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Abstract

Federated learning models must be protected against
plagiarism since these models are built upon valu-
able training data owned by multiple institutions or
people. This paper illustrates a novel federated deep
neural network (FedDNN) ownership verification
scheme that allows ownership signatures to be em-
bedded and verified to claim legitimate intellectual
property rights (IPR) of FedDNN models, in case
that models are illegally copied, re-distributed or
misused. The effectiveness of embedded ownership
signatures is theoretically justified by proved condi-
tions under which signatures can be embedded and
detected by multiple clients without disclosing pri-
vate signatures. Extensive experimental results on
CIFAR10, CIFAR100 image datasets demonstrate
that varying bit-lengths signatures can be embedded
and reliably detected without affecting models clas-
sification performances. Signatures are also robust
against removal attacks including fine-tuning and
pruning.

1 Introduction
Federated learning (FL) is a machine learning setting in which
many clients collaboratively train a model, and simultane-
ously, mitigate privacy risks and costs by keeping the training
data decentralized [McMahan et al., 2017; Yang et al., 2019;
Kairouz et al., 2019]. While preserving data privacy is of the
paramount importance, it is also considered a critical issue
to prevent adversaries from stealing and misusing models to
search for model vulnerabilities [Kairouz et al., 2019]. More-
over, protecting models from being stolen is motivated by
the fact that FL models are built upon valuable data owned
by multiple clients, and plagiarism of such models must be
stopped. This paper illustrates a novel federated deep neural
network (FedDNN) ownership verification scheme that can be
used to claim legitimate intellectual property rights (IPR) of
FedDNN models, in case that models are illegally copied, re-
distributed or misused by unauthorized parties. The proposed
scheme not only verifies model ownership against external
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plagiarisms, but also allows each client to claim contributions
to the federated model as verified data owners.

DNN watermarking techniques have been proposed to
protect DNN Intellectual Property Rights (IPR) [Uchida et
al., 2017; Chen et al., 2018; Darvish Rouhani et al., 2018;
Adi et al., 2018; Zhang et al., 2018; Fan et al., 2019;
Ong et al., 2021; Zhang et al., 2020; Boenisch, 2020], however,
it remains an open question concerning whether existing meth-
ods are applicable to federated learning settings, in which
following technical challenges must be properly addressed.
First, a FL client must embed private signatures into DNN
models, yet, without disclosing to other parties the presences
and extraction parameters of such signatures. Second, when
an increasingly large number of signatures are embedded the
global DNN model must be able to accommodate private sig-
natures assigned by different clients without compromising
model performances of the main task1. Third, the verification
of clients’ private signatures must also be kept secret. In a nut-
shell, a FedDNN ownership protection scheme should entail
three capabilities i.e. maintaining main task model perfor-
mances, preserving signature privacy and avoiding conflicts
between multi-client signatures.

This paper presents a general FedIPR framework which
demonstrates a number of successful schemes that can be
used for different federated learning scenarios and signature
verification protection modes. Specifically, theoretical analy-
sis in Proposition 1 of Sect. 2.2 elucidates conditions under
which reliable and persistent signatures can be successfully
embedded into the same FedDNN model by multiple clients.
Extensive experiments in Sect. 3 demonstrate that varying bit-
lengths signatures using normalization scale parameters are
very persistent in white-box verification mode, while trigger
set of backdoor samples can be reliably detected as strong evi-
dence to support claims of legitimate model ownership. To our
best knowledge, the FedIPR framework is the first technical
solution that supports the protection of DNN ownerships in a
federated learning setting. We believe this work will open new
avenues for research endeavor to protect Intellectual Property
Right of federated learning models.

1The original task for which the federated DNN model is built.
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Figure 1: Convolution layer weights (in yellow) and normalization
layer weights (in green) used to embed signatures that are to be
extracted in white-box manner (see Sect. 2.1 for texts).

1.1 Related Work

Privacy-preserving deep learning (PPDL) aims to collabo-
ratively train a deep neural network (DNN) model among
multiple clients without exposing private training data to
each other [Shokri and Shmatikov, 2015; Abadi et al., 2016;
Phong et al., 2018; Ryffel et al., 2020].

Backdoor attacks is a security threat that have been exten-
sively studied in federated learning [Bagdasaryan et al., 2018;
Sun et al., 2019; Bhagoji et al., 2019; Wu et al., 2020]. Fol-
lowing [Adi et al., 2018], we adopt targeted backdoor samples
[Sun et al., 2019; Bagdasaryan and Shmatikov, 2020] as sig-
natures for black-box ownership verification. We show that
robust backdoor signatures can provide evidence of suspected
plagiarism without accessing to internal parameters of models.

DNN ownership embedding and verification approaches can
be broadly categorized into two schools: a) the feature-based
methods that embed designated signatures [Uchida et al., 2017;
Chen et al., 2018; Darvish Rouhani et al., 2018; Fan et al.,
2019; Zhang et al., 2020]; and b) the trigger-set based methods
that rely on backdoor training samples with specific labels [Adi
et al., 2018; Zhang et al., 2018]. While feature-based methods
allow persistent signatures to be reliably detected even under
various forms of removal attacks, yet, they must access DNN
internal parameters to detect signatures. The benefit of trigger-
set based method is that model owners can collect evidence of
suspected plagiarism through remote API without accessing to
internal parameters of models in question. Interestingly, [Ong
et al., 2021] illustrated a black-box and white-box verification
method for GAN instead of convolution networks.

