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Abstract

While scene text recognition techniques have been widely
used in commercial applications, data privacy has rarely been
taken into account by this research community. Most existing
algorithms have assumed a set of shared or centralized train-
ing data. However, in practice, data may be distributed on dif-
ferent local devices that can not be centralized to share due to
privacy restrictions. In this paper, we study how to make use
of decentralized datasets for training a robust scene text rec-
ognizer while keeping them stay on local devices. To the best
of our knowledge, we propose the first framework leveraging
federated learning for scene text recognition, which is trained
with decentralized datasets collaboratively. Hence we name
it FedOCR. To make FedCOR fairly suitable to be deployed
on end devices, we make two improvements including using
lightweight models and hashing techniques. We argue that
both are crucial for FedOCR in terms of communication effi-
ciency and security for federated learning. The simulations
on decentralized datasets show that the proposed FedOCR
achieves competitive results to the models that are trained
with centralized data, with fewer communication costs and
higher-level privacy-preserving.

Introduction
Text in scene images contains valuable semantic information
for text reading and has become one of the most popular re-
search topics in academia and industry for a long time (Goel
et al. 2013; Almazán et al. 2014; Su and Lu 2014; Luo, Jin,
and Sun 2019; Li et al. 2019; Zhang et al. 2020; Yu et al.
2020). In practice, scene text recognition has been applied
to various real-world scenarios, such as autonomous naviga-
tion, photo transcription, and scene understanding. With the
development of deep learning and the emergence of public
text datasets, significant progress on scene text recognition
has been made in recent years.

However, most of the existing scene text recognition al-
gorithms assume that a large scale set of training images
is easily accessible. As shown in Fig. 1(a), in real con-
ditions, algorithms may achieve sub-optimal performance
and be unable to model the data variations or diversity ow-
ing to the lack of sufficient images. To remedy this, some
works (Bartz et al. 2019; Hu et al. 2020) merge different
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public datasets to build a more robust text recognizer, as il-
lustrated in Fig. 1(b). However, centralizing data in this way
is simply problematic in many real-world scenarios. For
example, many laws and regulations strengthening the data
privacy constrain the use of data stored on local devices,
such as General Data Protection Regulation (GDPR) (Voigt
and Von dem Bussche 2017). Besides, centralizing tremen-
dous image data from different local devices incurs heavy
communication loads. That means it is simply intractable to
centralize large amounts of data for scene text recognition
training in practice. Our solution, which works within the
framework of federated learning, is illustrated in Fig. 1(c).

Federated Learning (FL), a new concept first proposed by
McMahan et al. (McMahan et al. 2016), allows data owners
to train a shared model collaboratively while keeping data
stored on different local devices. However, directly apply-
ing FL to scene text recognition faces two inevitable dif-
ficulties. First, in most scene text recognition algorithms,
a heavyweight backbone model is usually adopted for the
sake of better performance. Hence, it results in heavy bur-
dens of the parameter transmission while doing federated
learning. Second, there is an extra computational cost from
a privacy-preserving module to handle privacy leakage due
to the honest-but-curious global server in general federated
learning frameworks.

In this paper, to the best of our knowledge, we propose
the first federated learning framework for scene text recogni-
tion, which we name FedOCR. In our FedOCR (a schematic
is given in Fig. 2), all participants train a shared model col-
laboratively without centralizing the training images. In this
manner, datasets on different local devices have an indirect
influence on the training of the global model, which leads
to a competitive performance to the model trained with a
centralized set of data. To improve the communication effi-
ciency between the global server and local clients, we ar-
gue two important aspects in FedOCR, i.e., lightweight
models and hashing techniques. Moreover, benefited from
the hashing technique, we can avoid privacy leakage to the
global server by a specific hashing function and the ran-
dom seeds, which saves an extra computational cost for a
privacy-preserving module. As a consequence, the proposed
FedOCR is readily to be deployed in practical applications
for scene text recognition.

