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Abstract

We consider the problem of clustering unlabeled datasets in
the federated environment, where statistical heterogeneity can
exist across clients. Compared to the centralized setting, the
model-based solution for this problem remains relatively unex-
plored, possibly due to increased difficulty of training models
with FedAvg algorithm under highly heterogeneous setting. A
recently proposed Iterative Federated Clustering Algorithm
(IFCA) addresses this issue by training multiple models that
captures each cluster, and showed its effectiveness on super-
vised datasets, for the setting when the data are i.i.d. within
the same client but separated across the clients. In this work,
we develop UIFCA using generative models with IFCA frame-
work, that solves for a more general setting where the data
in the same client can also come from different clusters. For
synthetic data, we observe that our method can correctly re-
cover the cluster information of individual datapoints. We also
provide analysis of our method on MNIST dataset.

Introduction
Federated learning systems (McMahan et al. 2017) have
become increasingly popular as they provide a way of uti-
lizing vast computing resources and data, while preserving
the individual user’s privacy. FedAvg (McMahan et al. 2017)
was proposed as a replacement for the batch gradient descent
algorithm that works in decentralized environment, and en-
abled general deep neural network to be trained over large
heterogeneous networks of devices such as smartphones and
wearables. The algorithm was successfully deployed in wide
range of tasks such as image recognition and language mod-
eling (McMahan et al. 2017).

We focus on the problem of finding inherent (cluster) struc-
ture in user’s data, in the federated learning environment.
With cluster information in hand, the service provider can
provide relevant information based on the data grouped by
similar topics, or improve the quality of learning in down-
stream tasks by giving them as explicit features. For example,
when a user reads news from wide range of topics, topic-
specific advertisements can be placed at the time when the
user reads the relavant text, and on-device training of next
word prediction task can be improved by prioritizing words
that are related.
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Many deep generative model-based clustering methods
have been proposed for the centralized environment, and
have been successful in recovering useful cluster informa-
tion (Mukherjee et al. 2019; Caron et al. 2018; Liu et al. 2020).
To obtain high quality cluster information in a federated set-
ting, it is natural to consider applying these methods com-
bined with the FedAvg algorithm. However, this combination
often fails due to data heterogeneity in a federated environ-
ment adversely affecting the FedAvg algorithm (Zhao et al.
2018). Due to this issue, the model-based clustering approach
for the federated setting remains underdeveloped (Kairouz
et al. 2021), and only the frameworks based on classic al-
gorithms such as K-means were proposed for the data with
simple cluster structure (Dennis, Li, and Smith 2021).

Recently, Iterative Federated Clustering Algorithm
(IFCA) (Ghosh et al. 2020) was proposed to address a similar,
but simpler problem which assumes each client holds the data
from the same cluster. By alternating between training mul-
tiple models aimed at capturing each cluster and estimating
user’s cluster identity in a federated manner, the algorithm is
proven to be able to correctly recover the cluster structure of
clients, and shows promising empirical results for clustered
learning of classifiers on supervised datasets.

In this work, we develop UIFCA , a new generative model-
based clustering method for unsupervised dataset, based on
the IFCA’s approach. We provide a comparison of UIFCA
and k-FED algorithm (Dennis, Li, and Smith 2021)(an off-
the-shelf federated clustering approach), on several different
types of synthetic cluster-structured data. We also evaluate
our algorithm on MNIST dataset, and provide comparison
against ClusterGAN (Mukherjee et al. 2019), a popular re-
cent approach to unsupervised data in the centralized setting
combined with FedAvg algorithm. For all cases, we evaluate
for a particular type of client heterogeneity where a constant
portion of the client’s data belongs to a single distribution,
and the remaining portion are drawn from the mixture of all
distributions. For the synthetic datasets, we observe that our
method can correctly recover cluster information for both
i.i.d and non-i.i.d. cases, while the baseline fails in non-i.i.d.
We also provide analysis of our method on MNIST dataset.
To the best of our knowledge, this work is the first to attempt
model-based clustering an unsupervised data in a heteroge-
neous federated environment.
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Figure 1: An overview of UIFCA . (a) Central server broadcast models to n clients. (b) Clients identify their local datapoints’
cluster memberships and run local updates with received models. (c) The clients send back the local models to central server. (d)
Central server aggregates the models within the same estimated cluster Sj .