2 Federated DNN Ownership Verification

This section first reviews existing DNN signature embedding
and verification scheme, followed by illustration of the Fed-
erated DNN (FedDNN) framework. In this paper we use
signature and watermark interchangeably. There are broadly
two categories of DNN signature embedding and verification
methods: feature-based vs trigger-set-based. Feature-based
signatures are embedded into network parameters and have to
be verified by accessing network parameters i.e. in white-box
manner. Trigger-set based signatures are embedded into net-
work outputs or labels, and can be verified without accessing
network parameters i.e. in black-box manner.
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Figure 2: An illustration of federated DNN (FedDNN) signature
Embedding and Verification scheme. Private signatures are generated
and embedded into the local models which are then aggregated using
the FederatedAveraging algo. (the left panel). In case that the
federated model is plagiarized, each client may invoke verification
processes to extract signatures from the plagiarized model in both
black-box and white-box manner to claim his/her ownership of the
federated model (the right panel).
2.1 Review of DNN Signature Verification
For existing DNN feature-based signature embedding methods
[Uchida et al., 2017; Chen et al., 2018; Darvish Rouhani et
al., 2018; Zhang et al., 2018; Fan et al., 2019], N -bits target
binary signatures B = (t1, · · · , tN ) ∈ {0, 1}N are embedded
during the learning of parameters W of a DNN model N[W],
by adding regularization terms R to the loss of the original
learning task L = LD + αR:

RB,θ

(
W
)
= Dist

(
B,Bθ(W)

)
, (1)

in which θ = {S,E} is a set of hyper-parameters used to
extract signature vector

B = (WTE) ∈ RN (2)

whereas WT = S(W)) ∈ RM denotes a M -dimensional
columnized vector of subset of DNN parameters and E ∈
RM×N a pre-determined signature extraction matrix.

Regularization term (1) restricts DNN model parameter
W to be distributed within a subspace (see Proposition 1)
such that binary strings extracted from DNN parameters
B̂ = sign(B) = (b1, · · · , bN ) ∈ {0, 1}N is similar to tar-
get signature B2. The signature is then successfully verified
by a verification process V if Hamming distance H(, ) is less
than a preset radius:

V
(
W, (B, θ)

)
=

{
TRUE, if H(B, B̂) ≤ εH ,
FALSE, otherwise.

(3)

Note that the formulation in (1) is a generalization of regular-
ization terms used in representative DNN signature embedding
methods (see Figure 1). For instance, Uchida et al. [Uchida
et al., 2017] proposed to embed signatures into convolution
layer weights i.e. S(W) is the columnized vector of convo-
lution layer weights, and matrix E is predetermined privately
. Dist(, ) in Uchita et al. [Uchida et al., 2017] measures bi-
nary cross-entropy BCE

(
B,B

)
= −

∑N
j=1 tj log(fj)+ (1−

tj) log(1− fj); where fj = 1
1+exp(−bj) .

2An analysis of the existence of solutions to the system of con-
straining inequalities is given in Appendix B.



Fan et al. [Fan et al., 2019] proposed to embed signa-
tures into normalization layer scale parameters i.e. S(W) =
Wγ = {γ1, · · · , γC} where C is the number of normaliza-
tion filters, and matrix E is IC×C identify matrix. Instead,
Dist(, ) in Fan et al. [Fan et al., 2019], is the hinge loss
HL
(
B,B

)
=
∑N
j=1 max(α− bjtj , 0).

For trigger-set based methods, Adi et al. [Adi et al., 2018]
first proposed to embed backdoor trigger-set samples T =
{(X1,Y1), · · · , (XJ ,YJ)} by incorporating cross-entropy
loss of backdoor samples namely,

LT (W) = CE(Y,N(T)) = −
J∑
j=1

Yj log(N(Xj)), (4)

in which Xj are backdoor samples, Yj corresponding one-hot
encoding vector of backdoor labels and N(Xj) the network
softmax outputs.

2.2 FedIPR: FedDNN Signature Embedding and
Verification

A federated learning system consists of K client partici-
pants building local models with their own data Dn and
send local models to a server-side aggregator for secure
model aggregation [McMahan et al., 2017; Yang et al., 2019;
Kairouz et al., 2019]. It is often assumed the aggregator and
other participants are honest-but-curious and thus no leakage
of information from participants is allowed. Federated DNN
with ownership verification, requires participants that a) keep
local model updates secret from the aggregator; and b) keep
ownership verification information secret from the aggrega-
tors. The first requirement has been fulfilled by techniques like
Homomorphic Encryption [Phong et al., 2018], differential
privacy [Abadi et al., 2016] or secret sharing [Ryffel et al.,
2020], the second requirement is one of the open problems
considered in this work. We give below a formal definition
of Federated DNN ownership verification scheme, which is
pictorially illustrated in Fig. 2

Definition 1. A Federated Deep Neural Network (FedDNN)
model ownership verification scheme for a given network N[]
is a tuple V = (G,E,A, VW , VB , VG) of processes, consisting
of,

I) for client k, k ∈ {1, · · ·K}, a client-side key generation
processG()→ Bk, θk,Tk which generates target signa-
ture Bk, signature extraction parameters θk = {Sk,Ek}
and a trigger set Tk = {(X1,Y1), · · · , (XJ ,YJ)} of
backdoor samples Xj and corresponding output labels
Yj ;

II) a client-side FedDNN embedding process E which min-
imizes the combined loss of main task, and two regular-
ization terms to embed trigger set backdoor samples Tk

and signature Bk respectively3,

L := LDk
(Wt

k)︸ ︷︷ ︸
main task

+ αk LTk
(Wt

k)︸ ︷︷ ︸
trigger set sign.