Compared with existing scene text recognition meth-
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Figure 1: An illustration of training scene text recognizers with (a) a single dataset, (b) a centralized dataset from different
devices, and (c) decentralized datasets distributed on different local devices.

ods (Luo, Jin, and Sun 2019; Li et al. 2019; Bartz et al.
2019; Zhan and Lu 2019; Yue et al. 2020; Bhunia et al. 2021)
without federated learning, the proposed framework has the
following intriguing merits. First, FedOCR can make use of
more abundant image data from different local devices. Par-
ticularly, there are billions of end devices with tremendous
text images benefiting scene text recognition. Therefore, our
framework may have great potential in real-world applica-
tions of scene text reading. Second, by design, our frame-
work has a superior trade-off between parameter transmis-
sion efficiency and performance. The proposed text recog-
nizer has much fewer parameters than existing scene text
recognition algorithms but encouragingly reaches a com-
parable performance. Last, it can encrypt and decrypt with
the hashing technique, which provides higher-level privacy-
preserving without an extra computational cost.

In summary, the main contributions of this paper are
three-fold.

• We reveal the problem of data privacy in scene text recog-
nition, which is somehow overlooked by the existing
methods.

• We propose the first federated scene text recognition
framework called FedOCR for training a recognizer with
decentralized datasets distributed on different local de-
vices.

• FedOCR is a highly communication-efficient as well
as privacy-preserving framework by incorporating
lightweight backbones and hashing techniques, which
makes it suitable to be deployed in real privacy-sensitive
applications and edge devices.

Related Work
Scene text recognition has attracted great interest for a long
time. According to Long et al. (Long, He, and Yao 2018),
representative methods can be roughly divided into two
mainstreams, i.e., Connectionist Temporal Classification

(CTC) based and attention-based methods. Generally, the
CTC-based methods model scene text recognition as a se-
quence recognition task. For example, Shi et al. (Shi, Bai,
and Yao 2016) combine the convolutional neural network
(CNN) with the recurrent neural network (RNN) to extract
sequence features from input images, and decode the fea-
tures with a CTC layer. Different from Shi et al. (Shi, Bai,
and Yao 2016), Gao et al. (Gao et al. 2019) use stacked con-
volutional layers to extract contextual information from in-
puts without RNN, and show advantages with low compu-
tational costs. Zhang et al. (Zhang, Gupta, and Zisserman
2020) turn text recognition into a visual matching problem
by exploiting the repetition of glyphs in language, and build
this similarity between units into the proposed architecture.
Meanwhile, attention-based methods extract features more
effectively via the attention mechanism. For instance, Liu et
al. (Liu et al. 2018) propose a binary convolutional encoder-
decoder network to provide real-time scene text recognition.
Liu et al. (Liu, Chen, and Wong 2018) propose a character-
aware neural network with a hierarchical attention mecha-
nism, which adopts a local transformation to rectify char-
acters individually. Unlike other attention-based algorithms,
Bai et al. (Bai et al. 2018) propose Edit Probability (EP)
to handle the misalignment between the output sequence
of probability distribution and the ground-truth sequence.
Nguyen et al. (Nguyen et al. 2021) incorporate a dictionary
in both the training and inference stage to make a more ro-
bust scene text recognition system.

Undoubtedly, large amounts of real-world data are needed
in practical applications of those scene text recognition
methods. However, tremendous image datasets are dis-
tributed on different companies, communities or local de-
vices, and can not be centralized to share. To handle this
problem, McMahan et al. (McMahan et al. 2016) first pro-
pose the concept of Federated Learning (FL) to train deep
networks from decentralized data collaboratively. Following
McMahan et al. (McMahan et al. 2016), many researchers
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Figure 2: The pipeline of our federated scene text recognition framework.

are working on improving the federated learning with more
efficient parameter transmission and higher-level privacy-
preserving. To improve privacy security, Wei et al. (Wei et al.
2019) propose a federated learning framework based on dif-
ferential privacy, in which artificial noises are added to the
local parameters of participants before the model aggrega-
tion. Sun et al. (Sun et al. 2021) develop an effective defense
called Soteria by perturbing data representations to against
model inversion attack in FL. To improve communication
efficiency, Reisizadeh et al. (Reisizadeh et al. 2019) pro-
pose a communication-efficient federated learning method
with periodic averaging and quantization. Gao et al. (Gao,
Xu, and Huang 2021) propose the error-compensated dou-
ble compression mechanism to significantly reduce the com-
munication cost. Especially very recently, the computer
vision community starts to pay attention to federated
learning, thus arising several pioneering works. For ex-
ample, Luo et al. (Luo et al. 2019) implement object de-
tection algorithms with federated learning and release a re-
liable benchmark framework. In the medical field, Zhu et
al. (Zhu et al. 2019) implement a privacy-preserving feder-
ated learning system with the differential privacy for brain
tumor segmentation. Li et al. (Li, He, and Song 2021) con-
duct contrastive learning in model-level to correct the local
training of individual parties to achieve high performance
in image classification tasks. To the best of our knowledge,
we propose the first federated scene text recognition frame-
work, which is more efficient in communication and pro-
vides higher-level privacy-preserving.