Related Works
Unsupervised clustering using deep neural network
for the centralized environment
Many attempts have been made in using deep neural network
to unsupervised clustering problem. CusterGAN (Mukher-
jee et al. 2019) designs a new GAN architecture that learns
representations that forms clusters in latent space. A variant
of Variational Autoencoder model was proposed to capture
the cluster informations (Dilokthanakul et al. 2017). Self-
conditioned GAN (Liu et al. 2020) trains GAN model condi-
tioned by pseudo-labels, where pseudo-labels are iteratively
assigned from K-means clustering on the learned representa-
tion. DeepCluster (Caron et al. 2018) trains deep classifiers
with similar idea. These works assumes full access to train-
ing data that captures the distribution they come from. We
consider the same problem for the federated, where above
assumption is not available.

Clustered federated learning for supervised task.
IFCA (Ghosh et al. 2020) and HypCluster (Mansour et al.
2020) present alternating minimization type algorithm that
jointly identifies clusters in data and trains classifiers in in
federated environment, as a way to tackle the issue of non-
i.i.d. data distribution. The authors show good clustering
performance in relatively simple settings as detecting rota-
tions in image datasets provided with labels, but the practical
efficiency in clustering without image label is not yet known.
Our work extends the application of this algorithm to unla-
belled image clustering task, by training generative models.
(Kim et al. 2020) applied IFCA algorithm to cluster a time-
series dataset in the federated environment.

Unsupervised clustering for the federated setting
For the federated environment, clustering methods for un-
supervised datasets are underdeveloped. (Dennis, Li, and
Smith 2021) proposes a variant of K-means algorithm (Lloyd
1982) with focus on reducing the number communication
rounds. We find that methods involving DNN to cluster a
unsupervised dataset are not well studied in the federated
settings, therefore we analyze DNN-based methods for cen-
tralized setting in the federated settings, as well as applying
IFCA algorithm to solve the same problem.

Notations
We use [r] to denote the set of integers {1, 2, ..., r}.

Problem Setup

We consider a standard data clustering task in a distributed
setting, where one central server communicates with n client
machines. We assume that total m datapoints are inherently
partitioned into K disjoint clusters, S∗1 , . . . , S

∗
K , and our

goal is to find them. We denote j-th datapoint in client i
by xi,j . Each set S∗k consists of mK datapoints coming from
the distribution Dk, for k ∈ [K]. We consider unsupervised
learning task where the cluster information S∗1 , · · · , S∗K is
not visible from the learning algorithm. The central server is
able to communicate with client machines using predefined
secure protocol, such as secure aggregation.

We aim to find an algorithm that finds clusters regardless of
whether the client’s data is given i.i.d. or not. To quantify the
level of heterogeneity in clients, we define heterogeneity level
p that measures how much the data’s cluster is skewed across
the machines. For example, a dataset with K = 10 clusters
with p = 0 refers to the case where data are distributed to
clients in purely i.i.d. manner, and in p = 1 case, each client
holds data from a single distribution. For a client holding s
datapoints, the first sp data points are sampled from a single
cluster, and remaining s(1− p) data points are drawn from
any clusters at random. Illustrations of different p cases are
given in Figure 2.

In order to estimate the cluster information of datapoints
in clients, we train K different models that capture each
cluster’s datapoints, following the approach of IFCA (Ghosh
et al. 2020). Each model is a generative model that is trained
to capture the distribution of a given cluster data. Cluster
membership of a datapoint can be evaluated by picking the
model that gives the highest likelihood, i.e., selecting the
model’s distribution that it is the most close to. We define
{θ1, θ2, ..., θK} as the model parameters learned for each
cluster, and fθ(·) as the loss function of a sample evaluated
by the model θ. Each client i assigns its each of its datapoint
xi,j to one of the cluster sets {Si,1, Si,1, ..., Si,K}, and runs
model update on each parameter θk with set Si,k to optimize



p = 0 (IID) p = 0.5 p = 1.0

Figure 2: An illustration of a client heterogeneity type we
consider.