+βk RBk,θk

(
Wt

k

)︸ ︷︷ ︸
feature-based sign.

,

k ∈ {1, · · ·K},
(5)

with ClientUpdate(n,Wt) = Wt−1 − η ∂L
∂W to be sent

to the server for updating at iteration t;
III) a server-side FedDNN aggregation process A

which collects updates from m randomly selected
clients and performs model aggregation using the
FederatedAveraging algorithm [McMahan et al.,
2017] i.e.

Wt+1 ←
K∑
k=1

nk
n
Wt+1

k ,

where Wt+1
k ← ClientUpdate(k,Wt) for m clients,

(6)
IV) a client-side white-box verification process VW which

checks whether signatures extracted from the federated
model B̂k = sign

(
Sk(W)Ek

)
is similar to the client

target signature Bk,

VW
(
W, (Bk, θk)

)
=

{
TRUE, if H(Bk, B̂k) ≤ εH ,
FALSE, otherwise;

(7)
V) a client-side black-box verification process VB which

checks whether the detection error of designated labels
Yj generated by trigger set backdoor samples Xj is
smaller than εy

VB
(
N,Tk

)
=

{
TRUE, if ETn(I(Yj 6= N[Xj ])) ≤ εy,
FALSE, otherwise,

(8)
in which I() is the indicator and E the expectation over
trigger set Tn;

A fundamental challenge for federated DNN signature em-
bedding is to ensure that signatures embedded into local mod-
els can be reliably detected from the federated model. For
trigger-set based signatures, this seems not an issues as back-
door samples with arbitrarily assigned labels can always be
learned with over-parameterized models as demonstrated in
[Allen-Zhu et al., 2018; Zhang et al., 2017] (also see Figure 4
(c) and (d)). For feature-based signatures, however, it remains
an open question whether there is a common solution W for
different clients to embed their own designated signatures.
The following analysis elucidates the condition under which a
feasible solution is guaranteed.
Definition 2. Let UM×KN be matrix com-
bined with {EM×N1 ,EM×N2 , · · · ,EM×NK } by col-
umn. Let ŨM×KN be matrix combined with

3A client k may opt-out and not embed signatures or trigger set
backdoor samples by setting αk = 0.0 or βk = 0.0. Following [Sun
et al., 2019], we adopt random sampling strategy in experiments to
assign non-zero values to αk, βk to simulate the situation that client
make decisions by their own.



{(B1E1)
M×N , (B2E2)

M×N , · · · , (BNEK)M×N} by
column, where Bk = (tk1, tk2, · · · , tkN ) ∈ {+1,−1}N , is
signature of kth client.

In order to satisfy the required condition tkj(WTEk)j > 0,
let’s consider the following two alternatives: (i) Ũx = 0, x ≥
0 for some non-zero x; (ii)∃W such that WT Ũ ≥ 0. Ac-
tually exactly one of the two statements is true according to
the Gordan’s theorem ([Alon and Berman, 1986]), which is a
simple modifications of Farkas’ Lemma ([Dinh and Jeyaku-
mar, 2014]). And the following propositions 1 gives three
conditions of U to satisfy WT Ũ ≥ 0. The proof is shown in
Appendix.

Proposition 1. If U or Ũ as defined above satisfy any one of
following conditions, then there exists W such that WT Ũ ≥
0.

1. rank(U) = KN ,

2. ∃ all elements of one row of ŨM×KN are positive,

3. The dot product of any two columns of ŨM×KN are
positive.

In addition, when the feature-based sign loss is binary cross-
entropy regularization BCEB,θ

(
Wt

)
, there exits the com-

mon model parameters W under three conditions such that
WU is less than zero (σ(WU) < 0.5) as target signature B
is 0, or larger than zero as target signature B is 1.

3 Experiments
This section illustrates the empirical study of our protection
framework on the FedDNN models. The network architectures
we investigated include the well-known AlexNet and ResNet-
18, which are tested with typical CIFAR10 and CIFAR100
classification tasks. In particular, our experiments embed
binary signatures to the last convolution layer of AlexNet
and ResNet, corresponding to 256 channels and 512 channels
of convolution kernel weights Wk and normalization scale
weights Wγ . For federated learning setting, we simulate
a K = 20 clients horizontal federated learning system in a
stand-alone machine. In each communication round, the server
sample clients with uniform distribution.

We adopt adversarial samples as trigger set T, which are
trained by Projected Gradient Descent (PGD)[Nguyen et al.,
2015], the original data Tsource is in the standard benchmark
data, trigger T can mislead the classifier to targeted label
designated ahead.

3.1 Evaluation Metrics
To evaluate the FedDNN model signature embedding quan-
titatively, we use a set of metrics to measure the fidelity and
reliability of the proposed feature-based signatures and trigger-
set based signatures.

Fidelity: we use classification accuracy on the main task
Accmain as the metrics for fidelity. It is expected classifica-
tion accuracy should not be degraded by the embedding of
signatures into the federated model.

Reliability: averaged detection rate η of embedded signa-
tures is used to quantify the reliability of a signature verifi-
cation scheme. For feature-based signatures, detection rate

ηF is calculated as ηF = 1 − Dhamming

M , where Dhamming

measures Hamming distance H(B,B) between extracted bi-
nary signature string and the target signatures (M bits length
in total). For trigger-set based signatures, detection rate ηT is
calculated as the ratio of backdoor samples that are classified
as designated labels w.r.t. the total number of all trigger set
samples.

