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Abstract
Due to the increasing importance of user-side pri-
vacy, federated graph neural networks are pro-
posed recently as a reliable solution for privacy-
preserving data analysis by enabling the joint
training of a graph neural network from graph-
structured data located at different clients. How-
ever, existing federated graph neural networks are
based on a centralized server to orchestrate the
training process, which is unacceptable in many
real-world applications such as building financial
risk control models across competitive banks. In
this paper, we propose a new Decentralized Feder-
ated Graph Neural Network (D-FedGNN for short)
which allows multiple participants to train a graph
neural network model without a centralized server.
Specifically, D-FedGNN uses a decentralized par-
allel stochastic gradient descent algorithm DP-
SGD to train the graph neural network model in
a peer-to-peer network structure. To protect pri-
vacy during model aggregation, D-FedGNN intro-
duces the Diffie-Hellman key exchange method to
achieve secure model aggregation between clients.
Both theoretical and empirical studies show that the
proposed D-FedGNN model is capable of achiev-
ing competitive results compared with traditional
centralized federated graph neural networks in the
tasks of classification and regression, as well as sig-
nificantly reducing time cost of the communication
of model parameters.

1 Introduction
Graph neural networks (GNNs) have been popularly used in
analyzing graph structured data, such as molecules, social, bi-
ological, and financial networks [Xu et al., 2018]. However,
due to user-side privacy, regulation restrictions, and commer-
cial competition, we have observed an increasing number of
cases where graph data are decentralized, which limits the
applications of graph neural networks.

Recently, a few number of centralized federated graph
neural networks [Mei et al., 2019; Zheng et al., 2021;
∗Equal Contribution

Table 1: Algorithm Complexities

Algorithms communication computation

Centralized O (n) O
(
n
ε
+ 1

ε2

)
Decentralized O (Deg(network)) O

(
n
ε
+ 1

ε2

)
n is the number of nodes in a network; Deg(network) denotes the
maximal degree of nodes, which is a constant; ε refers to an algo-
rithm as ε-approximation to the optimal solution.

Wu et al., 2021] are proposed to enable the collaborative
training of a GNN model from graph data located at different
clients by using a centralized federated learning where a cen-
tralized server orchestrates the training process. For example,
a recent model FedGraphNN [He et al., 2021] uses FedAvg to
train a centralized federated GNN model, where a client only
needs to compute the embedding of self-held graph data, in-
stead of a physically centralized dataset, to learn a local GNN
model and upload the model to a central server. The central
server updates the model by aggregating model parameters
from all the clients, and then synchronizes the updated model
to all the clients. This way, the server can build a global GNN
model without any access to the raw data, and meanwhile,
maintain almost the same results with the model trained di-
rectly on a centralized dataset.

However, centralized federated GNNs face the challenge
that a central server is always required to conduct model ag-
gregation. In many cross-silo scenarios, the existence of a
high-order central server is unacceptable. Taking bank fraud
detection in the financial market as an example, it is often the
case that there is a competitive relationship between banks
participating in a federated learning task, and none of the
banks accepts others to be the leader which has the full con-
trol of model updating. Therefore, a decentralized learning
model is essential to real-world applications.

Another observation is that current centralized federated
learning models on graph data rarely consider communica-
tion cost on the busiest central node. As shown in Table 1,
existing federated graph neural networks often adopt a star
network topology, and thus the central server has to deal with
tens of times more communication load than clients. When
a learning model has a large number of parameters, which is
often the case in deep learning models, the central server will



become the bottleneck of the learning and lower the efficiency
of the entire system.

In this paper, we present a new Decentralized Federated
Graph Neural Network model (D-FedGNN for short) which
allows multiple participants to jointly train a graph neural
network model without depending on a central node to con-
trol model updating. D-FedGNN is built upon a decen-
tralized parallel stochastic gradient descent algorithm (DP-
SGD) [Lian et al., 2018] which can balance communication
loads of all the participant nodes. To protect privacy during
model updating, D-FedGNN introduces the Diffie-Hellman
key exchange method [Bonawitz and et al., 2017] to achieve
secure model aggregation between clients. Both theoretical
and empirical studies have demonstrated the utility of the pro-
posed D-FedGNN method. The contributions of this paper
are summarized as follows:

• We first study the problem of decentralized federated
learning on graph data that enables multiple participants
to collaboratively train a graph neural network model
without depending on a central server.

