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Abstract
Federated learning is vulnerable to various attacks,
such as model poisoning and backdoor attacks,
even if some existing defense strategies are used.
To address this challenge, we propose an attack-
adaptive aggregation strategy to defend against var-
ious attacks for robust federated learning. The pro-
posed approach is based on training a neural net-
work with an attention mechanism that learns the
vulnerability of federated learning models from a
set of plausible attacks. To the best of our knowl-
edge, our aggregation strategy is the first one that
can be adapted to defend against various attacks in
a data-driven fashion. Our approach has achieved
competitive performance in defending model poi-
soning and backdoor attacks in federated learning
tasks on image and text datasets.

1 Introduction
Federated learning allows multiple clients to collectively train
a neural network without directly sharing their own private
data [McMahan et al., 2017; Smith et al., 2017]. The feder-
ated learning framework has been proposed for diverse appli-
cations such as mobile applications, healthcare, and financial
assessment [Yang et al., 2019]. Despite the large potential
of federated learning in real-life applications, it is vulnera-
ble to numerous attacks, including data poisoning and model
poisoning [Blanchard et al., 2017; Bagdasaryan et al., 2020;
Xie et al., 2019a]. Can we design an attack-adaptive defense
strategy for robust federated learning?

In federated learning,the attackers may control a fraction
of clients and manipulate the local data and the model up-
dates to inject a backdoor or to degrade the global model’s
performance. For example, with the backdoor attack [Bag-
dasaryan et al., 2020], the attacker can locally assign a ‘trash’
label to the images of the automobiles manufactured by a cer-
tain brand and contaminate the global model. Therefore, it is
important to defend the attacks for robust federated learning
training.

From the server’s perspective, the only clue for defending
the adversarial attacks is the model updates submitted from
the clients, in contrast to the attackers’ large flexibility in
designing attacks. Also, the heterogeneous data distribution

(non-identically distributed data) in federated learning make
the problem more challenging. Hence, the key of the defense
is on designing a robust aggregation strategy for the model
updates. In an aggregation strategy, we treat the model up-
date as a vector, and we want to discard the corrupted update
vectors from the attackers while keeping only the genuine up-
date vectors from the benign clients.

Several aggregation rules, instead of FedAvg [McMahan et
al., 2017], have been proposed for defending the adversarial
attacks. Classical robust estimators, such as Coordinate-wise
median [Yin et al., 2018; Chen et al., 2020] and Geometric
median (implemented as RFA in [Pillutla et al., 2019]) have
been proposed but their performance degraded due to the het-
erogeneous data distribution in federated learning. Residual-
based reweighing [Fu et al., 2019] extends the classical robust
regression to the federated learning setting, but it has a low
breakdown point. On the other hand, several similarity-based
aggregation rules have been proposed. FoolsGold [Fung et
al., 2020] asserts the similarity of attackers, Krum and its
variants [Blanchard et al., 2017; Mhamdi et al., 2018] as-
sert the similarity of the benign clients (in terms of Euclidean
distance), clustering-based approaches [Sattler et al., 2020;
Muñoz-González et al., 2019] assert both with cosine simi-
larity. Nevertheless, these similarity-based defenses can be
bypassed by projecting the corrupted update vectors to the
neighborhood of the genuine update vectors [Baruch et al.,
2019; Bagdasaryan et al., 2020]. Recent works try to un-
cover more properties of the attacker. WeakDP [Sun et al.,
2019] tries to cancel the effect of the attacker by clipping and
adding noise to the update vectors. However, the optimal size
of noise is not well studied. In [Li et al., 2020], their ap-
proach detects attackers by learning a variational autoencoder
on randomly sampled coordinates of the unbiased model up-
dates obtained in the centralized training setting. However,
the optimal latent representation of the model updates is not
well studied. Apart from their weakness, the former defense
strategies may fail to detect edge-case backdoor [Wang et al.,
2020], where a very small region of the model updates are
altered. It indicated the need of a tailor-made defense for
challenging attacks.

In this work, we propose the first attack-adaptive aggre-
gation mechanism for robust federated learning that learns
to detect possible corrupted update vectors from challenging
attacks. Our approach learns a low dimensional representa-



tion of the update vectors that allows detection of possible
attacks. Specifically, we train an attention [Vaswani et al.,
2017] based neural network to explore the vulnerable regions
of the model with respect to various attacks. We feed the up-
date vectors to the attention module to obtain the alignment
scores between the latent representations and reweigh the up-
date vectors accordingly. We simulate the federated learning
tasks under different attacks with the test set in the server
and collect the update vectors to train our model in a self-
supervised fashion. We show the approximation capacity of
our neural network on similarity measures.

We compare our approach with existing aggregation rules
on federated learning tasks: MNIST [LeCun et al., 1998]
classification, CIFAR-10 [Krizhevsky et al., 2009] classifi-
cation, Tiny-ImageNet classification, and IMDb [Maas et al.,
2011] sentiment analysis. Our approach outperforms prior
work in defending model poisoning and backdoor attacks.
Our approach can also generalize the defense to different
datasets, numbers of clients, and attack parameters.

2 Related work
2.1 Attacks on federated learning.
Adversarial attacks can attack either the data or the model.
[Blanchard et al., 2017] suggested the omniscient attack,
which multiplies the update vector by a negative constant,
can reverse the direction of gradient descent and degrade the
model performance. [Fung et al., 2020] suggested that the
label flipping attack, which changes the label of a certain
class, can already be an effective attack if there are no de-
fenses. [Bagdasaryan et al., 2020] showed that the back-
door attack , which injects a certain pattern to the data and
alters the label to the desired target, can mislead the global
model while not affecting the standard accuracy. [Xie et
al., 2019a] proposed the distributed backdoor attack, which
embeds similar but different patterns to the data, to bypass
similarity-based defenses. Some works [Baruch et al., 2019;
Bagdasaryan et al., 2020] show that certain defenses can be
bypassed by projecting the corrupted update vectors to the
neighborhood of the genuine ones. In our work, we will show
the potential of a data-driven and attack-adaptive aggregation
strategy in defending adversarial attacks.

2.2 Robust federated learning.
The defense on federated learning can be categorized in terms
of robustness, privacy, and security. In terms of robustness,
several approaches defend adversarial attacks by designing
aggregation rules as introduced in Section 1. There are de-
fenses relating to other aspects of federated learning. [Sun et
al., 2019] suggested that adding the differential privacy can
improve robustness against certain attacks. [Pillutla et al.,
2019] proposed RFA, a secure implementation of the Geo-
metric median aggregation rule. On the other hand, some
approaches sacrifice certain level of privacy for robustness.
Zeno [Xie et al., 2019b] audits the local models’ accuracy on
a test set in the server. [Wang et al., 2020] compares the up-
date vectors with the unbiased model updates trained on the
test set. In our work, we will focus on robustness, and we

assume that the server has access to the update vectors and a
test set that is disjoint from the local data.