the following local objective:

min
θk

1

|Si,k|
∑

xi,j∈Si,k

fθk(x
i,j).

for k ∈ [K]. Then the model updates are aggregated at the
central server to optimize the following global objective:

min
θk

1

|S∗,k|

n∑
i=1

∑
xi,j∈Si,k

fθk(x
i,j).

where S∗,k is union of {Si,k}ni=1. This objective minimizes
the loss for all the data assigned to cluster k in all clients, for
each cluster k ∈ [K]. We also define Fθ(B) =

∑
x∈B fθ(x)

to be the loss used in batch gradient update of a data batch
B.

We note that our procedure of inferring cluster information
is inherently secure, and also beneficial. A client can receive
models {θ1, θ2, ..., θK} from the server and locally evaluate
its datapoints’ cluster membership. The central server can ac-
cess each cluster’s content by investigating the model(for
example, sampling datapoints with high likelihood), and
provide additional beneficial information (such as advertise-
ments) that may be relevant for that cluster. The users have
options to choose which additional information they will
use, based on the evaluated cluster information, which is not
revealed to the central server.

Algorithms and Models
In this section, we first present a straightforward extension of
existing algorithms to a federated learning setting which we
will consider as baselines, and discuss potential drawbacks of
these methods. Then, we provide details of UIFCA algorithm
and the models used.

Baselines
A natural approach to clustering in a federated environment
is to implement a distributed version of k-means algorithm
proposed by (Dennis, Li, and Smith 2021). Each worker
can compute the local estimate of the centroids, and global
centroids can be updated by gathering local centroids and
running k-means clustering algorithm over these centroids.
The client can infer the cluster membership of each datapoint
by referring to local centriods’ cluster assignment among all
local centroids in the server. This approach is summarized
in Algorithm 1. We consider this approach as a baseline to
compare with UIFCA .

Algorithm 1: k-FED algorithm

1: Client i clusters local data xi,j into Si,1, . . . , Si,K based
on distance to µ1, . . . , µK(for all i ∈ [n]).

Si,k ← {j|k = arg min
k∈[K]

‖µk − xi,j‖}

2: Client i computes local centroids µi,1, . . . , µi,K and send
to central server.

3: Central server runs k-means algorithm over all local
centroids µi,j(for all i ∈ [n], j ∈ [K]).

4: Client i assigns local data xi,j to a cluster according to
cluster assignment of its local centroids µi,1, . . . , µi,K
obtained from server.

For the data with more complex cluster structures such
as real-world images, the k-means based approach may not
work well. One may consider deep learning model-based
clustering methods, which showed great success in capturing
complex features of images and clustering them. The method
commonly involves learning a clustering model that infers
a cluster label of a sample or a representation that is well
separated by the sample’s inherent cluster.

In order to adapt these methods into a federated environ-
ment, a natural approach is to run distributed model train-
ing using secure training methods such as FedAvg algo-
rithm. As a baseline for our experiments, we consider clus-
terGAN (Mukherjee et al. 2019) for clustering real image
data, combined with FedAvg. For each communication round,
each client will update the local replica of clusterGAN model
with local data, and updated models from clients will be
aggregated at the central server.

However, this approach is problematic when it applies to
heterogeneous clients. When client’s heterogenity increases,
FedAvg’s local objective can become different completely
different from one another, resulting in increasing difficulty
in learning a consensus model that performs well for all dis-
tributions (Li et al. 2020). Often, gradient averaging (or mini-
batch SGD) is proposed as alternative for FedAvg for better
convergence behavior in non-i.i.d setting (Yun, Rajput, and
Sra 2021; Woodworth, Patel, and Srebro 2020; Woodworth
et al. 2020), but we do not consider it since its practical use
is not common, due to communication being the bottleneck
for large models, and FedAvg enables multiple local updates
within one communication round while gradient averaging
only updates once.