• We propose a new D-FedGNN model based on a decen-
tralized parallel stochastic gradient descent algorithm
(DP-SGD) and the Diffie-Hellman key exchange method
to enable decentralized learning of graph neural net-
works with privacy protection.

• We both theoretically and empirically study the per-
formance of D-FedGNN and the results show that D-
FedGNN is competitive in terms of model accuracy and
communication efficiency.

2 Related Work
In this part, we survey the related work on federated learn-
ing on graphs, decentralized federated learning, and privacy-
preserving model aggregation methods.

Federated learning on graphs
Federated learning represents a new class of distributed learn-
ing models that enables model training on decentralized user
data [Hegedűs et al., 2019]. Recently, federated learning has
been used to train graph data and several federated graph neu-
ral networks have been proposed by leveraging the power of
federated learning and graph neural networks [Zheng et al.,
2021], [Wu et al., 2021]. These models, according to their
studies, perform similarly with popular centralized models in
terms of model accuracy, while providing data privacy protec-
tion. In particular, the work [Mei et al., 2019] uses a similar-
ity matrix construction method to hide the private structural
information of nodes. The work [Lalitha et al., 2019] uses
a peer-to-peer distributed federated learning framework and
theoretically proves the probability of error and true risk for
each node. The work [Wu et al., 2021] proposed a federated
graph neural network model FedGNN for recommendation
systems, and introduced the differential privacy to enhance
data security during model updating.

However, all these works assume that there is a central
server to aggregate model information collected from client

nodes. Such a strong assumption restricts further develop-
ment of federated learning models on graph data in real-
world applications. In contrast, we propose in this paper a
new method D-FedGNN which enables a fully decentralized
model for graph data with privacy protection.

Decentralized federated learning
Motivated by some cross-silo scenarios where a high-order
central server is unacceptable, a number of decentralized
federated learning models are proposed. Typically, the
work [Lalitha et al., 2018] formally described the fully de-
centralized federated learning problem, and presented an ef-
ficient distributed learning algorithm. The work [Hegedűs
et al., 2019] introduces the decentralized learning frame-
work Gossip [Liu et al., 2018] into federated learning, and
proposed an alternative optimization method for federated
learning. The work [Hu et al., 2019] proposed a new de-
centralized federated learning algorithm based on both the
Gossip algorithm and the model segmentation, where local
models are propagated over a peer-to-peer network topology
through a sum-weight gossip. The work [Liu et al., 2019] de-
signs a cross-silo federated random forest model that imple-
ments both decentralized learning and data revocation. The
work [Pappas et al., 2021] proposed a fully decentralized fed-
erated learning framework partially based on the interplane-
tary file system, which can achieve competitive performance
to centralized federated learning and save both computation
and communication resources. The works [Zhao et al., 2019]
[Li et al., 2020] remove the centralized node and synchro-
nizes federated learning updates among the data nodes, where
a blockchain is used as an effective decentralized storage to
replace the central sever. However, they still face the chal-
lenge of heavy communication cost.

Although the above works can fulfill decentralized feder-
ated learning, none of them considers the problem of decen-
tralized federated learning on graph data.

Privacy-preserving model aggregation
Although federated learning can avoid data sharing during
model training, it has been shown that data privacy can-
not be fully guaranteed, because adversaries can still extract
private information from the model parameters transmitted
from a client node. A recent solution [Bonawitz and et al.,
2017] is proposed based on the secure aggregation primitive
at the expense of adding extra communication and compu-
tation resources. The work [Mandal and Gong, 2019] ap-
plies the secure aggregation method and homomorphic en-
cryption to logistic regression models and linear regression
models. These methods use the Diffie-Hellman key exchange
method [Bonawitz and et al., 2017] to share keys between
clients. The work [Geyer et al., 2017] proposed the client-
sided differential privacy preserving federated optimization
based on differential privacy. The aim is to hide clients’ con-
tributions during training, balancing the trade-off between
privacy loss and model performance. The work [Wu et al.,
2021] proposed to use local differential privacy federated
for training graph neural networks with privacy-preserving
model aggregation.
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Figure 1: An illustration of the decentralized federated graph neural
network D-FedGNN. D-FedGNN mainly consists of three compo-
nents, i.e., a graph neural network model, a peer-to-peer network
structure, and a Diffie-Hellman key exchange method.