3.2 Fidelity
Fidelity of the proposed model verification scheme was evalu-
ated under different settings, including varying signature bit
length, varying number of triggers per client and different
datasets and model architectures.

Trigger-set Signature: varying number of clients may de-
cide to embed different number of trigger set samples (as
signatures) into the federated model, and Figure 3 (c) and
(d) show that model performances of the main task Accmain
remain almost constant when 20 to 600 trigger set samples
are embedded by, respectively, each of 5 and 10 clients. There
is a negligible accuracy drop (less than 1%) with respect to
the model performance without embedding any trigger set
signatures.

Feature-based Signature: Figure 3 (a) and (b) illustrates
model performance Accmain measured with different length
(M ) of binary signatures embedded into normalization layer
scale parameter (Wγ). It was observed that long bit-lengths
(200 bits per client) of signatures lead to slight model per-
formance drop up to 2% for AlexNet on CIFAR10 classifi-
cation main task. Similar performance drop up to 2% was
also observed for ResNet on CIFAR100 classification task,
when up to 350 bits signatures were used for each client of 10
clients. The drop of classification accuracy Accmain is due to
the sub-optimal solution restricted to the subspace defined by
large number of binary signature constrains (see Proposition
1). Note that performance drop can actually be mitigated by
assigning binary signatures across different layers of normal-
ization scale parameters.

3.3 Reliability
Reliability of the proposed model verification scheme was
evaluated under different settings, including varying signature
bit length, varying number of triggers per client and different
datasets and model architectures.

Trigger-set based signature: reliability of trigger-set sig-
natures were evaluated under two settings, i.e., nB = 5 or 10
clients are randomly selected to embed trigger-set signatures
generated by Projected Gradient Descent (PGD) adversarial
attack method [Nguyen et al., 2015].

Figure 4 (c) and (d) illustrate the trigger set detection rates
ηT on these adversarial sample T, respectively, with AlexNet
on CIFAR10 classification and ResNet18 on CIFAR100 classi-
fication tasks4. The results show that the trigger set detection
rates ηT almost keep constant even the trigger number per
client increases. Moreover, detection rates ηT of signatures
embedded in the more complex ResNet18 is more stable than
those signatures embedded in AlexNet. Also, the detection

4The trigger set samples are regarded as correctly detected when
the designated targeted adversarial labels are returned.



Figure 3: Model performances in a federated learning system with 20 clients. Figure (a) and (b), respectively, illustrate CIFAR10 with AlexNet
and CIFAR100 with ResNet18 classification accuracy Accmain, when nW = 5, 10 clients embed varying bit-lengths signatures. Figure (c) and
(d), respectively, illustrate CIFAR10 with AlexNet and CIFAR100 with ResNet18 classification accuracy Accmain for nB = 5 or 10 clients
embedding varying number of trigger-set samples.

Figure 4: In a federated learning system of 20 clients, figure (a) and (b), respectively, illustrate the case when nW = 5, 10, the signature
detection rate ηF with varying bit length per client, figure (a) describes the case that AlexNet with CIFAR10 dataset, figure (b) describes the
case that ResNet with CIFAR100 dataset. Figure (c), (d) illustrate the case when nB = 5, 10, the trigger detection rate ηT with varying trigger
per client, figure (c) describes the case that AlexNet with CIFAR10 dataset, figure (d) describes the case that ResNet with CIFAR100 dataset

rate is not influenced by the varying number of clients and,
thus, varying number of total trigger-set samples used. We
ascribe the stable detection rate ηT to the generalization ca-
pability of over-parameterized networks as demonstrated in
[Allen-Zhu et al., 2018; Zhang et al., 2017].

Feature-based Signature: Figure 4 (a) and (b) illustrate
binary signature detection rates ηF in white-box manner, in
which (a) is with AlexNet for CIFAR10 and (b) with ResNet18
for CIFAR100 classification tasks. First, note that the detection
rates ηF remain constant (100%) within the regime, whereas
the total bit lengths assigned by multiple (nW = 5 or 10)
clients does not exceed the capacity of network parameters
used to embed signatures. This limit is, respectively, 256
and 512 convolution channels at the last layer for AlexNet
and ResNet18. Therefore, binary signatures of all bits can
be reliably detected, which is in accordance to the analysis
disclosed in Proposition 1. When the total bit lengths exceeds
the limit e.g. in Figure 4 (a), 100 bits signatures are assigned by
5 clients, the detection rate ηF drops to about 80% due to the
conflicts of overlapping signature assignments. Nevertheless,
the dropped detection rate still guarantees very high confidence
in claiming the ownership of verified models.

The results illustrated in Figure 4 give rise to the capability
of feature based signature B into FedDNN model: the bit
length of signatures of total clients {M}nW

i=1 can not exceed
the channel number of normalization scale weights Wγ in

selected convolutional layers.