Methodology

In this section, we first introduce the pipeline of our feder-
ated scene text recognition framework. Then, we describe
the details of local training and global aggregation, which
are the two main steps in federated learning. Finally, we
elaborate on how to improve communication efficiency and
preserve data privacy in our framework.

Pipeline of FedOCR
According to Yang et al. (Yang et al. 2019), our framework
is a kind of horizontal federated learning, where datasets
of different participants share the same feature space but
differ in samples. Suppose we have C data owners, which
have different sets of training images {D1, ..., DC}. We de-
note the accuracy of the text recognizer trained with de-
centralized datasets {D1, ..., DC} as AccFED. Note that
these decentralized datasets are not shared or transferred
to other participants during training. We denote the accu-
racy of the text recognizer trained with a centralized dataset
D = D1 ∪ ... ∪ DC as AccSUM . Basically, the objective
of FedOCR is to minimize the difference between AccFED
and AccSUM . A smaller difference between AccFED and
AccSUM means a better performance of our federated learn-
ing for scene text recognition.

Fig. 2 illustrates the pipeline of our federated scene text
recognition framework. There are C participants, each of
which has a set of data containing cropped text word im-
ages and transcriptions, and a global server for local model
parameter aggregation. We assume all participants agree in
advance on the same network architecture and the same
training objective but do not share their datasets. The whole
learning process can be decomposed into four steps:

(1) Before each round of local training, all participants start
with the same parameters, which are initialized randomly
in the first round and downloaded from the global server
in the next rounds.

(2) Each participant trains the model with its dataset for El
epochs individually.

(3) All participants calculate parameter increments com-
pared to the original parameters in a round, and all pa-
rameter increments are sent to the global server.

(4) The global server aggregates all parameter increments by
average, and updates a set of global parameters. Before
the next local training, the global parameters are down-
loaded for local model updating.



Algorithm 1: Local Training

Input: Latest global parameters W global
t in round t; Local

training learning rate ηi, i ∈ [0, C − 1]
1: for each i ∈ [0, C − 1] do
2: Overwrite local weight vectors: W i

t = W global
t

3: end for
4: for all local participant i ∈ {0, 1, ..., C − 1}) do
5: for e ∈ [0, El − 1] do
6: for s ∈ [0, stepmax] do
7: Sample a minibatch Bs
8: Compute gradients: git = 5L(Bs;W

i
t )

9: Update local parameters: W i
t = W i

t − ηi · git
10: end for
11: end for
12: Compute local parameter increments:
13: ∆W i

t = W i
t −W

global
t

14: Send ∆W i
t and data size Si to the global server

15: end for

Following this pipeline, our federated training continues un-
til convergence.

Local Training. In our FedOCR, each participant i and
the global server maintain a set of local model parame-
ters W i and W global, respectively. Algorithm 1 describes
the local training process of our framework. As shown,
all participants first download the latest global parameters
from the global server and overwrite their local parameters.
Then, participants train local models with their datasets in-
dependently for El epochs and send parameter increments
to the global server. During local training, all participants
do not share any image data with others. To update the
global parameters efficiently, all participants should train
their models enough before parameter transmission. McMa-
han et al. (McMahan et al. 2016) demonstrate that sufficient
epochs of local training can bring a dramatic increase in pa-
rameter update efficiency. Detailed experiment settings of
our FedOCR are provided in the next section.