We claim that our method has structural advantage com-
pared to baselines in this sense. Our method captures the
datapoints that are likely to be from same distribution, and
runs FedAvg with them. This enables learning models in
heterogeneous client data, leveraging fast local updates of
FedAvg.

UIFCA
IFCA (Ghosh et al. 2020) algorithm is a clustering algorithm
that clusters clients by its data using deep neural networks in
a federated setting. The algorithm recovers optimal clusters
by iteratively alternating between estimating cluster iden-



Algorithm 2: UIFCA

1: Input: Client samples {xi,∗}ni=1, number of cluster
rounds T , initial cluster assignment {{S0

i,k}Kk=1}ni=1

2: For t = 1, · · · , T do
3: (Learning) Fit generative model for each cluster
4: For cluster k ∈ [K] in parallel do
5: θ

(t+1)
k = LearnClusterModel(S

(t)
∗ , S

(t)
∗,k)

6: (Assigning) Assign each sample to a cluster:
7: For client i ∈ [m] in parallel do

S
(t)
i,k ← {j|k = arg min

k∈[K]
f
θ
(t)
k

(xi,j)}

Algorithm 3: LearnClusterModel(S)

1: Input: Data assigned to cluster k S = (S1,k, . . . , Sn,k)
2: Choose: Number of communication rounds τ
3: Initialize θ0 randomly
4: For each round l = 1, · · · , τ do
5: For client i ∈ [n] in parallel do
6: θ

(l)
i = ModelUpdate(θ(l−1), Si,k)

7: θ(l) =
∑m
i=1

|Si,k|
|S∗,k|θ

(l)
i

8: Return: θτ

tities and optimizing the cluster models. Starting from K
randomly initialized models, cluster identities of clients are
found by assigning the model that gives best score (usually
referring to smallest loss), and models are updated by averag-
ing the model’s SGD updates from clients within the same
cluster. IFCA (Ghosh et al. 2020) was proven to be able to
recover correct cluster identities under mild conditions, and
was shown to be successful in simple clustering tasks such as
grouping the images by rotations by training classifier models
as cluster models with supervised data.

We adapt IFCA’s training method to our problem to lever-
age its powerful clustering ability in federated settings. IFCA
considers a setting where each client has data drawn i.i.d.
from a single distribution, while our problem setting assumes
that the data points in a client can come from different clus-
ters. To reflect this change, our algorithm runs client local
updates for all K cluster models with data assigned to each
corresponding cluster, while in IFCA, each client only up-
dates one cluster model locally. Also, in order to accomodate
unsupervised data, we use a generative model as cluster pa-
rameter model, to let each model capture each cluster’s data
distribution.

We now discuss details of our algorithm. The algorithm
is formally presented in algorithms 2 to 4 and illustrated in
Figure 1.

The algorithm starts with K randomly initialized model
parameters θ(0)1 , . . . , θ

(0)
K , and initial random cluster assign-

ment {{S(0)
i,k }Kk=1}ni=1. In the t-th cluster round, the center

machine broadcasts current model parameters θ(t)1 , . . . , θ
(t)
K

to all the machines.
For each cluster k ∈ [K], the clients collectively runs Fe-

Algorithm 4: ModelUpdate(θ, S)

1: Input: Initial parameter θ, set S
2: Choose: Step size η, number M of gradient steps, batch

size N
3: For j = 1, · · · ,M do
4: Bj ← random subset(S,N)
5: θj ← θj−1 − η

(
1
N∇θFθj−1(Bj)

)
6: Return: θM

dAvg algorithm with model θ(kt) to capture the distribution
of the k-th cluster’s data across the clients, using the received
model parameters(shown in Algorithm 3). Each client will
run batch gradient updateM times for each model and its cor-
responding cluster set (shown in Algorithm 4). These local
model updates are averaged in the central server, weighted
by cluster’s size. After running τ times of averaging, an op-
timized cluster models θ(t+1)

1 , . . . , θ
(t+1)
K are found. These

models are then broadcast to all clients. A cluster round ends
up with client re-evaluating the cluster identities of local dat-
apoint by finding model parameter with lowest loss(highest
likelihood), i.e., argmink∈[K]fθ(t)k

(xi,j)). The cluster rounds
iterate over T times to find optimal cluster structure in the
client’s data.