4 Robustness
Strategies like Differential Privacy[Wei et al., 2020], Ho-
momorphic Encryption[Phong et al., 2018] and client
selection[McMahan et al., 2017] are widely used for privacy
and efficiency in federated learning. Those strategies intrin-
sically bring performance decades on the main classification
task. Respectively, we evaluate the detection rate η of signa-
ture under those strategies. Moreover, the attacker may try
to remove the signatures while inheriting most model perfor-
mance in federated learning. Specifically, we conduct two
removal attacks including fine-tuning and pruning to identify
whether the signatures can be reliably detected under those
removal attacks.
Robustness Against Differential Privacy: we adopt the Gaus-
sian noise-based method to provide differential privacy guaran-
tee for federated learning. Specifically, We vary the standard
deviation σ of Gaussian noise on the local gradient before
clients send gradients to the server. As Figure 5 (a) shows, the
main task performance Accmain decreases severely as the σ
of noise increases, while the detection rate of feature-based
signature ηF and trigger-based signature ηT drop little while
the Accmain is within usable range (more than 85%). In a con-
crete way, when sigma equals 0.003, classification accuracy
Accmain, detection rate ηF and ηT keep a high performance,
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Figure 5: Figure describes the robustness of our FedIPR ownership verification scheme: In a federated learning system of 20 clients training
AlexNet with CIFAR10 dataset, in which nW = 10 clients embed white-box signatures, nB = 10 clients embed black-box signatures. The
dot lines in figure (a)(b)(c)(d). illustrates the main task classification accuracy Accmain under diverse settings. Respectively, figure (a)
illustrates feature-based detection rate ηF and trigger-based detection rate ηT under varying differential private noise sigma; figure (b) illustrates
feature-based detection rate ηF and trigger-based detection rate ηT under different sample fraction ratio while federated training; figure (c)
illustrates feature-based signature detection rate ηF against model pruning attack with varying pruning rate; figure (d) illustrates feature-based
signature detection rate ηF against model finetuning attack in 50 epochs.

which demonstrates the robustness of signature under differ-
ential privacy strategy.
Robustness Against Client Selection: we decrease the frac-
tion ratio c of clients selected in each epoch to for communica-
tion efficiency. Figure 5 (b) shows that the signature could not
be removed even the fraction ratio c is as low as 0.25. More
specifically, when the fraction ratio is larger than 0.2, main
classification accuracy Accmain and detection rate η keep con-
stant. This result gives a lower bound of client sampling rate
in which signatures can be effectively embedded and verified.
Robustness Against Pruning: the target of model pruning is
to reduce redundant parameters without compromise the per-
formance. We evaluate the main task performance Accmain
and signature detection rate η under pruning attack with vary-
ing pruning rate. Figure 5 (c) shows signature detection rate η
while varying network parameters are pruned. It was observed
that the detection rate ηT of signature embedded in normaliza-
tion layer is stable all the time, while ηF with Wk are severely
degraded, this fact shows that the signature on normalization
parameters are more robust against pruning attack.
Robustness Against Fine-tuning: attacks on embedded signa-
tures by fine-tuning were launched to train the network without
the presence of the regularization term, i.e., LT and RB. In
Figure 5 (d), it was observed that the detection rate ηF of sig-
nature embedded with normalization layer (Wγ) remains at

100% (blue curve). In contrast, the detection rate of signature
embedded with convolution layer (Wk) drops significantly
(purple curve). The superior robustness of signatures embed-
ded in normalization layer is in accordance to observations
reported in [Fan et al., 2019].

5 Discussion and Conclusion
This paper illustrated a novel ownership verification scheme
to protect Intellectual Property Right (IPR) of Federated DNN
models against external plagiarizers who illegally copy, re-
distribute the models. To our best knowledge, it is the first
ownership verification scheme that aims to protect IPR of fed-
erated learning models. This work addresses a crucial issue
remained open in federated learning research, since the pro-
tection of valuable federated learning models is as important
as protecting data privacy.

On the technical side, this work demonstrated that reliable
and persistent signatures can be embedded into local models
without disclosing the presence and extraction parameters of
these signatures. In particular, normalization scale parame-
ters based signatures are extremely robust against removal
attacks including fine-tuning and pruning. It is our wish that
the formulation illustrated in this paper will lead to signa-
ture embedding and verification in various federated learning
settings.
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Appendix
A Notation of Parameters
Table 1 summarizes the notation in the whole paper.

B Proof of existence for feature based
regularization

In this part, we give a proof of the Proposition 1, which il-
lustrates the three conditions under which reliable and persis-
tent signatures can be successfully embedded into the same
FedDNN model by multiple clients.

Proposition 2. If U or Ũ as defined above satisfy any one of
following conditions, then there exists W such that WT Ũ ≥
0.

1. rank(U) = KN ,

2. ∃ all elements of one row of ŨM×KN are positive,

3. The dot product of any two columns of ŨM×KN are
positive.

Proof. For the condition (1), if rank(U) = K, then the col-
umn of U (U1, U2, · · ·UKN ) is independent, and the column
of Ũ (Ũ1, Ũ2, · · · ˜UKN ) is also independent. Thus,

y1Ũ1 + y2Ũ2 + · · ·+ yKN ˜UKN = 0

⇐⇒ y1 = y2 = · · · = yKN = 0
(9)

Therefore the solution of Ũ~y = ~0 is only~0, moreover, Ũ~y = ~0
doesn’t have non-negative solutions except ~0. According to
Gordan’s theorem ([Alon and Berman, 1986]), Either Ũ~y > 0
has a solution y, or Ũ~y = ~0 has a nonzero solution y with ~y ≥
~0. Since the latter statement is wrong, there exists W = ~yT

such that WŨ > 0.
For the second condition, it is obvious that Ũ~y = 0 doesn’t

have non-negative solutions except ~0. Therefore the conclu-
sion is true based on Gordan’s theorem.

For the third condition, let the columns of Ũ be
(Ũ1, Ũ2, · · · ŨKN ). We obtain a contradiction by considering
Ũ~y = 0 has a nonzero solution y with ~y ≥ ~0, then

0 = Ũ~y(Ũ~y)T =
∑
i,j

ŨiŨj
T
yiyj (10)

Since yi ≥ 0 and ŨiŨj
T
> 0 , yi = 0 for i = 1, 2, · · ·KN .