Global Aggregation. To aggregate parameter increments
from different local participants, McMahan et al. (McMa-
han et al. 2016) propose a straightforward approach to ag-
gregate all local participants’ parameters by average. Fol-
lowing steps in Algorithm 2, we adapt the federated aver-
age method (McMahan et al. 2016) to our federated scene
text recognition framework. In the global aggregation step
of our FedOCR, we average all parameter increments and
update former global parameters, which are available for all
participants’ downloading.

Communication Efficiency
Communication efficiency is an essential property in feder-
ated learning. For instance, if the size of one participant’s
model is one hundred megabytes, tens of gigabytes will be
required to transmit in a round, when hundreds of clients
participate in a federated learning framework. Under such a
circumstance, plenty of parameters result in huge communi-
cation costs, which lead to a training bottleneck. To reduce

Algorithm 2: Global Aggregation

Input: All local parameter increments {∆W i
t |i ∈ [0, C −

1]} in round t; Local data size {Si|i ∈ [0, C−1]}Global
parameters W global

t ;
1: Compute global parameter increments:

∆W global
t = (

∑C−1
i=0 Si∆W

i
t ) /

∑C−1
i=0 Si

2: Update global parameters:
W global
t+1 = W global

t + ∆W global
t

3: Send W global
t+1 to all participants

Algorithm 3: Hashing Technique

Input: Compression ratio γ; Hashing seeds {seedl|l ∈
[0, L− 1]}, where L is the number of network layers;

Output: A compressed network;
1: for each layer l in the entire network do
2: Assume the total size of weight matrix W l is T l
3: Generate a real weight vector Rl with a size T l ∗ γ
4: Generate a random sort RSl of numbers from 0 to
T l − 1 with a hashing function and a seed seedl

5: Generate an index vector I l: [be · γc, for e in RSl]
6: Reshape I l as the shape of W l

7: Generate a virtual weight matrix: V l = Rl[I l]
8: end for
9: Initialize our network with Rl, l ∈ [0, L − 1], and the

total parameter size is compressed to γ ·
∑L−1
l=0 T l

communication burdens, we replace the heavyweight back-
bone, such as ResNet (He et al. 2016), for feature extrac-
tion in text recognizers with a lightweight neural network.
To further decrease the parameter size, we extend a hashing
technique (Chen et al. 2015) to compress the parameters of
CNN and RNN, which makes it applicable for any text rec-
ognizer. In this way, the text recognizer in our FedOCR has
much fewer parameters compared with existing text recog-
nition algorithms, which shows great potential in practical
federated learning deployment.

Hashing Technique. In fact, any well-designed scene text
recognition model can be applied in our federated learning
framework. However, considering the communication effi-
ciency, the network with fewer parameters is more appropri-
ate and practical. Therefore, we propose to compress model
parameters by a hashing technique. Specifically, we com-
press network parameters in a weight sharing manner that a
random subset of parameters in a layer share the same pa-
rameter. Following Algorithm 3, we can compress the pa-
rameters in a scene text recognition network with a hyper-
parameter γ to control the compression ratio, and it can re-
duce the parameter size to a large extent. It should be noted
that be ·γcmeans the largest integer that is smaller than e ·γ
in Algorithm 3. Notably, the specific hashing function and
the random seeds are shared among all local participants to
keep the same relationship between real weight vectors and
virtual weight matrices of all local models.



Text Recognizer. Following the above methods, we can
improve any existing text recognition algorithms to con-
struct a lightweight text recognizer. Specifically, in our
experiments, we optimize a classical text recognizer,
ASTER (Shi et al. 2018). We replace the encoder in ASTER
with ShuffleNetV2 (Ma et al. 2018) and apply the hashing
technique to the entire model parameters. Benefited from
hashing techniques and lightweight networks, we success-
fully decrease communication costs to a large extent in our
federated learning framework.

Moreover, we keep the network structure and experiment
settings the same with ASTER as much as possible. Similar
to ASTER, the text recognizer in our experiments consists of
a rectification network, a lightweight convolutional encoder,
and an attentional sequence-to-sequence model. We briefly
introduce the method of scene text recognition as follows:
Firstly, an input image is rectified by a rectification network
before being sent into a recognition network. The rectifi-
cation network based on the Spatial Transformer Network
(STN) aims to rectify perspective or curved texts. Secondly,
we use a lightweight neural network as the encoder to extract
the feature sequence from the rectified image. Lastly, we use
an attentional sequence-to-sequence model as the decoder
to translate the feature sequence. During inference, we use
beam searching by holding five candidates with the highest
accumulative scores at every step.