3 Method
3.1 Formulation
Federated learning. In federated learning, the server dis-
tributes a global model θglobal to each of the n clients. Then
each client i trains its local model θ(i)client with its own data
and sends the update vector

xi = θ
(i)
client − θglobal

back to the server. The server aggregates the set of update
vectors {xi} by the aggregation strategy g({xi}) and updates
the global model as

θglobal ← θglobal + g({xi}).

The new global model is then distributed to the clients for the
next round of training.
Robust aggregation strategy. Federated learning can be
vulnerable to adversarial attacks. The attackers can attack
their local data or the update vectors directly. One the other
hand, the server knows only the clients’ update vectors but
not their local training data or even the number of samples
trained locally. Hence, a robust aggregation strategy is key to
defend the attacks. Let Dbenign to be a set of genuine update
vectors from benign clients and Dattack to be a set of the cor-
rupted update vectors from attackers. We denote the mean of
only the genuine update vectors as the robust mean

µrobust =

n∑
i=1

1(xi∈Dbenign)∑n
j=1 1(xj∈Dbenign)

xi, (1)

where 1(condition) is the indicator function which evaluates
to 1 if the condition is true and 0 otherwise. A robust ag-
gregation strategy g(·) aims to approximate the robust mean
µrobust, i.e. solving the minimization

argmin
g
‖g ({xi})− µrobust‖ . (2)

The difficulty of designing a robust aggregation strategy is
that the attackers can evolve their attacks to bypass the current
defense. Hence we are interested in an aggregation strategy
that can readily be adapted to defend the challenging attacks.
In Section 3.2, we will propose a data-driven framework for
attack-adaptive aggregation.

3.2 Attack-adaptive aggregation
This work provides a self-supervised way to detect attacks
when aggregating update vectors in federated learning. We
collect empirical data from federated learning tasks for train-
ing a data-driven model that detects corrupted update vectors.
Our data-driven model is attack-adaptive because it can iden-
tify the vulnerable regions of the update vector with respect
to different attacks. We simulate the federated learning tasks
under different attack scenarios on the test set in the server.
We collect the update vectors and their labels (corrupted or
genuine). The data-driven model can then be trained with the



update vectors as input and a loss function that encourages
the prediction to agree with the label. With such a data-driven
model, we can defend against the attacks missed out by the
previous methods and refine our defense readily against new
attacks. We may update our defense model incrementally and
serve the new defense model as a ‘security patch’. From the
clients’ perspective, they could be informed of the anomaly
in their local data or model, as well as which type of anomaly
they are suspected of. The clients can then inspect the unin-
tended contamination in their data accordingly.

To obtain such a data-driven model, we may parameter-
ize the indicator function 1(xi∈Dbenign) in Equation 1 by a
neural network and retrain the neural network upon new at-
tacks. However, the neural network would not work un-
less it can take arbitrary number of update vectors and ar-
bitrary permutation of the clients since the order of the ar-
rival of the update vectors is not fixed. Moreover, it should
have the capacity to incorporate existing robust estimators,
such as the Coordinate-wise median [Yin et al., 2018], as
prior knowledge. Hence we may parameterize instead the
p(xi ∈ Dbenign|qt), which is the probability of xi being a
genuine update vector from a benign client given a robust es-
timate qt. Then we may get the next estimate by reweighing
the update vector xi with the probability. Here we define q to
be our estimator of the robust mean µrobust. We can obtain
the estimator by the iteration:

q0 = med({xi}),

qt+1 =

n∑
i=1

p(xi ∈ Dbenign|qt)∑n
j=1 p(xj ∈ Dbenign|qt)

xi,
(3)

where med({xi}) is a function taking median coordinate-
wisely on the update vectors {xi}. The med({xi}) serves
as an initial guess and could be replaced with other robust es-
timators or simply the mean. In the iteration, the update vec-
tor xi is reweighed with the probability p(xi ∈ Dbenign|qt)
which depends on xi and qt. Such form of reweighing is very
similar to the attention mechanism in neural network.
Attention Our model is described in Algorithm 1. Our
model consists of multiple passes of an attention module. The
update vectors’ weights are updated in each pass, and a new
estimate is obtained by reweighing the update vectors. The
overview of our method is summarized in Figure 1.

In our approach, we use the attention mechanism for the
parameterization of the likelihood p(xi ∈ Dbenign|qt). We
encode the robust estimate qt by the query encoder Q, and
the update vectors {xi} by the key encoder K and the value
encoder V . We fix the value encoder V to be the identity and
train the key encoder K and query encoder Q such that the
alignment score

si =
Q(qt) ·K(xi)

‖Q(qt)‖‖K(xi)‖
(4)

is closed to +1 for genuine update vector xi ∈ Dbenign and
−1 for corrupted update vector xi ∈ Dattack.

The original version of attention in [Vaswani et al., 2017]
does not fit our purpose of parameterizing the iteration in
Equation 3 since esi cannot cover the range from 0 to 1. In-
stead, we use the softmax with temperature [Guo et al., 2017]

Algorithm 1 Attack-adaptive aggregation with attention

Input: update vectors {xi}, hyperparameters c, ε, T
Output: robust estimate qT , the weights of the update vec-
tors {wi}
q0 = med({xi})
for t = 0 to T − 1 do

for i = 1 to n, in parallel do
si =

Q(qt)·K(xi)
‖Q(qt)‖‖K(xi)‖

wi = exp (csi)/
∑n
j=1 exp (csj)

wi = wi · 1(wi≥ε/n)
end for
qt+1 =

∑n
i=1 wixi

end for
return qT , {wi}

and the overall expression in one pass of the attention module
is

qt+1 =

∑n
i=1 e

csixi∑n
i=1 e

csi
=

∑n
i=1 (e

csi/ec)xi∑n
i=1 (e

csi/ec)
, (5)

where the scale factor c = 1/τ is the inverse of the tempera-
ture τ .

Here we can observe that the form in Equation 5 is very
similar to that in the Equation 3. The only difference is that
the probability term p(xi ∈ Dbenign|qt) in Equation 3 is re-
placed with ecsi/ec. The term ecsi/ec has a range very close
to [0, 1] for a large c. Also, it contains the information of the
update vectors xi and the last estimate qt. Therefore, we can
see that ecsi/ec is a suitable representation of the probability
term p(xi ∈ Dbenign|qt). In another perspective, the cor-
rupted update vectors are assigned a lower weight when we
have a larger c.

