
Efficient Byzantine-Resilient Stochastic Gradient Descent

Kaiyun Li1,2 , Xiaojun Chen1,B , Ye Dong1,2 , Peng Zhang3 , Dakui Wang1 , Shuai Zeng1

1Institute of Information Engineering, Chinese Academy of Sciencess, Beijing, China.
2 School of Cyber Security, University of Chinese Academy of Sciencess, Beijing, China.

3 Guangzhou University, Guangzhou, China.
{likaiyun, chenxiaojun,dongye,wangdakui,zengshuai}@iie.ac.cn

p.zhang@gzhu.edu.cn

Abstract
Distributed Learning often suffers from Byzantine
failures, and there have been a number of works
studying the problem of distributed stochastic op-
timization under Byzantine failures, where only a
portion of workers, instead of all the workers in
a distributed learning system, compute stochastic
gradients at each iteration. These methods, albeit
workable under Byzantine failures, have the short-
comings of either a sub-optimal convergence rate or
high computation cost. To this end, we propose a
new Byzantine-resilient stochastic gradient descent
algorithm (BrSGD for short) which is provably ro-
bust against Byzantine failures. BrSGD obtains
the optimal statistical performance and efficient
computation simultaneously. In particular, BrSGD
can achieve an order-optimal statistical error rate
for strongly convex loss functions. The compu-
tation complexity of BrSGD is O(md), where d
is the model dimension and m is the number of
machines. Experimental results show that BrSGD
can obtain competitive results compared with non-
Byzantine machines in terms of effectiveness and
convergence.

1 Introduction
In the fields of recommendation systems, natural language
processing, and computer vision, it is often the case that we
need to build complex models from large-scale datasets. As
the available data for training models continuously grow, it is
urgent to use distributed learning to digest these large-scale
data. In a distributed learning system, robustness and secu-
rity issues have become a major concern. In particular, in-
dividual computing units, i.e., worker machines, may exhibit
abnormal behavior due to data corruption, hardware/software
malfunction, communication delay, etc. This abnormal (even
worse adversarial) behavior is typically modeled as Byzantine
failure [Lamport et al., 1982]. It is well-known that a single
Byzantine-faulty machine can arbitrarily skew standard dis-
tributed learning algorithms based on naive gradients aggre-
gation, e.g., an average of the gradients collected from all the
workers [Blanchard et al., 2017]. Moreover, Byzantine fail-
ure is exacerbated in Federated Learning (FL), where training

data resides at autonomous worker machines, and a central
server facilitates the learning process [Konečnỳ et al., 2015;
McMahan et al., 2017; Kairouz and McMahan, 2021]. The
behavior of a worker machine under Byzantine failure is of-
ten unpredictable, and even becomes susceptible to malicious
and coordinated attacks [Aono et al., 2017; Zhao et al., 2020].
Therefore, it is increasingly important to develop robust dis-
tributed algorithms in the adversarial setting.

Existing works on [Blanchard et al., 2017; Feng et al.,
2014; Chen et al., 2017; Xie et al., 2018; Yin et al., 2018]
suffer from the shortcomings of either a sub-optimal statis-
tical guarantees or high computation cost. They are inappli-
cable to distributed settings where. As a result, we wish to
develop distributed learning algorithms that can achieve two
objectives simultaneously. The first objective is Byzantine-
resilience which refers to achieving the best performance
even though a relatively large fraction of the workers are
Byzantine. The second objective is high computation ef-
ficiency which refers to preserving as much as possible the
run-time speedup by using distributing computation across
multiple workers.

To deal with Byzantine failures, an intuitive solution is to
use coordinate-wise median [Yin et al., 2018] and its vari-
ants [Chen et al., 2017; Xie et al., 2018]. However, these
methods independently consider each single exception di-
mension, which requires heavy computation cost when there
are a large number of dimensions. For example, to compute
the median value of a single exception dimension, the easiest
way is to apply a sorting algorithm to the dimension, which
yields a time complexity of O(dm logm). This time com-
plexity is unaffordable when d is very large.