Network Training. After neural network initialization,
the mapping relationship between real weight vectors and
virtual weight matrices is fixed, which is defined in Algo-
rithm 3. In the forward computation, it is the virtual weight
matrices that participate in calculation with input features.
In the backward propagation, the gradients of all parameters
in real weight vectors are calculated based on virtual weight
matrices’ parameter gradients.

Let V li,j denote the i-th row and j-th column element of a
virtual weight matrix at layer l, and let Rlk denote the k-th
element in the corresponding real weight vector. Assuming
that

∂L
∂V li,j

= gli,j , (1)

where gli,j is computed from the loss. Moreover,

∂V li,j
∂Rlk

= I(I l[i, j], k), and I(a, b) =

{
1 if a = b,

0 otherwise
(2)

Based on the above equations, we can obtain any parame-
ter’s gradient in the real weight vector as follows:

∂L
∂Rlk

=
∑
i

∑
j

∂L

∂V li,j
·
∂V li,j
∂Rlk

=
∑
i

∑
j

gli,j · I(I l[i, j], k).
(3)

Privacy Preserving
Federated learning can provide training procedures at a high
level of security, but the global server still has a chance to

compromise data privacy, such as model inversion (Fredrik-
son, Jha, and Ristenpart 2015) and GAN-based attacks (Hi-
taj, Ateniese, and Perez-Cruz 2017). Usually, local network
parameters or their increments are sent to the global server
in each communication round, which gives the honest-but-
curious server a chance to spy on local sets of data. In re-
cent works, Geiping et al. (Geiping et al. 2020) and Phong
et al. (Phong et al. 2018) show that the gradients may re-
veal information of training samples and apply an additively
homomorphic encryption scheme to their federated frame-
work. Shokri et al. (Shokri and Shmatikov 2015) propose to
upload partially gradients added with noise to avoid infor-
mation leakage, and apply differential privacy to parameter
updates for a higher level of security. However, the above
methods bring more computational costs or a dramatic de-
crease in accuracy because of the privacy-preserving mod-
ule.

In our FedOCR, we adopt the hashing technique to com-
press the entire model parameters with a hashing function
and random seeds. They are equivalent to an encryption-
decryption module and the keys, but it can save much com-
putational costs without the encryption-decryption step. For
the parameter aggregation in the global server, we only up-
load increments of the parameters in real weight vectors,
which can not be used to reconstruct the complete network
without the specific hashing function and the random seeds.
As for all local participants, they share the same hashing
function and random seeds, so the average operation in the
global aggregation can be directly applied to these parame-
ter increments. Therefore, the global server can not compro-
mise the private data, while it can finish its global aggrega-
tion task. Moreover, the other attackers also can not do any-
thing with the compressed parameter increments, because
they mean nothing without hashing functions and seeds. In
this way, we enhance the privacy-preserving in our FedOCR
without introducing an extra computational cost.

Experiments
Datasets
Two synthetic datasets (Jaderberg et al. 2014; Gupta,
Vedaldi, and Zisserman 2016) and six public real-world
datasets are used to train local models, and our models are
evaluated on seven general datasets. In our federated set-
tings, we construct different local datasets with the public
real-world datasets. These datasets are briefly introduced as
follows:

Synth90k (Jaderberg et al. 2014) contains 9 million images
generated from a set of 90k English words. Words are ren-
dered onto natural images with random transformations and
effects.

SynthText (Gupta, Vedaldi, and Zisserman 2016) contains
0.8 million images for end-to-end text detection and recog-
nition tasks. Therefore, we crop word images using the
ground-truth word bounding boxes.

ICDAR 2003 (IC03) (Lucas et al. 2005) contains 860
cropped word images for evaluation after discarding images
that contain non-alphanumeric characters or have fewer than



three characters, which follows (Mishra, Alahari, and Jawa-
har 2012). For training, we use 1150 cropped images after
filtering.