Using normalizing flow models with UIFCA
For selecting the which generative model to use with UIFCA
, we consider normalizing flow model (Tabak and Turner
2013). Normalizing flow models are generative models that
model the distribution of input data, by learning an invertible
function g that maps from base distribution pZ(z) to the
target distribution pX(x). With base distribution pZ(z) given
(commonly standard Gaussian), the likelihood of of a sample
x can be found by change of variables formula:

pX(x) = pZ(g
−1(x))

∣∣∣∣det
∂g

∂x

∣∣∣∣
The model is trained to capture the distribution by maxi-

mizing the log-likelihood of the training data with respect to
the parameters of the mapping function:

max
g

n∑
i=1

log(pX(xi))

Among many options of generative models that can
provide sample likelihood (such as variational autoen-
coders (Kingma and Welling 2014)), normalizing flow mod-
els are best fit to our needs, since it explicitly models the data
distribution, it can give the most exact estimate of sample
likelihood compared to generative models.

Experiments
In this section, we present our experimental results. We
evaluate UIFCA with synthetic datasets and realistic image
datasets based on MNIST. Our method correctly recovers



Table 1: Cluster accuracies (%) on synthetic datasets.

p 0.0 0.25 0.5 0.75 1.0

Gaussian UIFCA 100
k-FED 100

Subspace UIFCA 100
k-FED 11.5 11.7 12.5 15.8 19.3

clusters for synthetic settings, but does not perform well on
MNIST, so we also discuss possible reasons and ways to
improve it.

Synthetic experiments
We consider following two types of synthetically generated
data.

Gaussian clusters Data samples with dimension d = 32
are generated from K Gaussian distributions with same stan-
dard deviation σ = 1 and different centers. To ensure that the
clusters have less overlapping data, we generate distribution
centers θ∗k ∼ Bernoulli(0.5) for all k ∈ [kK], coordinate-
wise, and scale them by R. The R represents minimum sep-
aration between each center. For our experiments, we use
R = 5 for minimal overlap.

Subspace clusters Subspace clustered data (Parsons,
Haque, and Liu 2004) is a mixture of distributions that lies in
different subspaces. The cluster structure is not easily discov-
erable using simple clustering algorithms such as k-means.
For generating the data, a d = 32 dimensional basis set of
dsubspace = 16 orthonormal basis vectors are sampled for each
of k clusters, and clustered dataset is achieved by muitlply-
ing random gaussian coefficients to each basis sets of each
cluster.

For the model, we use 1-layer planar flow (Rezende and
Mohamed 2016) with following linear transformation func-
tion:

g(z) = wT z + b

with Gaussian prior z = N (0, 1). We initialize the models
by first generating random parameters for a single model,
and adding small random normal noise to each parameter.
This procedure will ensure avoiding initial cluster degeneracy
cases, where a particular model initializes a much smaller
loss compared to other models, gets most datapoints assigned
and fits data regardless of the clusters, while other models
cannot learn due to the small number of data points assigned
to them. We run Algorithm 2 for T = 20 cluster rounds, with
each round consisting of τ = 100 communication rounds
in Algorithm 3 and M = 100 local batch updates. For dis-
tributed training with FedAvg, we assume that all clients
participate in each communication iteration. For each type
of synthetic data, we test our algorithm with k = 4 clusters
and n = 4 clients with each client having 1000 datapoints,
resulting m = 4000 datapoints in total. We report cluster
accuracy, defined as 1

m

∑
cmaxy |Sc ∩ Sy| which measures

purity of each cluster in terms of given true label.
Clustering performance of UIFCA is reported in Table 1.

As we can see, for our provided synthetic cases, UIFCA is
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Figure 3: Cluster accuracies with respect to cluster rounds for
synthetic Gaussian clustered data, for different heterogeneity
levels p.

able to fully recover cluster information of individual data-
points inside clients, without compromising security assump-
tions of federated setting. For Gaussian clusters, each flow
model learns the transformation from standard gaussian prior
to each cluster distribution. For subspace clusters, the dat-
apoints are given to follow gaussian distribution defined in
different sets of basis sets, and our model learns the projec-
tion from standard basis to such subspaces. k-FED algorithm
does not perform well for subspace clustered data since the
data are spread out over different dimensions, distance metric
of the algorithm becomes irrelevant to the cluster structure.