In this paper, we define a new metric for the gradient vec-
tor to evaluate whether it is a Byzantine worker. Our key
insight is to directly use the `1-norm constraint to eliminate
abnormal gradients, which can greatly simplify the calcula-
tion. Specifically, let gi be a stochastic gradient computed
by a worker i ∈ [m], then gi shall concentrate around gmed,
where gmed is the median value of gi, i ∈ [m]. In other
words, if ‖gi − gmed‖1 > 2T, where T > 0 is a hyper-
parameter, then we can declare worker i as Byzantine.

A challenge to the `1-norm method is that some Byzantine
workers may hide without violating the constraint. Then, we
further define a score for each gradient. As shown in Fig.1,
the master machine needs to collect the gradients that are flat-

Figure 1: The gradients are collected and combined into a matrix.
Taking a column of the matrix, the values uploaded by the normal
workers in this column has little difference.

tened into a d-dimensional vector from all the workers, and
then align these vectors into a new matrix by columns. As
shown in Fig.2, when taking one column of the matrix, we
can observe that a subset with a smaller number of elements
must deviate heavier from the global mean value than a larger
number of elements. Based on the observations that the hon-
est majority and the values uploaded by the normal workers
are with little difference, a subset with a smaller number of
elements is more likely to contain Byzantine workers. There-
fore, we can judge the outliers according to each dimension
of the gradient and count the number of outliers as a score.
We keep the β-fraction gradients with the highest scores.

Noted that Byzantine workers may be falsely labeled as
good ones. Fortunately, the convergence rates of our method
are not impacted significantly. Especially, the subroutine for
calculating the score has only one round of comparison and
one round of averaging. Thus, it is computationally efficient,
almost the same as a naive method implemented through av-
eraging [Polyak and Juditsky, 1992]. The contributions of the
paper can be summarized as follows:

• We present a new robust aggregation rule for dis-
tributed synchronous Stochastic Gradient Descent algo-
rithm BrSGD in an adversarial setting. The new algo-
rithm can handle Byzantine resilience. Moreover, the
computation complexity of the proposed algorithm is
O(md).

• We theoretically analyze the statistical error rates of our
method on strongly convex loss functions. In particular,
our algorithm can achieve an order-optimal statistical er-
ror rate for strongly convex losses.

• We also demonstrate the convergence of the proposed
algorithm by conducting empirical studies. The experi-
mental results on four types of Byzantine attacks match
the results of none-Byzantine machines in terms of ef-
fectiveness and convergence.

The rest of this paper is organized as follows. Related work
is summarized in Section 2. In Section 3, we formulate the
problem of this work. Section 4 presents our method and an-
alyzes the statistical error rates. In Section 5, we present the
empirical evaluations, and we conclude this work in Section
6.

2 Related Work
Recently there have been a large number of works stuyd-
ing the problem of Byzantine stochastic optimization [Blan-

Figure 2: The goal of Byzantine workers (subset2) is to make the
mean value of the set {x1, . . . , x8} deviating from the real mean of
the subset1 as much as possible. However, based on the honest ma-
jority assumption, the number of elements in subset1 is greater than
subset2, i.e., d1 < d2. Thus, we can infer whether the Byzantine
worker is included according to the number of elements in the two
subsets divided by the mean value.

chard et al., 2017; Feng et al., 2014; Su and Vaidya, 2016;
Chen et al., 2017; Alistarh et al., 2018; Su and Vaidya, 2019;
Xie et al., 2018; Yin et al., 2018; Su and Xu, 2019; Chen
et al., 2018]. Here, we compare existing Byzantine-robust
distributed learning algorithms that are most relevant to our
work and summarize the comparison in this section.

According to different ideas, existing algorithms can be
roughly divided into the following three categories, i.e.,
Median-based method, Anomaly-detection-based method,
and Redundant-gradients-based method.

