)
ensemble adversarial public data.

Datai = {Pi, Ladvi , Eadvi } (5)

Fuse In this stage, we perform adversarial training on both
local adversarial public data, ensemble adversarial public data
and private data. It should be noted that the loss function will
change correspondingly compared with the previous equation
(2) due to different data distributions.

Loss =
∑
xi∈Pi

L(xi|yi) +
∑

xadv
i ∈Ladv

i

L(xadvi |yi)

+
∑

xadv
i ∈Eadv

i

L(xadvi |yi)
(6)

Intuitively, as adversarial examples transfer between models,
perturbations crafted on other clients are good approxima-
tions for the maximization problem. Moreover, the learned
model can not influence the “strength” of these adversarial



examples. As a result, minimizing the training loss implies
increased robustness to black-box attacks from other mod-
els. Through this ensemble method, we can take advantage
of more extensive and more diverse datasets to improve the
robustness of previously limited models to small populations.

Communicate After each selected client performs local
update based on the ensemble adversarial training, these
model updates are sent to the server. Then the central server
aggregates these models by averaging to obtain the new
global model.

In summary, we first assign the shared model and part of
the public dataset to participated clients. Then we ensem-
ble adversarial examples generated from local public data
distributed on multiple clients. Next,we perform adversar-
ial training based on these perturbations. The last step is to
average local model updates using FedAvg algorithm. This
training procedure given above is repeated until a satisfactory
degree of convergence has been achieved.

4 Experiment
This section demonstrates the robustness against black-box
attacks of our proposed algorithm on two kinds of highly
Non-IID datasets, including feature distribution skew and la-
bel distribution skew. All experiments were done using a
V100 GPU cluster, and the federated system was simulated
on a single machine (as the communication efficiency is not
the main focus of this paper). Experiment results show that
our models significantly improve robustness and accuracy
against black-box attacks, which provides strong support for
our central hypothesis.

4.1 Experiment Setup
Datasets We use Digit-Five datasets as feature distribution
skew datasets, which is a collection of five benchmarks for
digit recognition, namely MNIST [Lecun et al., 1998], Syn-
thetic Digits [Ganin and Lempitsky, 2015], MNIST-M [Ganin
and Lempitsky, 2015], SVHN, and USPS. It was constructed
for domain adaptation research by [Peng et al., 2020].

We construct a label distributed skew dataset based on CI-
FAR10 by using the Dirichlet distribution [Lin et al., 2020].
The value of γ controls the degree of non-i.i.d.-ness. When γ
tends to 0, the clients are more likely to hold examples from
only two classes (if the number of clients is set to 5). Besides,
γ = 100 mimics identical local data distributions. We con-
duct comparative experiments using three different γ values,
respectively 100, 1, 0.01.

Training Strategy For Digit-Five, we take turns selecting
four datasets as different participated clients. Then we assign
10% of G to each client as local public dataset. The four
participated clients perform ensemble federated adversarial
training while the unselected dataset trains by itself and then
generates adversarial examples as black-box attacks to test
our model’s performance.

For CIFAR10, the training dataset consists of 50000 im-
ages in 10 classes, with 5000 images per class. The train-
ing dataset are distributed to 5 clients using a Dirichlet dis-
tribution mentioned above. Each client can get about 10000

(50000/5) images as private data. We set the random dis-
tributed fraction α as 10%. Then we assign 10% of G to each
client as local public data.

In the experimental setting, the clients train locally for five
rounds and then exchanges local public adversarial datasets
once.

Compared Methods To illustrate the necessity and ef-
fectiveness of our training method in detail, we introduce
two different simplified versions of EFAT called EFNT and
EFNT+AT.

In our EFAT method, we perform adversarial training on
both local adversarial public data and ensemble adversarial
public data. EFNT+AT refers to performing normal train-
ing instead of adversarial training on ensemble public data.
EFNT refers to performing normal training instead of adver-
sarial training to ensemble public data and local public data.

Besides, we adopt the intuitive federated adversarial learn-
ing mentioned in Section 3.1 as the baseline method. For a
fair comparison, we extract the same amount of private data
as the sum of local public data and ensemble public data to
generate adversarial examples for adversarial training.

Networks and Parameters In the experiments, we simu-
late a federated learning scenario with n = 4 nodes where
each node uses ResNet18 with the same architectures. We
choose to take gradient steps in the L∞ norm, i.e., adding the
sign of the gradient, since this makes the choice of the step
size simpler.

For Digit-Five, we set perturbation ε = 0.3, perturbation
step size η1 = 0.01,number of iterations K = 40, learning
rate η2 = 0.01,batch size m = 128, and run 100 epochs on
the training dataset. To evaluate robust errors, we apply PGD
(black-box) attack with 20 and 40 iterations and 0.01 step
size. For CIFAR10, following [Tramèr et al., 2018], the max-
imum perturbation allowed is 16/255 for both defense and at-
tack models. We set perturbation εtrain = 16/255, step size α
= 0.003, number of iterations K = 20, batch size m = 128, and
run 100 epochs on the training dataset.The adversarial test
data are bounded by L∞ perturbations with εtest = 16/255
and 8/255 which are generated by PGD-10 and PGD-20.