This shows Ũ~y = ~0 has a nonzero solution y with ~y ≥ ~0,
which infers the existence of W1×M such that WŨ > 0.

Remark The proposition only demonstrates the existence
of solution for signature regularization term RB,θ

(
W
)
. Em-

bedding signature does not influence the performance of the
main task confirmed in experiments, because deep neural net-
works are typically over parameterized. Deep neural networks
have many local minima, whose error very close to the global
minimum [?; ?]. Therefore, the embedding regularizer only
needs to guide model parameters to one of a number of good
local minima so that the final model parameters embed the
signature well.

C Experiment Settings
This section illustrates the experiment settings of the empirical
study on our FedIPR framework for the FedDNN models.

DNN Model Architectures. The deep neural network ar-
chitectures we investigated include the well-known AlexNet
and ResNet-18. Feature-based binary signatures are embedded
into convolution kernel weights Wk and normalization scale
weights Wγ of multiple convolution layers in AlexNet and
ResNet-18. Table 2 shows the detailed model architectures
and parameter shape of AlexNet and ResNet-18, which we
employed in all the experiments.

Dataset. We evaluate classification tasks on standard CI-
FAR10 dataset and CIFAR100 dataset. The CIFAR-10 dataset
consists of 60000 32x32 colour images in 10 classes, with
6000 images per class. CIFAR-100 has 100 classes containing
600 images each, there are 500 training images and 100 test-
ing images per class. Respectively, we conduct stand image
classification tasks of CIFAR10 and CIFAR100 with AlexNet
and ResNet-18. According to the way we split the dataset for
clients in federated learning, the experiments are divided into
iid setting and non-iid setting. The results for both IID setting
and Non-IID federated learning setting are provided in the
section ??.

Federated Learning Settings We simulate a with K = 20
clients horizontal federated learning system in a stand-alone
machine with 8 Tesla V100-SXM2 32 GB GPUs and 72 cores
of Intel(R) Xeon(R) Gold 61xx CPUs.

In each communication round, the server samples clients
with uniform distribution of a certain fraction ratio to par-
ticipate training (the fraction ratio we explore includes
1.0, 0.8, 0.5, 0.2, 0.1 and 0.05). The clients update the weight
updates, server adopts Federatedavg[McMahan et al.,
2017] algorithm in to aggregate the model updates. The de-
tailed experiment Hyper parameters we employ to conduct our
federated learning are listed in the table 4.

Embedding Process E
Feature-based signature: For the feature-based signature

embedding scheme, we constrain the sign of network param-
eters Wγ and Wk with regularization terms RB,θ including
Hinge Like loss, and cross-entropy loss targeted at different
bit length of each client. We change the number of clients and
the bit length of signature per client under diverse federated
learning setting. The algorithm is shown in Algorithm 2.

Trigger-set Signature: The trigger-set embedding process
adopts a batch-poisoning backdoor method: in each iteration
of backdoor training, both normal samples and backdoor sam-
ples are used in the same data batch for model training.

We adopt adversarial samples as trigger set T: we train
the adversarial samples with Projected Gradient Descent
(PGD)[Nguyen et al., 2015], from original data Tsource in
the standard benchmark data. The PGD parameters are listed
in the table 5, After the training process of PGD, the trigger T
can mislead the classifier to targeted label designated ahead.

Verification process V
After obtaining the model, we could extract the signature

and test the trigger set from the model. Verification process of
signature and trigger-set is shown Algorithm 3 and 4.

Removal attack



Table 1: Notation description

W Model weights
Wk Convolution kernel weights

Wγ Normalization scale weights

O Model outputs

Ok Middle layer activation outputs

OI Images outputs

Oc Classification labels outputs

Key generation Process: G

B Target signature B Extracted signature from model

B̂ sign(B) N Bits number of targeted signature

M Dimension of B θ = {S,E} Hyper-parameters of extracting signature

T Trigger set K Number of clients

Embedding Process: E

LD Main task loss LT trigger-set-based loss

RB,θ Feature-based regularization
HL() : Hinge loss

BCE() : Cross entropy loss

Aggregation Process: A

nk The aggregate weights for kth clients

Verification Process: V

VW white-box verification εW threshold of signature detection

VB black-box verification εB threshold of signature detection

Following previous DNN watermarking methods, we report
model performances under fine-tuning and pruning attacks.

For finetuning, we adopt the code5 and follow their imple-
mentation in Algorithm 5. For pruning, we adopt the code6

and follow their implementation in Algorithm 5. The hyper
parameters are shown in table 3.

5https://github.com/dingsheng-ong/ipr-gan
6https://github.com/zepx/pytorch-weight-prune/blob/develop/

pruning/methods.py

Algorithm 1 Generation G of Signatures

1: procedure SIGNATURE GENERATION
2: for client k in K clients do
3: Initialize Bk, θk = {Sk,Ek}
4: Encode Bk into binary to be embedded into signs

of WTE
5: Initialize Tk = {(X1,Y1), · · · , (XJ ,YJ)} .