The median-based method is used in the context of
Byzantine-tolerant distributed learning in papers [Blanchard
et al., 2017; Feng et al., 2014]. The median-based method
can be further sub-divided into Geometric Median [Chen et
al., 2017] and Marginal Median [Xie et al., 2018; Yin et al.,
2018]. For geometric median, the (1 + ε)-approximate geo-
metric median can be computed in O(dm log3 1

ε) [Cohen et
al., 2016]. An algorithm called the selection algorithm [Blum
et al., 1973] with average time complexity O(m) (O(m2) is
the worst case) to obtain median values. Anomaly detection is
performed by running the T iterations [Alistarh et al., 2018;
Allen-Zhu et al., 2021]. Although computation complexity
is considerable for anomaly detection methods, each gradient
needs to be checked, and inner product operations are also
involved. These operations are very time-consuming in prac-
tical. In these algorithms, the most time-consuming is via re-
dundant gradients methods (ideas from coding theory) [Chen
et al., 2018].

The closest literature is the work of Yin et al. [Yin
et al., 2018]. They consider a similar Byzantine model,
but for gradient descent (GD). Reference [Blanchard et al.,
2017] proposes a general Byzantine-resilient gradient aggre-
gation rule called Krum. This rule has expensive complexity
O(m2(d + logm)) and does not provide a characterization
of the statistical errors. Recent work [Chen et al., 2017] only
applies in the strongly convex setting and is sub-optimal con-
vergence rate. In contrast, our algorithm is efficient (O(md))
in computational complexity and achieves order-optimal sta-
tistical error rates for strongly convex losses.

Algorithm 1: Byzantine-resilient SGD (BrSGD)

Input:initialize parameters w0 ∈ W , step-size η,
hyperparameters 0 < β < 1

2 , thresholds T > 0, and
iterations T ;

Master machine: send w0 to all the worker machines;
for t = 0, 1, . . . , T − 1 do

for all i ∈ [m] do
Worker machine i: compute local gradient;

gi(wt) =

{
∇`i(wt), i ∈ [m]\B,
∗, i ∈ B.

upload gi(wt) to master machine;
end
Master machine: compute aggregate gradient

g(wt)← Aβ,T({gi(wt) : i ∈ [m]}),

and then send g(wt) to all worker machines;
Worker machine: update model parameter

wt+1 ← wt − ηg(wt)

end

3 Preliminaries
First of all, we introduce the used notations. A vector is de-
noted as w, and wi denotes the i-th element of w. Matrices
are denoted as M . We let M i,j denote its entry at location
(i, j), M i,· denote its i-th row, and M ·,j denote its j-th col-
umn. [N] denotes {1, 2, . . . , N}. For any differentiable func-
tion f , we denote its partial derivative for the i-th argument by
∂if . We index the set of worker machines by [m], and denote
the set of Byzantine machines by B ∈ [m] (thus |B| = αm).

We consider a distributed computation model with one
master machine and m worker machines and that an α-
fraction of the workers may be Byzantine (where α < 1/2).
Each worker machine stores n samples, each of which is
sampled independently from an unknown distribution D.
`i(w;x) be a loss function of i-th worker machine associated
with parameter vector w ∈ W ∈ Rd and the sample x, where
W is the parameter space. Denoted the j-th data on the i-th
worker machine by xi,j , and Fi(w) := 1

n

∑n
j=1 `i(w,x

i,j)
denote the empirical risk function for the i-th worker. Our
goal is to learn a model defined by the parameter that mini-
mizes the population loss:

w∗ = arg min
w∈Rd

F (w), (1)

where
F (w) := E[Fi(w)]. (2)

The parameter space W is compact with diameter D, i.e.,
‖w −w

′‖2 ≤ D,∀w,w
′ ∈ W .

4 Our Method
This section presents our Byzantine-Resilient stochastic gra-
dient descent algorithm (named BrSGD) and briefly summa-
rizes our convergence results on its performance.