All PGD attacks have a random start, i.e., the uniformly
random perturbation of [-εtest, εtest] added to the clean test
data before PGD perturbations.

4.2 Result Analysis
Digit-Five In the following experiment, we performed our
proposed EFAT, EFNT, EFNT+AT, and baseline with Digit-
Five datasets on both the “clean” examples x and adversarial
examples xadv . Table 1 illustrates each client’s average ac-
curacy against PGD-40 black-box attacks. For example, the
first column means that we select MNIST, SVHN, MNIST-
M, and SVHN and distribute them to four clients to perform
different training methods. Simultaneously, SYN trains by it-
self and then generates adversarial examples sending to the
first four clients as a black-box attack. A first observation
is that compared with the models only trained locally with
their own adversarial examples(baseline), EFAT, EFNT, and
EFNT+AT trained with exchange public data reach higher



non-i.i.d.-ness IID Non-IID

γ=100 γ=1 γ=0.01

Method clean PGD-10 PGD-20 clean PGD-10 PGD-20 clean PGD-10 PGD-20

Baseline 72.21% 62.34% 64.17% 72.21% 63.02% 63.62% 72.46% 65.05% 64.62%
EFNT 80.45% 43.91% 41.02% 79.03% 43.23% 43.99% 81.19% 47.82% 42.79%
EFNT+AT 78.42% 57.45% 48.35% 78.81% 58.36% 46.41% 81.15% 56.24% 49.41%
EFAT 72.02% 70.83% 67.25% 72.64% 70.28% 68.64% 74.66% 71.48% 67.46%

Table 2: Accuracies of CIFAR10 under black-box attacks in IID and non-IID settings w.r.t. α = 5%. Our proposed defense method can
significantly improve the robust test accuracy of deep models on clients in both IID and non-IID settings with α are set to 5%. EFAT is able
to achieve robust test accuracy as high as 71.48%, increasing 5%-8%,24%-27% and 13%-28% compared to the baseline method, EFNT and
EFNT+AT method respectively.

non-i.i.d.-ness IID Non-IID

γ=100 γ=1 γ=0.01

Method clean PGD-10 PGD-20 clean PGD-10 PGD-20 clean PGD-10 PGD-20

Baseline 72.91% 62.46% 61.79% 72.95% 61.83% 60.41% 72.93% 61.29% 59.80%
EFNT 82.32% 43.51% 43.49% 80.23% 50.17% 44.84% 82.89% 45.36% 42.20%
EFNT+AT 81.45% 65.26% 62.45% 79.54% 64.65% 62.12% 81.57% 65.04% 62.12%
EFAT 73.39% 70.47% 68.35% 73.45% 70.98% 68.25% 75.57% 71.66% 68.43%

Table 3: Accuracies of CIFAR10 under black-box attacks in IID and non-IID settings w.r.t. α = 10%. A different trend can be observed where
the robust test accuracy of EFNT+AT increases 10%-18% when defending adversarial examples generated by PGD-10 and PGD-20.

accuracy against attacks. It is because in the setting of fea-
ture distribution skew, expanding training data from different
clients’ models increases the diversity of training data distri-
bution, which helps improve the robustness of models.

We also noted that EFAT outperforms EFNT and
EFNT+AT, which indicates adversarial examples generated
for one model could stay adversarial for other models. There-
fore, it is helpful when conducting adversarial training using
adversarial examples generated by other clients’ public data.

CIFAR10 For CIFAR10, we compare our EFAT algorithm
with the baseline method, EFNT, and EFNT+AT, with three
different γ values, respectively 100, 1, 0.01. Table 2 shows
the performance of EFAT and the other three methods w.r.t.
standard test accuracy and adversarially robust test accuracy
of the clients on CIFAR10. It should be noted that the ac-
curacy here refers to the average accuracy of all participated
client models. We obtain standard test accuracy for clean test
data and robust test accuracy for adversarial test data gener-
ated by PGD-10 and PGD-20.

From Table 2 we can observe that our proposed defense
method can significantly improve the robust test accuracy of
deep models on clients in both IID and non-IID settings with
β are set to 5%. Our EFAT method is able to achieve robust
test accuracy as high as 71.48%, increasing 5%-8%,24%-
27% and 13%-28% compared to the baseline method, EFNT
and EFNT+AT method respectively. This gap significantly
widens as ”non-i.i.d.-ness” (Specifically refers to perturbation
bound εtest) increases. Larger “non-i.i.d.-ness” will allow the
generated adversarial data to deviate more from natural data.
In EFNT and EFNT+AT methods, robust test accuracies are
significantly hurt with larger εtest.

In addition, client models trained with EFNT method

achieve the highest clean test accuracy, followed by
EFNT+AT method, while the baseline method and our EFAT
method do not perform well. It is forgivable that adver-
sarial training provides the most security of adversarial at-
tacks while losing only a small amount of accuracy when we
mainly focus security against adversarial examples.