Backdoor samples Xj and corresponding output labels
Yj

6: return {(Bk, θk,Tk)}k=Kk=1

https://github.com/dingsheng-ong/ipr-gan
https://github.com/zepx/pytorch-weight-prune/blob/develop/pruning/methods.py
https://github.com/zepx/pytorch-weight-prune/blob/develop/pruning/methods.py


layer name output size weight shape padding
Conv1 32 × 32 64 × 3 × 5 × 5 2

MaxPool2d 16 × 16 2 × 2
Conv2 16 × 16 192 × 64 × 5 × 5 2

Maxpool2d 8 × 8 2 × 2
Conv3 8 × 8 384 × 192 × 3 × 3 1
Conv4 8 × 8 256 × 384 × 3 × 3 1

Sign Embedding (Wγ) 8 × 8 256
Conv5 8 × 8 256 × 256 × 3 × 3 1

Sign Embedding (Wγ) 8 × 8 256
MaxPool2d 4 × 4 2 × 2

Linear 10 10 × 4096

layer name output size weight shape padding
Conv1 32 × 32 64 × 3 × 3 × 3 1

Conv2 x 32 × 32
[
64× 64× 3× 3
64× 64× 3× 3

]
× 2 1

Conv3 x 16 × 16
[
128× 128× 3× 3
128× 128× 3× 3

]
× 2 1

Conv4 x 8 × 8
[
256× 256× 3× 3
256× 256× 3× 3

]
× 2 1

Conv5 x 4 × 4
[
512× 512× 3× 3
512× 512× 3× 3

]
× 2 1

Sign Embedding (Wγ) 4 ×48 512 × 1
Average pool 1 × 1 4 × 4

Linear 10 10 × 512

Table 2: Left: modified AlexNet architecture. Right: modified ResNet-18 architecture

Hyper-parameter Removal Attack
Pruning Rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Finetuning Learning Rate 0.0001
Finetuning Learning Loss only Cross Entropy loss
Batch size 16
Finetuning Epochs 50
Learning rate decay 0.01 per epoch
Vanilla Classification model CNN with three convolution layers

Table 3: Training parameters for Removal Attack

Hyper-parameter AlexNet ResNet-18
Activation function ReLU ReLU
Optimization method SGD SGD
Momentum 0.9 0.9
Learning rate 0.01 0.01
Batch size 16 16
Backdoor batch size 2 2
Data Distribution IID and non-IID IID and non-IID
Global Epochs 200 200
Local Epochs 2 2
Learning rate decay 0.99 at each global Epoch 0.99 at each global Epoch
Federated Fraction [He et al., 2015] [He et al., 2015]
Client numbers 20 20
Feature-based Signature Client numbers 5,10 5,10
Regularization Term BCE loss, Hinge-like loss BCE loss, Hinge-like loss
α of Regularization Loss 0.2, 0.5, 1, 5 0.2, 0.5, 1, 5
Feature-based Signature parameters W Wk and Wγ Wk and Wγ

Trigger-based Signature Client numbers 5,10 5,10
Trigger-based Signature type Adversarial sample Adversarial sample

Table 4: Training parameters for Federated AlexNetp and ResNetp-18, respectively († the learning rate is scheduled as 0.01, 0.001 and 0.0001
between epochs [1-100], [101-150] and [151-200] respectively).



Hyper-parameter Projected Gradient Descent
Optimization method Profected Gradient Descent
Norm type L2
Norm of noise 0.3
Learning rate 0.01
PGD Batch size 128
Targeted at Specific Labels True
Iterations 80
Learning rate decay None
Vanilla Classification model CNN with three convolution layers

Table 5: Training parameters for Projected Gradient Descent Adversarial Training

Algorithm 2 Signature Embedding Process for FedIPR

1: Each client k with its own signature tuple (Bk, θk,Tk)
2: for t in communication round E do
3: Server distributes the global model parameters Wt to

each clients
4: Sample clients with fraction ratio C into subset s of
K clients

5: Local Training:
6: for k in number of selected users subset s do
7: Sample minibatch of m samples X {X(1), · · · ,
X(m)} and targets Y {Y (1), · · · , Y (m)}

8: if enable backdoor then
9: sample t samples of Tk and backdoor targets
YTk

. t = 2, default by [Adi et al., 2018]
10: concatenate X with T , Y with YTk

11: compute cross-entropy loss Lc using X and Y
12: for layer l in targeted layers set L do
13: compute Regularization term Rl using θk and

Wl

14: R←
∑l∈L
l Rl

15: L = Lc + R
16: Backpropagate using L and update W k

t

17: Server Update:
18: Aggregate the {W k

t }Kk=1 with FederateAvg algo-
rithm

Algorithm 3 White-box Feature Based Signature Verification
Input: Model weights W offered by adversaries, Embedding
matrix E and B provided by user.

1: procedure SIGNATURE DETECTION
2: B ←WTE
3: signature← sign(B)
4: Convert signature into binary
5: Decode binarized signature into desired format e.g.

ascii
6: Match decoded signature with target signature
7: Compute the signature detection rate VW (W, E)

Output: VW (W, E)

Algorithm 4 Black-box Trigger-set Based Signature Verifica-
tion
Input: Model N offered by adversaries, Trigger set T and YT
provided by user.

1: procedure TRIGGER-SET DETECTION
2: Fed the Trigger-set T into model (N) to derive the

classification label Oc

3: Match Oc with target label of target trigger-set label
YT

4: Compute the trigger-set detection rate VB(T, YT, W)

Output: VB(T, YT, W)

Algorithm 5 Removal attack
Input: Model N, trigger set T and YT, target signature B

1: procedure PRUNING
2: for p in different pruning percentage do
3: Pruning the model N in p percentage.
4: Test the signature and trigger-set detection rate.
5: procedure FINETUNING
6: for epochs in 50 do
7: Train the model N only in main task (classification

task)
8: Test the signature and trigger-set detection rate.



D Ablation Study

D.1 Influence of feature-based signature
regularization parameter α

In this section, we test the influence which the feature-based
signature regularization parameter α brings. Our experiments
demonstrates α only affects the fidelity.