4.1 BrSGD Algorithm
The master machine broadcasts the initialized model, and
all the workers receive and accept it as the local initialized
model. Then, the master and the workers update the model
iteratively. At each iteration, the normal workers compute
the gradients of their local loss functions and then upload
to the master. The Byzantine workers may send any mes-
sages. Next, the master performs a robust aggregator to com-
pute gradients for model updating and send the gradient to
all workers. After receiving the gradient from the master, the
workers update its parameters in the way of gradient descent
and moves into the next iteration until the whole algorithm is
completed. The formulation is illustrated in Algorithm 1.

In the following context, we focus on the aggregation
method construction. Intuitively, the aggregation rule should
return a vector g that is not too far from the real gradient
∇F (w). More precisely, g should approximate the steepest
direction of the loss function being optimized. This is ex-
pressed as upper bound ‖gi − gmed‖1 ≤ 2T on worker’s
gradient vector gi (Constraint 1). If the gradient satisfies
Constraint 1, we add it to the candidates C1. To further elim-
inate the impacts of potential anomaly values in candidates,
we set a score to each gi and keep the β-fraction gradients
with larger scores (Constraint 2). Concretely, the master col-
lect the gradients that are flattened into a d-dimensional vec-
tor from all workers and then align them into a new matrix
G by column. Then, we utilize the observation (cf. Section
1) to mark the anomaly values of G column-wise. We divide
one column of data into two subsets using their mean and set
the subset with a large number of elements to 1, otherwise
0. Finally, a scoring matrix M composed of 0 and 1 will be
generated, and the result of adding the rows will be used as a
score for the corresponding gradient. For each worker i, we
define the score si =

∑
j∈[d] M i,j , i ∈ [m]. For the details,

please see Algorithm 2.

4.2 Convergence Analysis
In this part, we provide statistical guarantees on the error rates
(defined as the distance between wT and the optimal solution
w∗) of the algorithms. Throughout we assume that the loss
function F (w) is smooth.

Assumption 1. In each iteration t, each normal worker ma-
chine i ∈ [m] gives back a vector ∇`i(wt) ∈ Rd satisfying
‖∇`i(wt)−∇F (wt)‖1 ≤ V .

One can instead assume Pr[‖∇`i(wt) − ∇F (wt)‖1 ≥
t] ≤ 2 exp(−t2/2V2) and the results of this paper continue
to hold up to logarithmic factors. But we assumes F (wt) is
Lipschtz continuous, which implies ‖∇`i(wt)−∇F (wt)‖1
is bounded. To present the simplest theory, we assumed it is
bound with probability 1.

Firstly, we introduces Lemma 1, which is used to bound
the output of algorithm 2.

Lemma 1. In our algorithm, suppose that the one dimen-
sional samples on all the normal worker machines are in-
dependent and identically distributed (i.i.d). Satisfy v-sub-
exponential with mean µ. For any t ≥ 0 and s ≥ 0, let
| 1
|C1∩C2|

∑
i∈[m]\B g

i − µ| ≤ t and maxi∈[m]\B |gi − µ| ≤ s.

Algorithm 2: Aggregator Aβ,T({gi(wt) : i ∈ [m]})
Inputs: gradient set {gi(wt), i ∈ [m]},
hyperparameters 0 < α < β ≤ 1

2 , and thresholds
T > 0;

Return: aggregation gradient g(wt);

a = 0, s = 0,n = 0,M = 0; # Initialize the mean
vector a, score vector s, `1-norm vector n, and score
matrix M ;

for c = 0, 1, . . . , d do
for r = 0, 1, . . . ,m do

ac = ac + ar;
end
ac = ac/m; # calculate the average value of the
arranged gradient matrix by column;

end
for c = 0, 1, . . . , d do

counter = 0;
for r = 0, 1, . . . ,m do

if grc(wt) ≥ ac then
M r,c = 1;
counter = counter + 1;

end
else

M r,c = 0;
end

end
if counter < m/2 then

M ·,d = ¬M ·,d; # obtain the score matrix
based on observation 1;

end
s = s + MT

·,d; # calculate the score for each
gradient;

end
gmed = median{gi(wt) : i ∈ [m]};
C1 = {i : ‖gi(wt)− gmed‖1 ≤ 2T}; # Constraint 1;
C2 = {i : Topβmax(si), i ∈ [m]}; # Constraint 2;
g(wt) = mean(gi(wt) : i ∈ C1 ∩ C2);