3 Methods
In this section, we introduce the decentralized federated graph
neural network model D-FedGNN in detail.

3.1 Overview
As shown in Figure 1, D-FedGNN consists of three compo-
nents, i.e., a graph neural network model, a peer-to-peer net-
work structure, and a Diffie-Hellman key exchange method.

Algorithm 1 shows the steps of D-FedGNN, there are
mainly three parts of D-FedGNN, namely system setup and
initialization (Section 3.2), local model updating (Section
3.3) , and secure model aggregation (Section 3.4). At the
system setup and initialization part (Lines 1-8), D-FedGNN
randomly initializes model weights, aggregation matrix, and
Diffie-Hellman shared key among clients. At the local model
update part (Lines 10-18), D-FedGNN calculates node em-
beddings by using message propagation in the graph neural
network and obtains the updated model weights. At the se-
cure model aggregation part (Lines 19-24), D-FedGNN ag-
gregates all of the locally updated model weights based on
the Diffie-Hellman key to prevent the leakage of model in-
formation. The algorithm iterates the parts of local model
updating and secure model aggregation until convergence. In
the following, we introduce the three parts in detail.

3.2 Setup and Initialization
The entire graph is denoted as G = (V,E). A set of clients
P are involved into the training process, each of which is
attached with a unique id i and owns a private subgraph
Gi = (V i, Ei) ⊂ G. The edges Ei encode various types of
relationships among nodes, such as similarities, correlations,
and causal dependencies. The graph can be also described by
a weighted adjacency matrix D ∈ Rn×n, and each client is
associated with a data vector xi ∈ Rd, e.g., bag-of-words of
a text or a vector of user features in a social network. Table 2
summarizes the major symbols and notations in the paper.

During the system setup and initiation, client 0 intializes
trainable model weights and a decentralized weighted com-
munication topology with an undirected graph (V,A), where
V denotes a set of n computational nodes and A ∈ Rn×n is

Algorithm 1: Decentralized Federated Graph Neural
Networks (D-FedGNN)

Input: Graph Gi = (V i, Ei) with node features
{xi, ∀i ∈ P} on data holder i; number of layers in
GNN l; non-linearity function δ; adjacency matrix
Di ∈ Rn×n,∀i ∈ P; learning rate αi of client i,
aggregation weight matrix A.

Output: the updated model weight W i
t+1.

1 # Initialize and share secret key.
2 Randomly initialization W i

0 = {W i
l,0, ∀l ∈ K}, ∀i ∈ P .

3 All clients synchronize the public parameter p, g and
generate its own private key kpri.

4 for client i ∈ P do
5 Compute public key kpub = gkpri mod p.
6 Send kpub to all its neighbors.
7 Receive kpubj from its neighbors j.
8 Compute the shared key ski,j = kpubj

kpri mod p.

9 for each round t ∈ [0, T ] do
10 # Local model update
11 for client i ∈ P do
12 # Calculate the initial node embeddings
13 Hi

1,t ← δ(D · xi ·W i
0,t), ∀i ∈ P .

14 for k ∈ [1, 2, ..., l − 1] do
15 Hi

k+1,t ← δ(D ·Hi
k,t ·W i

k,t)).

16 # Get predicted label.
17 ŷit ← softmax(D ·Hi

K,t ·W i
K,t)).

18 W i
t+ 1

2
←W i

t − αit∇L(ŷit, yit).