In our algorithm, we further add a truncation step with the
threshold ε/n after we compute the softmax values. It is done
to eliminate the effect of any corrupted update vectors with a
potentially large magnitude. The truncation step

wi ← wi · 1(wi≥ε/n) (6)

zeroes out the attention weight if it is smaller than the thresh-
old ε/n. It is necessary because the exponent e−c can never
reach 0, and it can be problematic if we have a corrupted up-
date vector with an extremely large magnitude, for example,
e2c.

4 Implementation
4.1 Dimensionality reduction
One difficulty of training our model is that the dimension of
the update vector is very large compared to the number of
clients n. The model may overfit to the irrelevant regions. In
fact, since we are concerning the relative deviation of the up-
date vectors, we can operate on the low-rank approximation
of the set of update vectors. By performing PCA and assum-
ing the update vectors are already centered (since the update
vectors represent changes), we get a low dimension represen-
tation of the update vectors. Moreover, the vulnerable regions
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Figure 1: The overview of our approach for estimating the robust mean µrobust of the update vectors.

of the model in a federated learning task may reside in mul-
tiple layers. Hence, we perform PCA for each layer instead
of performing it once for the whole update vectors. We keep
all of the n principal components in each layer and the layer-
wise PCA corresponds to a rotation in each layer.

After dimensionality reduction, we apply our model in Al-
gorithm 1 to estimate the robust mean of the projected update
vectors and their corresponding weights. The robust mean of
the original update vectors can then be estimated by reweigh-
ing with the same weights.

A limitation of using PCA directly is that the attacker may
hide its attack in multiple directions. For instance, the at-
tacker in [Bhagoji et al., 2019] adds a l2-regularization on the
distance to the previous benign updates. However, such l2-
regularized attack may not be stealthy in our case, where PCA
is performed on each layer, and deviation at any layer may be
flagged by our defense. Suppose the tolerable l2-deviation is
at most ε at each of the L layers and, as a result, the total
deviation is at most

√
Lε. In this case, hiding the attack in

a l2-ball of size
√
Lε is sufficient to bypass the plain PCA,

but a size of ε is required to bypass our layer-wise version.
Hence, the attacker needs to strengthen the l2-regularization
by a factor

√
L. Moreover, our attention module further sug-

gests the vulnerable regions of the projected update vector. To
hide the attack, the attacker needs to regularize further the co-
sine distance cos(v(xbenign),v(xattack)), where v is a pro-
jection to the vulnerable regions and v may not be known to
the attacker. Our approach restricts the forgery at each layer
and the vulnerable regions of the update vector. Hence, the
attacker gets a worse trade-off between the stealthiness and
effectiveness of its attack.

4.2 Training

We only need to consider the query encoder Q and the key
encoder K to train our model. In our work, both encoders are
2-layer multi-layer perceptrons with ReLU activations. We
perform the forward pass as described in Algorithm 1. We
obtain the predicted estimate and compare it with the ground
truth robust mean µrobust described in Equation 1. We use
the L1 loss and the Adam optimizer for the backpropagation.
We train our model for 500 epochs with T = 5. For each
attack, we run the federated learning tasks three times on the
test set in the server to collect update vectors. Update vectors
from two of the runs are used for training our model. The
remaining run is served for validation.

4.3 Hyperparameter search
In our model, there are two major hyperparameters: c and
ε. We perform a hyperparameter sweep to find a combi-
nation that yields a high validation accuracy on predicting
attackers. We found that a set of moderate values around
c = 10, ε = 0.5 is a good choice, and we use these values
for our implementation. For the other hyperparameters, we
found that they are also not sensitive. For instance, T = 1 is
sufficient to reject the attackers, further passes to the attention
module make the weights of the benign clients more uniform.

5 Experiments
5.1 Experimental setup
We compare our aggregation strategy with 6 prior works: Fe-
dAvg [McMahan et al., 2017], Coordinate-wise median [Yin
et al., 2018], RFA [Pillutla et al., 2019], Krum [Blanchard et
al., 2017], FoolsGold [Fung et al., 2020], and Residual-based
reweighing [Fu et al., 2019]. We evaluate the performance
of the aggregation strategies on four federated learning tasks
under different attacks. To simulate a heterogeneous data dis-
tribution, we divide each dataset into disjoint partitions with
the Dirichlet distribution with hyperparameter 0.9 as in [Bag-
dasaryan et al., 2020]. Different from [Hsu et al., 2019], we
do not require the clients to have the same number of sam-
ples when generating the partitions. In each round, the clients
train their local models on their data for one epoch. Then all
clients, including possible attackers, are selected for the ag-
gregation. Some prior works require hyperparameters. For
Krum, we set m = bn2 c − 2. For FoolsGold, we set κ = 1.
For Residual-based reweighing, we set λ = 2, δ = 0.1.

5.2 Tasks
MNIST classification In this task, we use a LeNet [LeCun
et al., 1998] model with 10 clients. We evaluate the feder-
ated learning tasks under three types of attacks. (No attack)
It simulates federated learning on heterogeneous data. (Om-
niscient) The attackers negate their update vectors by multi-
plying them by −1. (Backdoor) The attackers embed a pixel
pattern to 50% of their image samples and alter their label to
digit ‘2’. We run the task for 30 communication rounds.
CIFAR-10 classification In this task, we use a ResNet-18
[He et al., 2016] model with 10 clients. We evaluate the fed-
erated learning tasks under three types of attacks: no attack,
omniscient, backdoor. We run the task for 30 communication
rounds.



Tiny-ImageNet classification We use the same model and
the same attack scenarios as in CIFAR-10 classification. We
run the task for 45 communication rounds.
IMDb sentiment analysis In this task, we use a Gated
recurrent unit [Cho et al., 2014] with FastText embedding
[Joulin et al., 2017] with 10 clients. We evaluate the fed-
erated learning tasks under three types of attacks. (No attack)
It simulates the federated learning on heterogeneous data dis-
tribution. (Label flipping) The attackers swap the label of
class ‘Positive’ and class ‘Negative’ in their local data. (Om-
niscient) The attackers negate their update vectors. We run
the task for 10 communication rounds.

5.3 Metrics
We evaluate the performance of the aggregation strategies on
the standard accuracy and the attack success rate. The accu-
racy (ACC) refers to the global model’s standard accuracy on
the test set. The attack success rate (ASR) is an evaluation of
federated learning training against backdoor attacks. It mea-
sures how many backdoor-injected samples are classified as
the target label of the attacker. If a backdoor-attacked sample
is predicted to be the target label, we consider the attack on
this sample is successful.