ICDAR 2013 (IC13) (Karatzas et al. 2013), which inher-
its most images from IC03 and extends it with new images,
contains 1015 cropped word images for evaluation after fil-
tering. For training, we use 848 cropped images after filter-
ing.

ICDAR 2015 (IC15) (Karatzas et al. 2015) contains images
captured by a pair of Google Glasses casually, and many
images are severely distorted or blurred. For a fair compari-
son, we evaluate models on 1811 cropped word images after
filtering. For training, we use 4426 cropped images after fil-
tering.

IIIT5K-Words (IIIT5K) (Mishra, Alahari, and Jawahar
2012) contains 3000 word images collected for evaluation
and 2000 word images for training, which are mostly hori-
zontal text images.

Street View Text (SVT) (Wang, Babenko, and Belongie
2011) is collected from the Google Street View, and it con-
tains 647 images of cropped words, many of which are
severely corrupted by noise, blur, or low resolution.

Street View Text Perspective (SVTP) (Quy Phan et al.
2013), which is collected from Google StreetView and con-
tains many distorted images, contains 645 word images for
evaluation.

CUTE80 (CUTE) (Risnumawan et al. 2014) contains 80
real-world curved text images with high quality. For evalua-
tion, we crop 288 word images according to its ground-truth.

ArT (Chng et al. 2019) is a combination of Total-Text,
SCUT-CTW1500, and Baidu Curved Scene Text, which
contains images with arbitrary-shaped texts. For training, we
use 30271 word images after discarding images that contain
non-alphanumeric characters and vertical texts.

COCO-Text (Veit et al. 2016) is based on the MS COCO
dataset, which contains images of complex everyday scenes.
For training, we use 31943 cropped images after discarding
images that contain non-alphanumeric characters and verti-
cal texts.

Experiment settings
Decentralized Datasets for Federated Learning Dif-
ferent local datasets are constructed by public real-world
datasets in our experiment settings. We use the training im-
ages from IC03 (Lucas et al. 2005), IC13 (Karatzas et al.
2013), IC15 (Karatzas et al. 2015), IIIT5K (Mishra, Alahari,
and Jawahar 2012), ArT (Chng et al. 2019), and COCO-
Text (Veit et al. 2016). As a sequence, we have 70638 real-
word text images in total. To simulate the decentralized
datasets distributed on local devices in federated learning,
we, as an honest server, should not known the data distribu-
tion and whether there is a data bias. Hence, we randomly
split all training images into different sets of image data for
C participants, It should be mentioned that these different
sets of image data should not be shared or transferred to

other participants during the training procedures.

Federated Settings. Some hyper-parameters should be
noted in our federated settings:C, the number of participants
in our federated scene text recognition framework; γ, the
compression ratio of the hashing technique; El, the number
of epochs that each local participant trains the model with
its dataset before communication with the global server; B,
the batch size in local training. In our experiments, we set
C = 5, El = 3, B = 512 and γ ∈ {1/2, 1/4, 1/8}.

Baseline and FedOCR-Hash. In our experiments, we
adopt ASTER1 (Shi et al. 2018) as the text recognition
baseline in our FedOCR, which is denoted as ASTER-FL.
Then, we replace the encoder in ASTER-FL with Shuf-
fleNetV2 (Ma et al. 2018), and this variant of ASTER-
FL in our FedOCR is denoted as FedOCR-Hash1. To fur-
ther reduce the parameter size, we apply the hashing tech-
nique to compress FedOCR-Hash1 with different ratios γ ∈
{1/2, 1/4, 1/8}, and these models are denoted as FedOCR-
Hashγ in the following paper.

Implementation Details. Following the federated set-
tings, we construct C = 5 participants in our FedOCR
for experiments. In each local training, all models are lo-
cally trained via Adadelta (Zeiler 2012) with an initialization
learning rate of 1.0, and each participant trains the scene text
recognition model with its dataset individually for El = 3
epochs in each round. All word images are trained directly
without data argumentation. As for the complete federated
training process of our FedOCR, each participant trains its
model with the two synthetic datasets for 4 rounds, then
trains on its real-world dataset for 40 rounds.