19 # Secure model aggregation.
20 for i ∈ P do
21 Mask model parameters W i

t+ 1
2

based on Eq. (6) and
send it to all the neighbors.

22 Receive all the masked model parameters from
neighbors, recover masked model aggregation
based on Eq. (7).

23 # Compute the neighborhood weighted average by
fetching masked optimization variables from
neighbors.

24 W i
t+1 =

∑
j∈P

[
W j

t+ 1
2

]
· Ai,j

a symmetric doubly stochastic matrix which satisfies the fol-
lowing three conditions: (i)Ai,j ∈ [0, 1],∀i ∈ V,∀j ∈ V , (ii)
Ai,j =Aj,i, and (iii)

∑
j Ai,j = 1. Ai,j represents the weight

between clients i and j. Ai,j = 0 means that the two clients
are disconnected. Take the standard ring network topology as
an example. A can be represented as follows,

A =



1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

. . .
. . . . . . 1

3
1
3

1
3

1
3

 ∈ R
n×n. (1)

Then, client 0 sends trainable model parameters and decen-
tralizedd weighted communication topology to other client.
At Last, each client i invokes the Diffie-Hellman key ex-
change protocol to establish a shared key ski,j with client



Table 2: Symbols and Notations.

Notations Descriptions

P union set of clients
Gi graph data at client i
V i nodes of graph Gi

Ei edges of graph Gi

xi features of graph Gi

Di adjacency matrix of graph Gi

yit labels of graph Gi

ŷit predicted labels of of graph Gi

J the total number of classes
yit,j label probability of class j at epoch t
ŷit,j predicted label probability of class j at epoch t
αi learning rate for graph Gi at client i
W i
t model weight of client i at the t-th epoch

[Wi] masked model weights
A weighted matrix for model aggregation
X node embedding vertor as the GNN input

j. Note that for any i 6= j, we have ski,j = skj,i.

3.3 Local Model Updating
Each client locally trains a graph neural network model with
respect to its own private data Gi = (Vi, Ei). Without loss of
generality, we use GCNs as an example. During the training
process, each client i first derives node embedding vectors X
as introduced in the work [Kipf and Welling, 2016]. With the
node embedding X , the client runs a forward computation of
a graph convolutional layer as follows:

H = δ(D ·X ·W ), (2)
where delta is an element-wise non-linear function (e.g., a
ReLU function). The adjacency matrix D encodes edge in-
formation in the graph data, which can be a graph shift op-
erator such as the Laplacian matrix. Consider that there are
l layers in total for graph convolution, the output of an GCN
can be denoted as follows,
ŷit = f(D,W ;Hl(X)) = softmax(D ·Hl(X) ·W ), (3)

where a softmax function is used to get the normalized proba-
bility. Then, the loss function L(·) can be defined as follows,

L(ŷit, yit) = −
1

ni

N∑
k=1

J∑
j=1

yit,j log ŷ
i
t,j . (4)

Based on the above output and loss function, the backward
computation is conducted to update local model as follows,

W i
t ←W i

t−1 − αi∇L(ŷit, yit), (5)

where t specifies the current number of iterations, αi is the
learning rate, yit is the true label owned by client i, and
∇L(ŷit, yit) is the gradient.

3.4 Secure Model Aggregation
Each client securely aggregates the newly updated model pa-
rameters with its neighbors. Specifically, a client i first se-
curely masks its local model parameters Wi as follows,

[Wi] =Wi +
∑
i<j

PRG(ski,j)−
∑
i>j

PRG(ski,j), (6)

where PRG(·) is a pseudo-random number genera-
tor [Bonawitz and et al., 2017], and ski,j is the shared key
between clients i and j.

Then, the masked model parameter [Wi] is sent to the
neighbors of client i. After receiving all the masked model
parameters from neighbors, the client runs model aggregation
locally as follows,

Wi,t+1 =
∑
j∈P

[Wj ] · Ai,j , (7)

where Wi,t+1 is exactly the final updated model parameters
at iteration t. Repeat the above steps, the clients can collab-
oratively train a global graph neural network model without
the assistance of a centralized server.