Our metrics are defined by

ACC =
# correct predictions

# samples
,

ASR =
# successfully attacked samples

# attacked samples
.

(7)

The higher the accuracy, the better the aggregation strategy
defends the attacks from interfering with the federated learn-
ing task. The lower the attack success rate, the better the
aggregation strategy defends the backdoor attacks. An ideal
aggregation strategy can achieve 100% accuracy and has the
attack success rate as low as the fraction of attacked samples
from the target class. We report the accuracy and the attack
success rate in the final communication round. We take the
average over three runs.

5.4 Evaluation
Visual tasks The results of the MNIST, CIFAR, Tiny-
ImageNet tasks are summarized in Figure 2. The detailed
results for backdoor attack can be found in the Appendix B.3.
Under omniscient attack, most of the defense strategies failed
when there were more attackers. It could be attributed to the
curse of dimensionality, where negation of the vector does
not alter the pairwise similarity much. In contrast, our ap-
proach was more resilient in all three visual tasks across dif-
ferent numbers of attackers since our approach operated on
the projected update vectors where the negation became obvi-
ous. However, when there were 4 attackers in the most com-
plicated Tiny-ImageNet task, the convergence was not good,
even our approach outperformed others. The reason could be
that the number of benign clients was too low to learn an ef-
fective global model in this complicated task. Nevertheless,
our approach performed better than other approaches and had
a good convergence when there was a moderate number of
attackers.
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Figure 2: The performance of aggregation strategies in the MNIST
(top), CIFAR(middle), ImageNet(bottom) classification task. The
‘no attack’ scenario is combined with the omniscient attack in the
left plots.

Regarding the backdoor attack, our approach had the high-
est ACC*(1-ASR) score in all visual tasks. It indicated
that our approach had both a high global model accuracy
and a low attack success rate. In the simplest MNIST task
with abundant data, the backdoor was ’forgotten’ when the
global model became more mature over the communication
rounds. Nevertheless, our approach removed the effect of the
backdoor more effectively. In the CIFAR-10 and the Tiny-
ImageNet task, the backdoor was not ’forgotten’ since the
ResNet-18 had more capacity to learn both the main task and
the backdoor. Most approaches failed when there were 4 at-
tackers and have > 90% ASR. In these tasks, the benign up-
date vectors had a larger variance, and the corrupted update
vectors from the backdoor attackers were relatively similar. It
explained the higher resilience of FoolsGold when there were
more attackers. Nevertheless, FoolsGold still had a > 40%
ASR while our approach had a < 15% ASR when there were
4 attackers. It indicated that our approach could better iden-
tify the vulnerable regions of the update vectors. On the other
hand, Krum learned the backdoor in CIFAR-10 task and did
not learn both the backdoor and the main task well in the
Tiny-ImageNet task since it aggregated only a small fraction
of clients. In contrast, our approach aggregated most of the
benign clients and achieved a high global accuracy and a low
attack sucess rate.
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Figure 3: The performance of aggregation strategies in the IMDb
sentiment analysis task. We use the same legend in Figure 2. Our
approach is in pink.

Attack Sucess Rate
# of attackers 1 2 3 4 Average

FedAvg 57.37 81.87 86.03 91.02 79.07
MLP 54.35 79.92 86.25 89.60 77.53
w/o c 15.21 57.42 84.12 88.90 61.41
w/o ε 9.78 10.39 11.19 32.30 15.92

Ours 6.78 5.64 6.29 13.03 7.94

Table 1: Ablation study on the effect of removing attention (MLP),
scaled softmax (w/o c), or the truncation step (w/o ε).

Textual task The Figure 3 shows the results on the IMDb
sentiment analsysis task. most approaches degraded quickly
with the number of attackers. Some of them were even worse
than FedAvg. Seemingly, acquiring a benign client was more
important than discarding an attacker in this task. Neverthe-
less, our approach managed to maintain a relatively high ac-
curacy against the attacks. When there were 4 omniscient
attackers, our approach was the only one that worked.

5.5 Ablation study
We performed an ablation study on various components of
our model. We evaluated the effectiveness of the defenses on
the CIFAR-10 task under the backdoor attack. The results
are summarized in Table 1. The scale factor c in our softmax
played an important role in defending attacks. The thresh-
old factor ε controlled the trade-offs between robustness and
convergence. Without attention, a plain multi-layer percep-
tron overfitted a certain permutation of the clients and could
not distinguish the attackers when they arrived in a different
order. Our attention-based model avoided this problem since
it is permutation invariant.

5.6 Transferability of defense
As a practical data-driven aggregation mechanism, it is im-
portant to know how far our defense can be generalized to
unseen scenarios. We study the transferability of our defense.
Specifically, we trained our model on the CIFAR-10 task un-
der backdoor attacks with a fixed backdoor pattern. Then we
evaluated the defenses’ performance under different scenar-
ios: 1.) classification tasks on CIFAR-100 instead of CIFAR-
10, 2.) 100 clients instead of 10 clients, and 3.) different
backdoor patterns. The results is shown in Figure 4. Our ap-
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Figure 4: Performance of defense against backdoor attack across
different scenarios. (Left) Transfering the defense to CIFAR-100
task. (Right) Transfering the defense on 100 clients in CIFAR-10
task.
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Figure 5: Performance of defense against backdoor attack with dif-
ferent backdoor patterns. We varied the values of the parameters
of the backdoor patterns and reported the average result w.r.t. each
parameter.

proach generalized the defense better when there was a lower
fraction of attackers. On the other hand, Figure 5 showed that
our approach could generalize the defense to unseen back-
door patterns. In summary, our defense can be generalized
to unseen attack scenarios when there are a lower fraction of
attackers. It meets our expectations since our approach learns
the similarity measure based on the attacks’ traits of a set of
plausible attack scenarios. With a new attack scenario, it may
share part of the vulnerable regions and the deviation in these
regions remains detectable when there are a lower fraction of
attackers. On the other hand, our model is less confident to
accuse a client when there are a high fraction of attackers. To
address the issue, we need to provide additional supervision
on the backdoor patterns that we want to defend.