Besides, we compare our EFAT method and other methods
with different values of α. We set α = 10% in Table 3. We
observe a different trend where the robust test accuracy of
EFNT+AT increases 10%-18% when defending adversarial
examples generated by PGD-10 and PGD-20. For the com-
prehensive experiments in Table 2 and Table 3, it is easy to
verify that our proposed model outperforms all other methods
regardless of the value of α.

To sum up, client deep models trained by EFAT with α =
5% have higher robust test accuracy but lower standard test
accuracy. By increasing α to 10%, client deep models have
slightly increased on both standard test accuracy and robust
test accuracy.

5 Conclusion
In this paper we present a novel ensemble federated adversar-
ial training method, termed as EFAT, to improve the robust-
ness of models against black-box attacks in federated learn-
ing. The proposed method enhances the diversity of adver-
sarial examples through expanding training data with pertur-
bations generated from other participating clients.

Experiment results on both Digit-Five and CIFAR10 in IID
and Non-IID settings show that our method significantly im-
proves the robustness and accuracy contrasted with the intu-
itive federated adversarial training method and the other two
variants of EFAT.



References
[Athalye et al., 2018] Anish Athalye, Nicholas Carlini, and

David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples.
arXiv preprint arXiv:1802.00420, 2018.

[Augenstein et al., 2019] Sean Augenstein, H Brendan
McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter
Kairouz, Mingqing Chen, Rajiv Mathews, et al. Gener-
ative models for effective ml on private, decentralized
datasets. arXiv preprint arXiv:1911.06679, 2019.

[Bagdasaryan et al., 2020] Eugene Bagdasaryan, Andreas
Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov.
How to backdoor federated learning. In International Con-
ference on Artificial Intelligence and Statistics, 2020.

[Bhagoji et al., 2019] Arjun Nitin Bhagoji, Supriyo
Chakraborty, Prateek Mittal, and Seraphin Calo. Ana-
lyzing federated learning through an adversarial lens. In
International Conference on Machine Learning, 2019.

[Bonawitz et al., 2017] Keith Bonawitz, Vladimir Ivanov,
et al. Practical secure aggregation for privacy-preserving
machine learning. In ACM SIGSAC Conference on Com-
puter and Communications Security, 2017.

[Carlini and Wagner, 2017] Nicholas Carlini and David
Wagner. Towards evaluating the robustness of neural
networks. In IEEE Symposium on Security and Privacy,
2017.

[Feki et al., 2021] Ines Feki, Sourour Ammar, Yousri
Kessentini, and Khan Muhammad. Federated learning for
covid-19 screening from chest x-ray images. Applied Soft
Computing, 2021.

[Feng et al., 2020] Jie Feng, Can Rong, Funing Sun, Dian-
sheng Guo, and Yong Li. Pmf: A privacy-preserving hu-
man mobility prediction framework via federated learning.
Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2020.

[Ganin and Lempitsky, 2015] Yaroslav Ganin and Victor
Lempitsky. Unsupervised domain adaptation by backprop-
agation. In International conference on machine learning,
2015.

[Goodfellow et al., 2014] Ian J Goodfellow, Jonathon
Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[Han et al., 2019] Xu Han, Haoran Yu, and Haisong Gu. Vi-
sual inspection with federated learning. In Image Analysis
and Recognition, 2019.

[Kairouz et al., 2019] Peter Kairouz, H Brendan McMahan,
Brendan Avent, et al. Advances and open problems in fed-
erated learning. arXiv preprint arXiv:1912.04977, 2019.

[Kurakin et al., 2016] Alexey Kurakin, Ian Goodfellow, and
Samy Bengio. Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016.

[Lecun et al., 1998] Y. Lecun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Ameet Tal-
walkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Pro-
cessing Magazine, 2020.

[Lin et al., 2020] Tao Lin, Lingjing Kong, Sebastian U
Stich, and Martin Jaggi. Ensemble distillation for ro-
bust model fusion in federated learning. arXiv preprint
arXiv:2006.07242, 2020.

[Madry et al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on
Learning Representations, 2018.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and
Statistics, 2017.

[Papernot et al., 2017] Nicolas Papernot, Patrick McDaniel,
Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine
learning. In ACM on Asia conference on computer and
communications security, 2017.

[Peng et al., 2020] Xingchao Peng, Zijun Huang, Yizhe Zhu,
and Kate Saenko. Federated adversarial domain adapta-
tion. In International Conference on Learning Represen-
tations, 2020.

[Shafahi et al., 2019] Ali Shafahi, Mahyar Najibi, Moham-
mad Amin Ghiasi, et al. Adversarial training for free!
In Advances in Neural Information Processing Systems,
2019.

[Suciu et al., 2018] Octavian Suciu, Radu Marginean, Yig-
itcan Kaya, Hal Daume III, and Tudor Dumitras. When
does machine learning FAIL? generalized transferability
for evasion and poisoning attacks. In USENIX Security
Symposium, 2018.

[Szegedy et al., 2013] Christian Szegedy, Wojciech
Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.
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