4 Analysis
In this part, we study the performance of D-FedGNN from
the perspective of generalization error rate. Intuitively, we
can estimate the generalization error bounds of D-FedGNN
by combining the bound of D-SGD generalization error and
the bound of graph neural networks. A recent work [Sun
et al., 2021] has studies the generalization error bounds of
D-SGD under convex learning functions, where the uniform
stability εstab is used to bound the generalization error which
depends on the learning function, the learning rate, and the
structure of the decentralized graph. On the other hand, ac-
cording to a previous theoretical study on graph neural net-
works [Xu et al., 2018], a message passing function between
neighboring nodes can be taken a multi-layer neural network
and the work [Cao and Gu, 2020] has studied an algorithm-
dependent generalization error bound for multi-layer neural
networks with ReLu. Thus, we can estimate the generaliza-
tion error bound of D-FedGNN by combining their results.

Formally, let Gi be the graph located at the ith client, and
the objective function F (x) = 1

mn

∑m
i=1

∑n
j=1 F (x;G

i),
where n is the average size of each graph Gi. Basically, the
gradient of F (x;Gi) is L-Lipschitz. Let (xt)1≤t≤T be a se-
quence generated by D-FedGNN, with βt be the step size at
round t, and the average of all the T steps be ave(xT ) =

(
∑T−1
t=1 βtx

t)\(
∑T−1
t=1 βt). Regarding the structure of the

connected graph, let A be a mixing matrix [Marshall et al.,
1979] defined on the graph edges which is a doubly stochas-
tic matrix, and use a constant λ to denote matrix A, i.e.
λ = max{|λ2|, |λm(A)|}, where λi denotes the ith largest
eigenvalue of A. Regarding the multi-layer neural networks
used in graph neural networks, we use EG(W ) to denote the
empirical surrogate error on a training graph G. For any
given parameters η > 0 and a large enough absolute con-
stant C ≥ τ\(L6 log(m)3\2), the generalization error εgen is
bounded by the uniform stability [Hardt et al., 2016] on the
average of all the T steps avg(xT ) as follows:
Theorem 1. (Generalization Bound εgen) Let the step size
βt ≡ 2\L, then uniform stability ave(xT ) with the probabil-
ity at least of 1− η to satisfy:

εgen ≤
1

mn
2C
√
mE2β(t− 1)

+
1λ 6=1

1− λ
4βC
√
mE2(1 + βC

√
mE)(t− 1),

(8)



Proof. Because D-FedGNN is built on D-SGD and graph
neural networks, the generalization bound is based on both.
According to the work [Sun et al., 2021], the generalization
bound of D-SGD with respect to the average steps ave(xT )
depends on the maximal gradient of the learning function
∇F , the learning rate β, and the structure of the connected
graph λ as: εgen ≤ 2∇F 2β(t−1)

mn + 4β∇F 2(1+β∇F )(t−1)
1−λ 1λ6=1.

On the other hand, the message passing in graph neural net-
works is a multi-layer neural network with ReLu which satis-
fies the bound of max ‖∇wF‖ ≤ C

√
mE with the probabil-

ity of 1 − η for an absolute constant C ≥ τ\(L6 log(m)3\2)
[Cao and Gu, 2020]. Thus, by plugging the gradient ∇WF
into D-SGD, we obtain Eq.(8).

Theorem 1 shows that the generalization capability of D-
FedGNN depend on the empirical surrogate error E based on
the learning function ∇F and training graph data, the learn-
ing rate β, and the structure of the decentralized network λ. In
addition, based on the work [Sun et al., 2021], for a stochas-
tic algorithm on a dataset, we can also use the excess gener-
alization error to bound the generalization error which can be
decomposed into three parts, i.e. a generation error, an op-
timization error, and a test error. Due to space, we omit the
discussion.

5 Experiments
In this section, we conduct experiments to validate whether
D-FedGNN performs competitively compared with existing
centralized graph neural networks, and whether D-FedGNN
takes less time during model parameters communication.