6 Conclusion
In this work, we presented a novel approach for robust fed-
erated learning using a deep neural network as the aggrega-
tion function. To the best of our knowledge, our aggregation
strategy is the first one that is attack-adaptive and learns to
defend against various attacks in a data-driven fashion. The
attention mechanism in our designed network is effective in
propagating contextual information to detect malicious at-
tackers. We further demonstrate the transferability of our de-
fense. We hope our attack-adaptive aggregation paradigm can
inspire more work in this direction. Our source code is pub-
licly available on https://github.com/cpwan/Attack-Adaptive-
Aggregation.

https://github.com/cpwan/Attack-Adaptive-Aggregation
https://github.com/cpwan/Attack-Adaptive-Aggregation
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raoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in byzantium. ICML, 2018.
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A Illustrations of data and model
A.1 Generating heterogeneous data distribution
In our experiments, we generated heterogeneous data distri-
bution with the Dirichlet distribution. An instance of the
generated data distribution is shown in Figure 6. We used
the Dirichlet distribution with the concentration parameter
α = (0.9, 0.9, . . . , 0.9) to generate the fraction of samples to
be drawn for each client. We performed the partition for each
label and assigned the drawn samples to the clients. It was
different from some previous works, which forced the clients
to have the same number of data and drawn the data sam-
ples with replacement. In our data distribution generation, the
data were divided into disjoint partitions with varying sizes.
In this way, the federated learning experiments could be run
on different data distributions. It allowed us to collect up-
date vectors from diverse federated learning settings, which
provided higher-quality data for training our model.
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Figure 6: An illustration of the data distribution across clients. Each
color corresponds to a class. (Left) 10 clients. (Right) 100 clients.
The clients are sorted solely for visualization purposes. The clients
appear in random order when we run the experiments. We used a
batch size of 128 in the local training. Hence the total number of
samples in each client is a multiple of 128.

A.2 Demonstrations on synthetic data
We will demonstrate how our model works for robust estima-
tion on synthetic data. Each instance of the synthetic data is a
set of 10 samples drawn from a 30-dimensional multivariate
normal distribution. The last one-third of features consist of
noise, while the outliers had their first one-third of features
modified. We generated a training set of size 2048. Figure
7(a) illustrated an instance of the synthetic data in the valida-
tion set, in which the sample 0, 1, 9 are the outliers. Figure
7(b) showed no apparent distinctions between inliers and out-
liers under PCA. We trained our model on the 2048 instances
of synthetic data. The results in Figure 7(c) illustrated that
our model successfully distinguished the outliers.

Apart from estimating each individual set of samples, we
also estimate the feature importance by measuring the mag-
nitude of the weight W in the first layer of our key encoder
for the i-th feature:

imptz(i) =

h∑
j=0

|Wi,j | , (8)

where h is the dimension of the hidden layer. Figure 8 shows
that our model indeed captured the features that distinguish
outliers from inliers. We may employ similar visualization to
explore which part of the model is more vulnerable to adver-
sarial attacks in federated learning.

(a) An instance of synthetic data
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Figure 7: Illustration of outlier detection on synthetic data. The
samples 0, 1, 9 are the outliers.

Figure 8: The feature importance on the 30 features of the synthetic
data, estimated from our model (the darker, the more important).



B More experiments
B.1 Capturing the traits of attacks
We may analyze the feature importance on the attack-
adaptive aggregation model we trained similarly as in section
A.2 . We will use the same definition from Equation 8. In
this section, we will analyze our attack-adaptive aggregation
model. The model were trained to defend against backdoor
attack in the CIFAR-10 tasks with 10 clients. We summed up
the feature importance for each layer (with weight and bias
separately counted). The most prominent layers are

• layer3.0.downsample.1.weight,
• layer3.0.downsample.0.weight,
• layer4.1.bn2.bias,
• layer4.0.downsample.1.weight

The result is reasonable. Since the backdoor attacker at-
tempts to recognize the backdoor pattern, the attacker’s local
model needs to extract features in its residual blocks. Al-
though the receptive field is sufficient to cover the pattern
(with a shape of 3 by 7) in the earlier blocks, the later blocks
seem responsible for learning the pattern. Besides, it seems
that the downsampling layers are more sensitive to the back-
door pattern. It may be due to that the attacker favors some
channels during downsampling. Indeed, when we look at the
layer3.0.downsample.0.weight layer of the update
vectors in Figure 9, the two horizontal strips of the attack-
ers indicate that the corresponding two channels are given a
higher weight during downsampling.

Based on the literature on neural network architecture, we
may already have some ideas on the neural network’s vulner-
ability. However, it is not immediately trivial for one to de-
cide which layers may contain the attack’s traits. On the other
hand, our attack-adaptive aggregation model can readily dis-
cover the attack’s traits and offer a defense at the same time.
It is illustrated in Figure 9 that the traits of the attack we found
indeed affected the training. For FedAvg, the update vectors
of the benign clients were progressively contaminated by the
two horizontal strips. It implied that the attackers had suc-
cessfully led the gradient direction to a malicious objective.
In contrast, with our attack-adaptive aggregation, the benign
clients could deliver uncontaminated update vectors and con-
tinued the global training with an appropriate gradient direc-
tion. The result confirms the ability of our attack-adaptive
aggregation to identify the traits of attack.

In summary, our approach serves as a defense strategy and
provides a way to analyze the adversarial attack’s traits. In
contrast, some previous approaches did not consider the con-
tributions of different regions of the update vector. In this
regard, our approach is an interpretable defense strategy.

B.2 Transferability of defense across backdoor
patterns

In the main text, we summarized the average results of trans-
ferring the defense to different backdoor patterns. In this sec-
tion, we will give the results in detail. During the training
of our attack-adaptive aggregation, we used the pixel pattern
shown in Figure 10. The backdoor pattern occupies a 3 (pix-
els) by 7 (pixels) region in the top-left corner of the image.

(a) FedAvg (b) Ours

Figure 9: The layer3.0.downsample.0.weight layer in the
(0,2,4,6,8,10)-th communication round in the CIFAR-10 task under
backdoor attack with FedAvg (Left) and our attack-adaptive aggre-
gation (Right). The columns correspond to the clients. The blue
color means positive, the red color means negative. The darker is
the color, the larger is the magnetuide. The model parameters are
reshaped for illustration purposes. For the task with FedAvg, the
client 0, 4, 5, 9 is the attacker. For the task with our attack-adaptive
aggregation, the client 2, 3, 7, 8 is the attacker.

It consists of four 1 by 3 horizontal bars arranged in two
columns, with a 1-pixel gap. The backdoor attacker modi-
fied the red channel of these 12 pixels to the largest intensity.
In each experiment on transferability, we letted the attackers
to use a backdoor pattern with different shifty, shiftx, and gap
parameters. The shifty and shiftx parameters control the shift
of the pattern along and vertical and horizontal direction re-
spectively. The gap parameter controls how wide the gap is
between the bars in addition to the default 1-pixel gap. In the
evaluation, we varied only one parameter and kept the other
parameter fixed. In additional, for experiments on shifty and
shiftx, we set gap = 1 to introduce two-pixels gaps between
the bars in the backdoor pattern (instead of only one). It was
done to ensure that the new backdoor pattern is different from
the one we used in training.