If we set T = s ≤ V , then we have

|Aβ,T({gi : i ∈ [m]})− µ| ≤ t+ 3βs (3)

Proof. To simplify notation, we define M = [m]\B as the
set of all normal worker machines, C = {C1 ∩ C2} ⊆ [m] as
the set of candidates, and R ⊆ [m] as the set of all removed
machines. The estimator simply computes

Aβ,T({gi : i ∈ [m]}) =
1

|C|
∑
i∈C

gi (4)

Condition 1 and Assumption 1 ensures that the boundary of
each dimension of the gradient in the candidate set does not

exceed 2s. Then, We have

|Aβ,T({gi : i ∈ [m]})− µ| =

∣∣∣∣∣ 1

|C|
∑
i∈C

gi − µ

∣∣∣∣∣
=

1

|C|

∣∣∣∣∣∑
i∈M

(gi − µ)−
∑

i∈M∩R
(gi − µ) +

∑
i∈B∪C

(gi − µ)

∣∣∣∣∣
≤ 1

|C|
((1− α)mt+ βms+ 2αms)

≤ t+ 3βs
(5)

where the last inequality is by β ≥ α. We directly obtain the
desired result.

Assumption 2 (Smoothness of ` and F). For any x ∈ X ,
the partial derivative of `(·;x) with respect to the k-th co-
ordinate of its first argument, denoted by ∂k`(·;x), is Lk-
Lipschitz continuity for each k ∈ [d], and the function `(·;x)

is G-Lipschitz smoothness. Let L :=
√∑d

k=1 L
2
k. Also as-

sume that the population loss function F (·) is GF -Lipschitz
smoothness. It is easy to see that GF ≤ G ≤ L.

Strongly Convex Losses
We consider the case where the population loss function F (·)
is strongly convex.
Theorem 1. suppose that Assumption 2 hold, F (·) is λF -
strongly convex, and α ≤ 1

2 − ε for some ε > 0. In addi-
tion, we assume that ∂k`(w;x) is v-sub-exponential for any
k ∈ [d] and w ∈ W . Choose step-size η = 1/GF . Then,
with probability at least 1 − 4d

(1+nmLD)d
, after T parallel it-

erations, we have

‖wT −w∗‖2 ≤
(

1− λF
GF + λF

)T
‖w0 −w∗‖2 +

2

λF
4

where

4 = Õ

(
1√
n

+
1√
nm

)
Note that this paper [Yin et al., 2018] provide a lower

bound showing that the error rate of any algorithm is Ω̃(α√
n

+
1√
nm

). Therefore, our algorithm achieved order-optimal sta-
tistical error rate.

Proof. The proof is essentially the same as [Yin et al., 2018].
Therefore, we omit the details of the analysis here. Choosing

t = vmax

{
8d

nm
log(1 + nmLD),

√
8d

nm
log(1 + nmLD)

}
,

and

s = vmax

{
4

n
(d log(1 + nmLD) + logm)

,

√
4

n
(d log(1 + nmLD) logm)

}
.

By using the simple algebra, we have

4 = Õ

(
1√
n

+
1√
nm

)

Algorithms Ours Median Mean Krum

α 0 10% 25% 50% 10% 25% 50% 10% 25% 50% 10% 25% 50%

Gaussian 84.16 83.42 84.56 83.29 83.73 85.40 86.78 9.93 9.93 9.93 82.04 79.56 79.62
Model Negation 85.87 83.89 84.07 82.13 83.29 84.47 82.84 10.84 10.84 10.84 80.44 81.18 79.36
Gradient Scale 85.29 84.33 83.67 82.87 81.00 61.13 9.80 85.87 82.47 60.67 77.20 81.33 70.76
Label Inverse 85.11 82.93 82.49 83.93 84.91 86.00 82.09 72.71 74.93 80.11 81.82 78.56 68.76

Table 1: Test results of LeNet on FashionMNIST in terms of accuracy using stochastic gradient descent.