5.1 Experimental settings
All the experiments were run on a GPU server with 4
NVIDIA GEFORCE 2080Ti (11GB GPU memory).

Datasets
The benchmark datasets are summarized in Table 3. More-
over, we use an imbalanced partition algorithm Latent Dirich-
let Allocation (LDA) [He et al., 2020] to partition datasets in
the MoleculeNet benchmark [Wu et al., 2018]. The value
of α for LDA at each non-I.I.D. graph dataset is shown Ta-
bles 4 and 5. Also, we use random splitting as advised in
the work [Wu et al., 2018] to partition the datasets into three
parts, e.g., 80% for training, 10% for validation, and 10% for
testing.

Parameter settings
According to the recent work [He et al., 2021], we tune hyper-
parameters by using grid search. The hyper-parameters in-
clude the learning rate α ∈ [0.0015, 0.015, 0.15], dropout rate
d ∈ [0.3, 0.5, 0.6], and rounds of iterations r ∈ [10, 50, 100].
All the hyper-parameters are tuned on a single GPU. The
mini-batch size is fixed to be 1 as required by the standard
molecule tasks [Wu et al., 2018]. Besides, we set the dimen-
sion of node embedding, hidden layer, readout embedding
and graph embedding to be (64, 64, 64, 64).

Metrics
By following the work [He et al., 2021], we use ROC-AUC as
the evaluation metric for classification tasks. We use R-MSE
as the evaluation metric for regression tasks. In decentralized
scenarios, we use the average results collected from all the
clients. To compare the communication efficiency, we record
the run times of the models as well.

Table 3: Summary of datasets

Dataset Compounds Average of Nodes Average of Edges

ESQL 1128 13.29 40.65
FreeSolv 642 8.72 25.60
Lipophilicity 4200 27.04 86.04
hERG 10572 29.39 94.09
BACE 1513 34.09 36.89
BBBP 2039 24.03 25.94
SIDER 1427 33.64 35.36
ClinTox 1478 26.13 27.86
Tox21 7831 18.51 25.94

Benchmark methods
We compare the proposed D-FedGNN method with a recent
centralized GNN model FedGraphNN [He et al., 2021] 1.
FedGraphNN is an open-sourced federated learning frame-
work for GNNs, which has implemented the standard base-
line datasets, models, and federated learning algorithms for
GNNs. Note that FedGraphNN is based on FedAVG which
utilizes a central server to aggregate client model parameters
and maintain the global model.

For both D-FedGNN and FedGraphNN, we implement
three popular GNNs to train local models, i.e., GCN, GAT
and GraphSAGE. A readout function (a simple multilayer
perceptron) is used to handle the output of the GNN models.

Figure 2: The ROC-AUC results of GCN on sider w.r.t. epochs.

5.2 Experimental results
In Table 4 and Table 5, we list the results of regression with
respect to RMSE and the results of classification with respect
to ROC-AUC respectively.

From the results, we can observe that D-FedGNN per-
forms similarly with the centralized model FedGraphNN on

1https://github.com/FedML-AI/FedGraphNN



Table 4: Regression results w.r.t. RMSE on 4 clients.

Datasets Non-I.I.D Partition GNNs FedGraphNN D-FedGNN

FreeSolv (642) LDA α = 0.5
GCN 2.7470 2.6402
GAT 1.3130 1.3523
GraphSAGE 1.6410 1.6734

ESOL (1128) LDA α = 0.5
GCN 1.4350 1.4552
GAT 0.9643 0.9404
GraphSAGE 0.8604 0.8534

Lipo (4200) LDA α = 0.5
GCN 1.1460 1.2452
GAT 0.8537 0.8423
GraphSAGE 0.7788 0.7553

hERG (10572) LDA α = 2
GCN 0.7944 0.7743
GAT 0.7322 0.7497
GraphSAGE 0.7265 0.7563

Table 5: Classification results w.r.t. ROC-AUC on 4 clients.