The effects of shifty, shiftx, gap parameters are shown in
Figure 11. For the shifty, shiftx parameters, the backdoor at-
tack was generally weaker when the backdoor pattern was
further away from the top-left corner. It agrees to the pre-
vious research that the local model may ‘forget’ the back-
door pattern in the middle of the image. On the other hand,
it is shown that our attack-adaptive aggregation was able to
generalize the defense across different backdoor pattern pa-
rameters when there were 1 to 2 attackers. Nevertheless, our
attack-adaptive aggregation did not generalize well enough to
defend 3 to 4 attackers. Since the attack’s traits in the update
vectors could be different when a different backdoor pattern
is used, our attack-adaptive aggregation may treat some of
the new traits of the different attack as a naturally occurred
variance. For instance, if the new backdoor pattern is on the
top-right corner instead, then the backdoor attack may leave
a different trait in the update vector. If there is only one
attacker, such a trait may still be noticeable by our model.



Figure 10: Backdoor patterns. (Left) The red pixel pattern is the
backdoor pattern used in training our attack-adaptive aggregation.
(Right) From top to bottom, each row demonstrates how the back-
door pattern looks like in different shifty , shiftx, and gap. The shifty
and shiftx parameters control the shift of the pattern along and verti-
cal and horizontal direction respectively. The gap parameter controls
how many gap to be injected between the bars in additional to the
default 1 pixel gap.

However, if there are multiple attackers, our model cannot
decide whether such a trait results from an attack or images
containing an object in the top-right corner. As a result, our
attack-adaptive aggregation could not be confident enough to
accuse the attackers. To address the issue, we need to train
a new attack-adaptive aggregation model with update vectors
collected under different attack parameters.
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Figure 11: Effects of backdoor patterns on the transferability of our
attack-adaptive aggregation. From left to right, the plots show the
performance of the defense strategies under 1 to 4 attackers. ACC
stands for the standard accuracy (higher the better). ASR stands for
the attack success rate (lower the better).

B.3 Detailed results of the backdoor attacks
Table 2,3,4 show the detailed results of the visual tasks under
backdoor attacks described in Section 5.4.

B.4 Training with multiple attacks
We evaluated the effect of training our defense on multiple
types of attacks. We compared the performance of our de-
fense against the attacks when the defense was trained on
1.) only the backdoor attack scenarios, 2.) only the omni-
scient attack scenarios, or 3.) both the backdoor attack and
the omniscient attack scenarios. The results of our defenses
against backdoor attack is summarized in Table 5. Interest-
ingly, even we trained our defense only on the omniscient
attack scenarios but not the backdoor attack scenarios, the
defense can still defend the backdoor attack. This is reason-
able because the omniscient attack negates the update vector
and every coordinate in the update vector could be consid-
ered vulnerable under the omniscient attack. Therefore, our
attention module takes every coordinate of the update vec-
tor into account, including the coordinates involved with the
backdoor attack. So, the anomaly in these coordinates could
still be detected. On the other hand, when we train the de-
fense with the backdoor attack, our attention module learned
the vulnerable regions better and had a better defense when
there were more attackers. Similarly, we can defend the om-
niscient attack even we trained our defense only on the back-
door attack scenarios, as shown in Table 6. This is again due
to the overlapping vulnerable regions with respect to the two
attacks. When there were 4 attackers, our defense was again
stronger if we trained our defense on the same attack.

We observed that we can defend a different type of attack
if the attack shares the vulnerable region with the attack sce-
nario that we trained on. However, when we train our defense
on multiple attacks, our defense may not perform as good as
training alone on a single attack, especially in the cases of
higher fraction of attackers. It may due to that our attention
module learned a suboptimal vulnerable regions when multi-
ple attacks were involved in the training. When our defense
tries to increase the detection rate of an attack, it may also
raise the chance of false alarm in another attack scenario.
Therefore, our defense may become more conservative and
do not work as good when there are higher fraction of attack-
ers. Nevertheless, the performance of our defense trained on
multiple attacks was still competitive when compared with
other aggregation strategies.



Accuracy Attack Sucess Rate
# of attackers 1 2 3 4 Average 1 2 3 4 Average

FedAvg 97.09 96.76 96.43 96.02 96.58 10.67 11.37 13.73 38.84 18.65
Median 96.77 96.75 96.46 95.61 96.40 10.30 10.34 10.60 11.10 10.58
RFA 97.08 96.88 96.39 96.37 96.68 10.42 10.47 11.51 14.11 11.63
Krum 94.99 95.46 94.98 95.26 95.17 10.63 10.02 10.19 42.66 18.38
FoolsGold 97.23 96.47 96.85 96.25 96.70 10.55 10.78 10.84 22.34 13.63
Residual-based 97.39 97.09 96.34 95.55 96.59 10.21 10.40 11.48 14.14 11.56

Ours 97.40 96.90 96.83 96.79 96.98 10.06 9.89 9.98 10.05 10.00

Table 2: Performance on MNIST task under backdoor attack.

Accuracy Attack Sucess Rate
# of attackers 1 2 3 4 Average 1 2 3 4 Average

FedAvg 70.51 70.61 70.85 69.13 70.28 57.37 81.87 86.03 91.02 79.07
Median 64.31 66.60 65.39 64.82 65.28 40.33 73.96 87.13 90.19 72.90
RFA 71.03 70.42 70.10 69.42 70.24 62.17 84.83 88.07 90.28 81.34
Krum 58.31 60.76 57.23 58.71 58.75 9.78 36.34 71.94 98.64 54.18
FoolsGold 70.52 69.54 68.81 67.69 69.14 67.75 14.30 39.24 44.77 41.52
Residual-based 70.72 70.04 69.61 69.40 69.94 54.10 85.45 88.09 90.78 79.60

Ours 69.97 68.93 67.70 67.86 68.62 6.78 5.64 6.29 13.03 7.94

Table 3: Performance on CIFAR-10 task under backdoor attack.

Accuracy Attack Sucess Rate
# of attackers 1 2 3 4 Average 1 2 3 4 Average

FedAvg 62.79 53.43 41.56 32.75 47.63 57.50 71.21 84.45 91.60 76.19
Median 41.73 32.99 25.00 17.88 29.40 33.30 55.35 75.44 85.39 62.37
RFA 64.17 49.68 41.37 29.24 46.12 52.81 72.77 86.46 79.62 72.91
Krum 40.93 42.50 42.42 42.24 42.02 0.38 0.46 0.57 0.48 0.47
FoolsGold 16.02 70.03 67.82 60.91 53.70 93.73 17.30 22.18 24.28 39.37
Residual-based 63.91 49.96 40.50 31.64 46.50 44.67 65.83 87.64 95.10 73.31

Ours 77.06 75.54 60.18 59.24 68.01 0.45 0.53 0.67 5.80 1.86

Table 4: Performance on ImageNet task under backdoor attack. Note that Krum has a poor accuracy even it achieves the lowest attack success
rate. Our approach achieves both a low attack success rate and a high accuracy.