5 Experiments
We implemented BrSGD in Python3. Our experiments are
executed on Intelr Xeonr CPU E5-2650 v3@ 2.30GHz
servers with 64GB RAM. We simulate m = 20 clients. The
model is learned atop Pytorch v1.6.0 equipped with CUDA
v10.2 and one 12G memory TITAN Xp GPU. the C-S con-
nection is over WAN with 50Mbps bandwidth and 50ms RTT.

5.1 Experimental settings
We conduct experiments to show the Byzantine resilience in
the following four classic adversarial settings:

• We consider the attackers that replace some of the gra-
dient vectors with Gaussian random vectors with zero
mean and isotropic covariance matrix with standard de-
viation 200. We refer to this kind of attack as Gaussian
Attack.

• For each Byzantine gradient vector, the gradient is re-
placed by the negative sum of all the correct gradients,
scaled by a large constant (1e10 in the experiments). We
call this attack Model Negation Attack.

• We generate the Byzantine machines in the following
way: we replace every training label y on these machines
with 9 − y, e.g., 1 is replaced with 8, 7 is replaced with
2, etc., and the Byzantine machines compute gradients
on these data. Denote this kind of attack by Label Shift.

• Named after Gradient Scale Attack, an attacker replaces
some of the gradient vectors with scaled by a constant
(1e10 in the experiments).

We instantiate m = 20 workers and one master node in
experiments, and train a convolutional neural network model
(LeNet [LeCun et al., 1998]) on the FashionMNIST dataset
[Xiao et al., 2017] using mini-batch stochastic gradient de-
scent to compare the test accuracies in those above four adver-
sarial settings. We compare accuracy and convergence with
Mean (find the average of all gradients), Krum[Blanchard et
al., 2017], and coordinate-wise median[Yin et al., 2018].

5.2 Experimental results
As is shown in Figure 3, we observe that even with a single
attacker performing a Gaussian Attack or Model Negation At-
tack, using the Mean method directly is devastating (a0,a1).
Although the median-based method has high accuracy, the
convergence is very slow (b1,b3). Krum and our method
have good accuracy, but the effect of Krum will drop pre-
cipitously when the number of Byzantine worker machines is

large (α = 50%,c3). In contrast, we can see that our algo-
rithm has the same convergence as the average method with-
out an attack (α = 0). When the α = 50%, the model still
achieves high accuracy. We also include the full test accuracy
comparison table in Table 1.

In conclusion, the distributed gradient descent algorithm
suffers from severe performance loss in adversarial settings.
Moreover, show our algorithm can indeed defend against
Byzantine failures. Compared with the median-based and
Krum methods, our algorithm has excellent accuracy and
faster convergence for the four attacks.

6 Conclusion
In this paper, we study a new distributed stochastic optimiza-
tion algorithm in an adversarial setting with the purpose of
obtaining the optimal statistical results and computation ef-
ficiency simultaneously. Based on the honest-majority as-
sumption, we propose a new stochastic gradient descent al-
gorithm BrSGD. We show that the method can achieve an
order-optimal Õ

(
1√
n

+ 1√
nm

)
for strongly convex losses,

and the computation complexity of our algorithm is O(md).
Moreover, we conduct extensive experiments to show that our
method outperforms the state-of-the-art methods in terms of
effectiveness and convergence.

References
[Alistarh et al., 2018] Dan Alistarh, Zeyuan Allen-Zhu, and

Jerry Li. Byzantine stochastic gradient descent. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018.

[Allen-Zhu et al., 2021] Zeyuan Allen-Zhu, Faeze
Ebrahimianghazani, Jerry Li, and Dan Alistarh.
Byzantine-resilient non-convex stochastic gradient
descent. In International Conference on Learning
Representations, 2021.