The learning rate is decayed to 0.1 and 0.01 at the 5-th
round and the 30-th round, respectively. Following Algo-
rithm 2, in the global aggregation step, the global server ag-
gregates the parameter increments from all participants by
average. To simply simulate the communication procedure
of federated learning, we replace the parameter transmission
between participants and the global server with saving and
restoring checkpoints on the hard-disk.

Evaluation Metric. In our experiments, we use the case-
insensitive word accuracy for evaluation. If the word predic-
tion and the ground-truth are the same in the lower case, the
prediction is correct. The recognition accuracy is the per-
centage of the correct number of total. Furthermore, the ob-
jective of FedOCR is to minimize the difference between
the accuracy of the text recognizer trained with decentralized
datasets and trained with a centralized dataset. A smaller dif-
ference means a better performance of our FedOCR.

Experiments on FedOCR
In this subsection, we first compare the parameter reduction
and the accuracy decrease of different models in our Fe-
dOCR. Then, we analyze the performance of our FedOCR
compared with the other two training manners and show that

1https://github.com/ayumiymk/aster.pytorch



Models Backbone γ Param. (M) Model (MB) Accuracy (%)

ASTER-FL ResNet - 20.99 80.52 91.94
FedOCR-Hash1 ShuffleNetV2 - 13.34 (↓ 36.45%) 51.37 (↓ 36.20%) 89.08 (↓ 3.11%)
FedOCR-Hash1/2 ShuffleNetV2 1/2 6.70 (↓ 68.08%) 26.05 (↓ 67.65%) 86.65 (↓ 5.75%)
FedOCR-Hash1/4 ShuffleNetV2 1/4 3.38 (↓ 83.90%) 13.38 (↓ 83.38%) 85.39 (↓ 7.12%)
FedOCR-Hash1/8 ShuffleNetV2 1/8 1.72 (↓ 91.81%) 7.05 (↓ 91.24%) 82.58 (↓ 10.18%)

Table 1: Parameter size and accuracy comparison between different models in our FedOCR. The accuracy is the average result
of all testing datasets. The models size refers to the storage occupied on the hard-disk. γ is the compression ratio of the hashing
technique, and “γ = −” means that we do not apply the hashing technique to the model. The reduction percentages of parameter
size, model size, and accuracy compared with ASTER-FL are shown in parentheses respectively.

Models Training IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

single 93.7 89.0 93.7 93.8 80.6 82.3 85.4
ASTER-FL centralized 95.0 91.7 95.3 94.6 82.2 83.3 91.7

federated 95.0 90.7 94.8 94.0 82.0 82.3 91.0
single 90.8 83.0 90.9 89.4 77.3 77.5 82.6

FedOCR-Hash1 centralized 93.1 86.4 92.5 92.2 79.7 80.6 86.8
federated 92.9 86.9 92.0 91.7 79.4 80.8 86.5
single 89.2 83.0 90.2 88.5 75.3 73.8 77.8

FedOCR-Hash1/2 centralized 91.6 83.6 91.0 90.3 77.9 75.5 82.3
federated 91.2 84.2 91.6 90.7 77.5 76.0 82.6
single 87.2 79.1 87.1 86.1 73.4 71.5 77.4

FedOCR-Hash1/4 centralized 89.4 81.6 89.5 88.8 75.9 74.3 81.6
federated 89.0 81.8 89.3 89.2 76.3 75.2 81.6
single 83.5 74.8 84.8 81.4 70.2 71.2 73.3

FedOCR-Hash1/8 centralized 86.7 78.8 86.7 86.0 72.3 71.6 79.5
federated 86.6 80.1 87.1 85.4 72.4 71.6 79.9

Table 2: Recognition accuracy in different training manners. “single”: The model is trained only with one participant’s dataset;
“centralized”: The model is trained with a centralized set of image data; “federated”: The global model is trained with decen-
tralized sets of image data in a federated manner. The detailed structures of different FedOCR-Hash are shown in Tab. 1.

our FedOCR achieves the objective of federated learning. Fi-
nally, we evaluate the two improvements in communication
efficiency of our FedOCR.