Datasets Non-I.I.D Partition GNNs FedGraphNN D-FedGNN

SIDER (1427) LDA α = 0.2
GCN 0.638 0.626
GAT 0.6591 0.6494
GraphSAGE 0.6700 0.6734

BACE (1513) LDA α = 0.5
GCN 0.8784 0.6523
GAT 0.7714 0.8604
GraphSAGE 0.7812 0.8734

Clintox (1478) LDA α = 0.5
GCN 0.876 0.8933
GAT 0.9129 0.9125
GraphSAGE 0.9246 0.9256

BBBP (2039) LDA α = 2
GCN 0.7605 0.7909
GAT 0.8746 0.8863
GraphSAGE 0.8935 0.908

Tox21 (7831) LDA α = 3
GCN 0.7425 0.7256
GAT 0.7186 0.7102
GraphSAGE 0.7801 0.7912

Table 6: Training time (Hardware: 4 NVIDIA GEFORCE RTX
2080Ti GPU(11GB/GPU))

GNNs SIDER BACE Clintox BBBP Tox21

FedAVG GCN 9.05min 9.53 min 9.03 min 11.57 min 39.16 min
D-FedGNN 7.87 min 8.32 min 8 min 10.62 min 38.05 min

FedAVG GAT 13.72 min 13.68 min 13.06 min 16.39 min 44.45 min
D-FedGNN 12.05 min 12.65 min 8 min 10.71 min 38.09 min

FedAVG GraphSAGE 4.43 min 8.03 min 8.47 min 9.34 min 19.20 min
D-FedGNN 3.28 min 7.12 min 7.12 min 8.18 min 18.09 min

the benchmark datasets. For example, in Table 4, D-FedGNN
obtains better RMSE results on the FreeSolv dataset when
using GAT and GraphSAGE, but slightly worse than Fed-
GraphNN when using GCN. In Table 5, D-FedGNN obtains
better ROC-AUC results than FedGraphNN on the BBBP
dataset under all of the three GNN models. Moreover, Fig-
ure 2 and Figure 3 show two training curves with respect to
ROC-AUC on two datasets, e..g, sider and clintox. From the
results, we can conclude that D-fedGNN converges almost
the same as FedGrapgNN.

In Table 6, we record the training times on the benchmark
datasets. We can observe that D-FedGNN takes less time than
FedGraphNN to run 110 federated model aggregation. This
is because D-FedGNN has more balanced workload among
clients than FedGraphNN. Moreover, Figure 4 gives the spe-
cific results on the clintox dataset over 500 times of model
aggregation. The results show that D-FedGNN outperforms
FedGraphNN with a large margin. In our experiments, we
only use 4 GPUs. When the number of GPUs grows and the

Figure 3: The ROC-AUC results of GCN on clintox w.r.t. epochs.

model size increases, the running time cost will reduce sig-
nificantly.

Last but not least, we list the search results of the hyper-
parameters with respect to the three GNN models for readers
to repeat the results. For GCNs, the learning rate is 0.0015
and the dropout rate is 0.3 for all the benchmark datasets. For
GATs, the learning rate is 0.0015, dropout rate is 0.3, the at-
tention head is 2, and α is 0.2. For GraphSAGE, the learning
rate is 0.015 for the datasets BBBP, ClinTox, FreeSolv, the
learning rate is 0.0015 for datasets BACE, SIDER, ESOL,
Lipophilicity, hERG and the learning rate is 0.00015 for the
dataset Tox21. The dropout rate is 0.6 for all the datasets.
As for the Diffie-Hellman key exchange method, p specifies
a 2048-bits prime field Zp, and g is a randomly selected gen-
erator of Zp.

Figure 4: The ROC-AUC results of GCN on clintox w.r.t. time.

6 Conclusions
In this paper, we present a new Decentralized Federated
Graph Neural Network model (D-FedGNN for short) to en-
able multiple participants to train a graph neural network
model without a centralized server. D-FedGNN uses a peer-
to-peer network structure and discards the central server dur-
ing model updating. Moreover, to protect privacy during
model updating, D-FedGNN introduces the Diffie-Hellman
key exchange method [Bonawitz and et al., 2017] to achieve
secure model aggregation between clients. Both theoretical
and empirical studies demonstrate the utility of the proposed
D-FedGNN method.
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