[Aono et al., 2017] Yoshinori Aono, Takuya Hayashi, Li-
hua Wang, Shiho Moriai, et al. Privacy-preserving
deep learning via additively homomorphic encryption.
IEEE Transactions on Information Forensics and Security,
13(5):1333–1345, 2017.

[Blanchard et al., 2017] Peva Blanchard, El Mahdi
El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant

Figure 3: The results w.r.t. accuracy vary with the epochs under Byzantine attacks, where we set step-size η = 0.03 for the LeNet on
FashionMNIST. Curves correspond to losses, and columns correspond to different aggregation methods. Byzantine workers perform four
attacks with 10%, 25%, and 50% attackers, respectively. We set β = 1/2 for our algorithm.

gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
pages 118–128, 2017.

[Blum et al., 1973] Manuel Blum, Robert W. Floyd,
Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. J. Comput. Syst. Sci.,
7(4):448–461, 1973.

[Chen et al., 2017] Yudong Chen, Lili Su, and Jiaming Xu.
Distributed statistical machine learning in adversarial set-
tings: Byzantine gradient descent. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 1(2):1–25, 2017.

[Chen et al., 2018] Lingjiao Chen, Hongyi Wang, Zachary
Charles, and Dimitris Papailiopoulos. Draco: Byzantine-
resilient distributed training via redundant gradients. In In-

ternational Conference on Machine Learning, pages 903–
912. PMLR, 2018.

[Cohen et al., 2016] Michael B Cohen, Yin Tat Lee, Gary
Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing,
pages 9–21, 2016.

[Feng et al., 2014] Jiashi Feng, Huan Xu, and Shie Man-
nor. Distributed Robust Learning. arXiv e-prints, page
arXiv:1409.5937, September 2014.

[Kairouz and McMahan, 2021] Peter Kairouz and H. Bren-
dan McMahan. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning,
14(1):–, 2021.

[Konečnỳ et al., 2015] Jakub Konečnỳ, Brendan McMahan,
and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

[Lamport et al., 1982] Leslie Lamport, Robert Shostak, and
Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Artificial Intelligence and
Statistics, pages 1273–1282. PMLR, 2017.

[Polyak and Juditsky, 1992] Boris T Polyak and Anatoli B
Juditsky. Acceleration of stochastic approximation by
averaging. SIAM journal on control and optimization,
30(4):838–855, 1992.

[Su and Vaidya, 2016] Lili Su and Nitin H Vaidya. Fault-
tolerant multi-agent optimization: optimal iterative dis-
tributed algorithms. In Proceedings of the 2016 ACM sym-
posium on principles of distributed computing, pages 425–
434, 2016.

[Su and Vaidya, 2019] Lili Su and Nitin H Vaidya. Defend-
ing non-bayesian learning against adversarial attacks. Dis-
tributed Computing, 32(4):277–289, 2019.

[Su and Xu, 2019] Lili Su and Jiaming Xu. Securing dis-
tributed gradient descent in high dimensional statistical
learning. Proc. ACM Meas. Anal. Comput. Syst., 3(1),
March 2019.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland
Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. arXiv e-
prints, page arXiv:1708.07747, August 2017.

[Xie et al., 2018] Cong Xie, Oluwasanmi Koyejo, and In-
dranil Gupta. Generalized Byzantine-tolerant SGD. arXiv
e-prints, page arXiv:1802.10116, February 2018.

[Yin et al., 2018] Dong Yin, Yudong Chen, Ramchandran
Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Interna-
tional Conference on Machine Learning, pages 5650–
5659. PMLR, 2018.

[Zhao et al., 2020] B. Zhao, Konda Reddy Mopuri, and
Hakan Bilen. Idlg: Improved deep leakage from gradients.
ArXiv, abs/2001.02610, 2020.

	Introduction
	Related Work
	Preliminaries
	Our Method
	BrSGD Algorithm
	Convergence Analysis
	Strongly Convex Losses

	Experiments
	Experimental settings
	Experimental results

	Conclusion