Comparison of Parameter Size and Accuracy. Tab. 1
shows the parameter size and model size of different models
in our FedOCR. The accuracy is the average result of all test-
ing datasets. The models size refers to the storage occupied
on the hard-disk. Compared with ASTER-FL, FedOCR-
Hash1 reduce 36.45% parameter size, but there is only a
3.11% accuracy decrease. As for different FedOCR-Hashγ
in our experiments, FedOCR-Hash1/4 with an appropriate
compression ratio γ achieves a 83.90% reduction in param-
eter size and drops only 7.12% in accuracy. Improved by the
lightweight backbone and the hashing technique, the model
size of the scene text recognizers in our FedOCR reduces to
a large extent, and these lightweight text recognizers encour-
agingly reach a comparable performance.

Federated Learning for Scene Text Recognition. Tab. 2
shows the detailed results on all testing datasets of ASTER-
FL and different FedOCR-Hashγ in three manners of train-
ing. First, “single” training means that the model is trained
only with one participant’s dataset. Second, ”centralized”
training means that the model is trained with a centralized
set of image data. Third, “federated” training means that the
model is trained with decentralized sets of image data in a

federated manner. As shown in Tab. 2, “federated” and “cen-
tralized” training results of all models are similar to each
other and better than “single” training results. In the “sin-
gle” training manner, scene text recognition faces the prob-
lem in practice that the image data for training is limited,
which causes poor performance in scene text recognition.
However, we succeed in training a shared model with de-
centralized sets of image data collaboratively in the “feder-
ated” training manner, and we do not exchange or expose
any image data to other participants. Expectantly, our Fe-
dOCR achieves comparable results, which are very close to
the results of the “centralized” training manner. Therefore,
our FedOCR is effective to train a more robust model with-
out centralizing datasets on different local devices.

Communication Efficiency Improvement. In Tab. 2,
FedOCR-Hash1 shows comparable accuracy with ASTER-
FL in the “federated” training manner. Owing to the
lightweight backbone in FedOCR-Hash1, it has fewer pa-
rameters than ASTER-FL, which benefits communication
efficiency in federated learning. As shown in Fig. 3,
FedOCR-Hash1 has a higher accuracy than ASTER-FL
when little communication bytes are uploaded.

Fig. 3 illustrates the accuracy curves of different mod-
els on IIIT5k versus uploaded bytes in federated training
procedures. FedOCR-Hashγ with a smaller compression ra-
tio γ achieves higher accuracy when limited communication
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Figure 3: Accuracy on IIIT5k versus number of uploaded
megabytes of different models with limited transmitted
bytes in federated learning.

bytes are uploaded, and it shows greater advantages in com-
munication efficiency. The advantage of our FedOCR-Hashγ
will be more distinctive when more local clients participate
in our FedOCR. Considering both Tab. 1 and 2, FedOCR-
Hash1/4 with an appropriate compression ratio γ shows a
significant overall performance in communication efficiency
and accuracy of federated learning. Only 13.38 megabytes
are required to be transmitted by each participant, which re-
sults in a faster parameter transmission with the same com-
munication bandwidth.

Benefited from lightweight models and hashing tech-
niques, our federated scene text recognition framework
shows a comparable performance and advantages in com-
munication efficiency. Considering plenty of participants
and the unstable data transmission network in the real world,
our FedOCR has great potential in practical application de-
ployment.

Conclusion and Future Work
In this paper, we reveal the problem of data privacy in
scene text recognition and address the difficulty in uti-
lizing decentralized datasets distributed on local devices
with federated learning. To the best of our knowledge, we
propose the first federated scene text recognition frame-
work named FedOCR. In our FedOCR, we succeed in
training a shared text recognizer collaboratively with de-
centralized datasets and avoid violating rules of data pri-
vacy. Benefited from lightweight models and hashing tech-
niques, we reduce communication costs to a large extent and
provide higher-level privacy-preserving against the honest-
but-curious global server. In terms of taking advantage of
tremendous decentralized real-world data in practice, our
communication-efficient federated learning framework for
scene text recognition shows intriguing merits.

Recently, the domain shift in scene text recognition has
attracted great interest in academia, and some methods are
proposed, such as GA-DAN (Zhan, Xue, and Lu 2019) and
SSDAN (Zhang et al. 2019). Notably, the domain shift oc-
curs in federated learning for scene text recognition as well,
which leads to a deterioration on the global accuracy. Hence,
we are working on the domain adaptation of decentralized

datasets within our framework.
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