Accuracy Attack Sucess Rate
# of attackers 1 2 3 4 Average 1 2 3 4 Average

Backdoor (B) 69.97 68.93 67.70 67.86 68.62 6.78 5.64 6.29 13.03 7.94
Omniscient (O) 70.06 68.92 69.02 66.36 68.59 8.70 10.12 9.44 34.23 15.62
B+O 69.85 69.13 68.23 67.87 68.77 7.56 8.16 13.05 38.02 16.70

Table 5: Performance of our approach on CIFAR-10 task under backdoor attack when trained with different attack scenarios.

Accuracy
# of attackers 1 2 3 4 Average

Backdoor (B) 70.46 68.47 67.41 59.78 66.53
Omniscient (O) 70.79 67.97 68.14 66.59 68.87
B+O 70.85 68.46 66.69 44.73 62.68

Table 6: Performance of our approach on CIFAR-10 task under omniscient attack when trained with different attack scenarios.



C Theoretical Analysis
C.1 Universal approximation property
We use the attention module in our attack-adaptive aggre-
gation. The query encoder Q and the key encoder K in
the attention module are 2-layer multi-layer perceptrons with
ReLU activation. We will show in Theorem 1 that given large
enough hidden units and large enough latent space in the last
layer of Q and K, the dot product Q(·) · K(·) can approxi-
mate any similarity measure and the alignment score function
Q(·)·K(·)
‖Q(·)‖‖K(·)‖ is a projection of such a similarity measure to
[−1, 1].

Theorem 1. Let f1, f2 : [−M,M ]dj → [−M,M ]D
′

be con-
tinuous functions, h : [−M,M ]D

′ → R be a symmetric,
continuous positive definite kernel function, σ(·) be ReLU.
Then, for arbitrary ε′ > 0, by specifying sufficiently large
D,T ∈ N, there existA ∈ RD×T ,B ∈ RT×dj , c ∈ RT such
that ∣∣∣h (f1(x), f2 (x′))− 〈fψ1 (x), fψ2 (x′)

〉∣∣∣ < ε′

for all (x,x′) ∈ [−M,M ]d1+d2 where fψi (x) =
Aσ (Bx+ c) are two-layer neural networks with T hidden
units, D dimension output layer and σ(x) is element-wise
σ(·) function.

The Theorem 1 is a special case of the Theorem 5.1 in
[Okuno et al., 2018]. We apply their result for our theorem.
The theorem implies that the dot product of two neural net-
works can approximate any similarity measure. Suppose we
feed the robust mean to the query encoder Q and the sets of
update vectors to the key encoderK. In that case, the theorem
implies that the encoders have the approximation ability such
that the alignment score Q(·)·K(·)

‖Q(·)‖‖K(·)‖ is close to +1 for gen-
uine update vectors and is close to −1 for corrupted update
vectors.

C.2 Robust mean estimation as an optimization
problem

In each step t of our algorithm,

‖g ({xi})− µrobust‖ = ‖qt − µrobust‖

=

∥∥∥∥∥
n∑
i=1

tr

(
(ecsi/ec)∑n
k=1 (e

csk/ec)

)
xi −

n∑
i=1

1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

xi

∥∥∥∥∥
where tr(∗) is a truncation function that yields zero if ∗ <
ε/n

When training our model, we used the L1 loss and T =
5, as stated in Section 4.2. This is exactly minimizing
‖g ({xi})− µrobust‖ w.r.t. the minimizer si at the last
time step T = 5. Hence, the quality of si decides the qual-
ity of our algorithm for the minimization. In our algorithm,
si is the result of the dot product of the encoders. That is
why we need Theorem 1 to show that the minimizer si can be
sufficiently optimal.

C.3 Error bound of the robust mean estimation
Here, we attempt to give an error bound for estimating the ro-
bust mean with our attack-adaptive aggregation model. Sup-
pose µrobust ∈ Rk is the robust estimate. We want a similar-
ity measure h′(k, q) such that for q′ in the neighborhood of
µrobust, h′(xi, q′) = 1 for the genuine update vector xi and
h′(xj , q

′) = −1 for the corrupted update vector xj . In the
rest of this section, ‖ ∗ ‖ stands for the l1 norm.

We denote s(k, q) = K(k)·Q(q)
‖K(k)‖‖Q(q‖) for the attention score

between k and q. Theorem 1 suggests that we can train a neu-
ral network such that s(k, q) approximates h′(k, q). That is,
for qt−1 in δ-neighborhood of µrobust relative to the update
vectors where ‖qt−1−µrobust‖

maxl (‖xl‖) ≤ δ,

‖1− s(xi, qt−1)‖ < ε′ ∀xi ∈ Dbenign
‖ − 1− s(xj , qt−1)‖ < ε′ ∀xj ∈ Dattack.

(9)

for some small ε′ > 0. We will use this definition in Lemma
2.
Lemma 2. Suppose s(k, q) approximates h′(k, q) for qt−1 in
the δ-neighborhood of µrobust relative to the update vectors
with an error bounded by ε′. Then the next estimate qt in our
algorithm would have an error bounded by

max

(
ecε
′
− 1,

n

n−m
ecε
′
e−2c

)
max

l,wl≥ε/n
(‖xl‖), (10)

where c is the scale factor, ε is the threshold factor defined in
our algorithm, and wl is the attention score of update vector
xl.

Moreover, the error bound improves by a rate γ if

ε′ ≤ min

(
1

c
ln(γδ + 1), 2− 1

c
ln

(
γ−1δ−1 −m/n

1−m/n

))
= O(γδ).

(11)
Proof. Since the attention score is normalized, we have

s(xi, qt−1) > 1− ε′ ∀xi ∈ Dbenign
s(xj , qt−1) < −1 + ε′ ∀xj ∈ Dattack.

Suppose we have m attackers and n − m benign clients,
then

(n−m)ec(1−ε
′) +me−c <

∑
k

ecs(xk,qt−1)

< (n−m)ec +me−c(1−ε
′).