The left image of Figure 6 shows the model performance
drops seriously as α increases, especially when α equals 1 and
5. The right image of Figure 6 explains the reliability keeps
the similar trend even the α changes from 0.2 to 5.

D.2 Diversity of embedding position of signature

We embed feature-based signatures into last two layers of
AlexNet to explore the capacity of white-box embedding. As
shown in the Table 2, the Conv. layer 4 and Conv. layer 5 have
each 256 channels of convolution kernels, we test the fidelity,
reliability of white box signature. We compare the results of
the case with single Conv. layer 5 and the case with Conv.4
and Conv.5, the results is described in the Figure 7,

Figure 7 Left shows that the signature embedding into mul-
tiple layers yields no compromise of fidelity, the main task
slightly decades as the bit length increases. Figure 7 Right de-
scribe the signatures into multiple layers of the neural network
amplify the capacity of signatures, because the multiple layers
enable more bit length of signatures into the model. Two-layer
case enables twice the bit length of signature as one-layer case
in the same detection signature rate.

This result also proves that: the bit length of signatures of
total clients {Mi}ni=1 can not exceed the channel number of
normalization scale weight Wγ in selected convolution layers,
which is consistent with Proposition 1.

D.3 Signature into Kernel Weights

The parameters W chosen for embedding signatures includes
convolution layer weights S(W) (the columnized vector of
convolution layer weights) and normalization layer scale pa-
rameters S(W) = Wγ = {γ1, · · · , γC} where C is the
number of normalization filters.

The table 6 illustrates the main task classification accu-
racy (fidelity) with the increase of bit length of signature, the
model performance is slightly affected only when the signa-
ture embedding conflict with each other. Figure 8 illustrate
the reliability (signature detection rate) of signature detection
on convolution weights WK . Convolution kernel parame-
ters naturally have more parameters for embedding signatures,
so the capacity is correspondingly larger the the case with
normalization weights WK .

Remark The blue line in Figure 8 does not decrease because
the total signature length KN = 500 ∗ 5 = 2500 is closed to
number of embedding weights 256 ∗ 9 = 2294

Figure 8: Results in embedding signature in the last convolution layer
(Wk) in AlexNet. The change of Signature detection rate as signature
length varies when 10 or 5 clients choose to embed signature.

D.4 Cross Entropy Loss
The regularization term we employ for signature embed-
ding include both binary cross entropy (BCE) loss and
Hinge-like (HL) loss: Binary cross-entropy BCE

(
B,B

)
=

−
∑N
j=1 tj log(fj) + (1 − tj) log(1 − fj); where fj =

1
1+exp(−bj) , and Hinge loss HL

(
B,B

)
=
∑N
j=1 max(α −

bjtj , 0), where signatures B = (t1, · · · , tN ) ∈ {−1, 1}N .
We conduct experiments with the same setting of 20 clients

in BCE regularization and Hinge regularization, whose results
show both two approaches are influenced with signature length
similarly.

Specifically, when the bit length is in the capacity of sig-
nature embedding, the fidelity and reliability between BCE
loss and Hinge loss are the same (shown in Table 7. Moreover,
when the signature embedding conflict with each other, the
reliability of BCE loss is slightly better then the HL loss.

To conclude, the HL regularization term is a stronger con-
strain than BCE regularization term, when the diverse signa-
ture embedding of clients conflict with each other, hinge like
loss affects more fidelity and reliability.



Figure 6: Results of CIFAR10 with AlexNet when embedding signature in different regularization parameter α. Left is main task classification
accuracy as the signature length number varies in different alpha. Right images is signature detection rate with different number of signature
length in different alpha.

Table 6: Model classification accuracy with embedding in convolution layer (Wk) under two conditions (5 or 10 clients add signature)

Bits Number 30 60 90 120 150 180 210 240

Model Acc 0.9135 0.9131 0.9132 0.9129 0.9125 0.9123 0.912 0.913
0.9134 0.9127 0.9165 0.9149 0.9146 0.9134 0.9128 0.9129

Bits Number 270 300 330 360 390 420 450 480

Model Acc 0.9142 0.914 0.9125 0.9132 0.9114 0.9121 0.9122 0.9094
0.9159 0.9119 0.91 0.9131 0.9146 0.9105 0.9113 0.9139

Table 7: Model classification accuracy in BCE loss and Hinge loss under two conditions (5 or 10 clients add signature)

Bits Len.
BCE loss Hinge loss

Client5 Client10 Client5 Client10
20 0.9152 0.9157 0.9137 0.9134
40 0.9146 0.91 0.912 0.9112
60 0.9137 0.9087 0.9116 0.9087
80 0.9136 0.9136 0.9115 0.9078

100 0.9135 0.9123 0.9113 0.9069
120 0.9123 0.913 0.9115 0.9052
140 0.912 0.9124 0.9112 0.904
160 0.9118 0.9139 0.9105 0.9036
180 0.9113 0.9082 0.9088 0.9035
200 0.9111 0.9121 0.9077 0.9026



Figure 7: Results of embedding signature into last two normalization layers (Wγ of AlexNet. Left image is the model classification accuracy
in different signature length; right is the signature detection rate in different signature length.

Figure 9: Results in embedding signature into last normalization layer (Wγ of AlexNet with two different regularization: Hinge regularization
and BCE regularization. Left image is the comparison of signature detection rate between Hinge loss and BCE loss when 5 clients choose to
add signature; right is similar comparison when 10 clients choose to add signature.
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