Hence, ∀xi ∈ Dbenign,

ec

(n−m)ec(1−ε′) +me−c
>

ecs(xi,qt−1)∑
k e

cs(xk,qt−1)

>
ec(1−ε

′)

(n−m)ec +me−c(1−ε′)
,

1

(n−m)e−cε′ +me−2c
>

ecs(xi,qt−1)∑
k e

cs(xk,qt−1)

>
e−cε

′

(n−m)e−cε′ +me−2c



and thus,

∥∥∥∥wi − 1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥
=

∥∥∥∥ ecs(xi,qt−1)∑
k e

cs(xk,qt−1)
−

1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥
=

∥∥∥∥ ecs(xi,qt−1)∑
k e

cs(xk,qt−1)
− 1

n−m

∥∥∥∥
≤

max (1− e−cε′ − m
n−me

−2c, e−2c)

(n−m)e−cε′ +me−2c

= max (
e2c − ec(2−ε′) − m

n−m
(n−m)ec(2−ε′) +m

,
1

(n−m)ec(2−ε′) +m
)

(12)

On the other hand, ∀xj ∈ Dattack,

ec(−1+ε
′)

(n−m)ec(1−ε′) +me−c
>

ecs(xj ,qt−1)∑
k e

cs(xk,qt−1)

>
ec(−1)

(n−m)ec +me−c(1−ε′)
,

ecε
′

(n−m)e2c +mecε′
>

ecs(xj ,qt−1)∑
k e

cs(xk,qt−1)

>
1

(n−m)e2c +mecε′

and thus,

∥∥∥∥wj − 1(xj∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥
=

∥∥∥∥ ecs(xj ,qt−1)∑
k e

cs(xk,qt−1)
−

1(xj∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥
=

∥∥∥∥ ecs(xij,qt−1)∑
k e

cs(xik,qt−1)
− 0

n−m

∥∥∥∥
≤ ecε

′

(n−m)e2c +mecε′

=
1

(n−m)ec(2−ε′) +m

(13)

Combining the results for the benign clients and the attack-

ers, we have the error bound for estimating the robust mean:

‖qt − µrobust‖

=

∥∥∥∥∥∑
l

wl · 1(wi≥ε/n)xl − µrobust

∥∥∥∥∥
=

∥∥∥∥∥∑
l

tr

(
ecs(xil,qt−1)∑
k e

cs(xik,qt−1)

)
xl −

∑
l

1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

xl

∥∥∥∥∥
≤
∑
i

∥∥∥∥ ecs(xii,qt−1)∑
k e

cs(xik,qt−1)
−

1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥ ‖xi‖
+

∑
j,wj≥ε/n

∥∥∥∥ ecs(xij,qt−1)∑
k e

cs(xik,qt−1)
−

1(xi∈Dbenign)∑n
k=1 1(xk∈Dbenign)

∥∥∥∥ ‖xj‖
≤

(
(n−m)max (

e2c − ec(2−ε′) − m
n−m

(n−m)ec(2−ε′) +m
,

1

(n−m)ec(2−ε′) +m
)

+
m

(n−m)ec(2−ε′) +m

)
max

l,wl≥ε/n
(‖xl‖)

=
max

(
(n−m)ec(2−ε

′)(ecε
′ − 1), n

)
(n−m)ec(2−ε′) +m

max
l,wl≥ε/n

(‖xl‖)

≤ max

(
ecε
′
− 1,

n

(n−m)ec(2−ε′) +m

)
max

l,wl≥ε/n
(‖xl‖)

(14)
The first equality is due to the design of the algorithm. In the
second equality, we denote tr(∗) to be the truncation func-
tion that yields zero if ∗ < ε/n. The second term of the sec-
ond equality is due to the definition of robust mean µrobust.
The third line is obtained by applying triangle inequality and
splitting the terms for xi from benign clients and xj from
attackers. Some terms for attackers are zeroed out if they
have a weight smaller than ε/n. We can observe from Equa-
tion 13 that the weight wj for a attacker is less than ε/n if
ε′ < 2− 1

c ln (
1/ε−m/n
1−m/n ). Hence, the error term due to some

attackers can be dropped. The fourth line is obtained by drop-
ping the error term due to the attacker and plugging in Equa-
tion 12. The fifth line is simplification. The sixth line drops
the m term in the denominator of the previous line. Note that
the effect of dropping the m term would be minimal if we
have a large c.

Here we have finished the proof on the error bound of the
robust estimate. The bound can be tighter if we do not drop
the m term in the last line. However, we present the current
looser bound for readability. Next, we are going to prove the
condition for improving the robust estimate.

In the best case where we have an arbitrarily small ε′, our
algorithm can at best achieve an error bounded of

n

(n−m)ec(2−ε′) +m
max

l,wl≥ε/n
(‖xl‖)

ε′ → 0−→ 1

(1−m/n)e2c +m/n
max

l,wl≥ε/n
(‖xl‖).

(15)

The higher the fraction of attackers, the larger the best er-
ror bound we can achieve. If there are less than 50% attack-
ers, the upper bound of the relative error ‖qt−µrobust‖

maxi ‖xi‖ is con-
trolled by 2e−2c, which is about 10−9 for c = 10.



In general, if we want our algorithm to give a better ap-
proximation than the previous iteration (with a rate γ < 1),
then we require

max

(
ecε
′
− 1,

n

(n−m)ec(2−ε′) +m

)
max

l,wl≥ε/n
(‖xl‖)

≤ γ‖qt−1 − µrobust‖
≤ γδmax

l
(‖xl‖).

The second inequality is the condition on qt−1 in Equation 9.
Hence, we require

ecε
′
− 1 ≤ γδ

ε′ ≤ 1

c
ln(γδ + 1) =

γδ

c
+O(γ2δ2)

(16)

and
n

(n−m)ec(2−ε′) +m
≤ γδ

ε′ ≤ 2− 1

c
ln

(
γ−1δ−1 −m/n

1−m/n

)
(17)

The equality in (16) is due to Taylor expansion.
It means that we require our attention module to approxi-

mate the similarity measure h′(k, q) with an error of at most
γδ
c if we have a large c. For example, we require ε′ ≤ 1%

if we want to bound the relative error to 10% in one itera-
tion.

In practice, the true similarity measure h∗(k, q) that iden-
tifies the attackers may not be the same as the h′(k, q) we
approximate based on the training data. In this case, the error
term ε′ may not be small. The estimation could have a larger
error according to the bound in the first part of Lemma 2 and
it may not improve throughout iterations since it may violate
the condition in the second part of Lemma 2. Moreover, the
higher the fraction of attackers, the worse we can do in the
best case according to the bound. Fortunately, the first part of
Lemma 2 suggests that using a smaller scale factor cmay still
give a good approximation even the similarity measure was
not approximated well. In the extreme case when c = 0, our
approximation reduces to simple mean. In other words, when
the attackers behave differently from what we simulated in
the training (such as a new attack), using a conservative value
of the scale factor c could prevent false detection of attacker
and false rejection of benign client.
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