To provide in-depth look of UIFCA ’s behavior, we plot
the cluster accuracy of UIFCA with Gaussian clustered data
at each cluster round in Figure 3. We can observe cluster
accuracy iteratively improving over cluster rounds. Starting
from random cluster assignment, each flow model captures
the distribution of data assigned to its cluster. The model
learns to assign high likelihood to the majority type of the
data (We denote ’type’ by the ground truth cluster of a data.)
leading to grabbing more data of the major type and less of
the other type, thus improving the cluster. Note that the cluster
accuracy converges faster as client’s data heterogeneity(p)
increases, due to a FedAvg’s weighted averaging behavior.
FedAvg’s local update would converge faster when the large
portion of (same cluster) data points are provided in the same
device, performing close to centralized SGD. On the other
hand, convergence would be relatively slow when p decreases,
due to instability caused by model averaging procedure.

MNIST experiments
We also test the performance of UIFCA with two types
of clustered dataset based on MNIST (LeCun, Cortes, and
Burges 2010) dataset. Then, we discuss limitations of our
approach and a possible approach to improve.

Cluster by digits The MNIST dataset consists of m =
60000 28x28 images of 10 digits with each digit having
approximately 6000 images. Setting the digit information



Figure 4: Randomizing the background of MNIST digit im-
ages.

as a ground truth label for the clustering task, we evaluate
unsupervised clustering performance of our algorithm with
K = 10 clusters. We simulate the setting where the data are
distributed clients according to different heterogeneity level
p, same as the synthetic experiments.

Cluster by rotation To simulate data coming from dif-
ferent distributions, we also create a clustered dataset by
applying rotations. We select one of the 10 digits and gen-
erate dataset of k = 4 clusters by applying 0, 90, 180, 270
degree of rotation, resulting in unsupervised dataset of ap-
priximately 24, 000 images. Mixing two or more digits is not
considered, in order to ensure the cluster is formed by rota-
tion, not digits. We consider digits 2, 3, 4, 5, which are some
of the digits that does not confuse rotation recognition(such
as 8). We run clustering algorithm for each of the digits and
report average cluster accuracy.

Cluster representations Since many pre-trained models
are publicly available, it is often more practical to embed-
dings(representations) of user data for clustering rather than
clustering the raw images. We test our method for clustering
image representations from a pre-trained network. For the
pre-trained model, we train a RotNet (Gidaris, Singh, and
Komodakis 2018) that predicts image rotations, trained using
rotated MNIST images in centralized settings. Each client
will have access to this pre-trained model, and is able to
obtain the representations of its local data from this model.
For the network, we use Alexnet (Krizhevsky, Sutskever, and
Hinton 2012) and extract activations from last convolutional
layer.

Using initialization obtained from baseline We often
find our method performing bad due to initializations. To
improve this situation, we also test an additional method that
starts UIFCA method with initial cluster assignment obtained
from k-FED (named k-FED + UIFCA ). We provide experi-
mental result of this method for clustering representations.

Issues with RealNVP We consider RealNVP (Dinh, Sohl-
Dickstein, and Bengio 2017) as the flow model to use with
our algorithm, which is one of the common types of normaliz-
ing flow model targeted for images. However, our preliminary
experiments showed that using standard RealNVP architec-
ture with UIFCA cannot cluster at all. We observed that the
likelihoods of the samples from cluster set used for training
the model, were indistinguishible from samples outside the
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Figure 5: A sample of cluster accuracy measured at each
epoch in single cluster iteration. The red horizontal line refers
to the cluster accuracy of the given cluster set.

cluster set, which makes likelihood-based cluster assignment
completely fail. We reason this failure by referring to an ob-
servation from (Kirichenko, Izmailov, and Wilson 2020), stat-
ing that a typical RealNVP model captures graphical styles
rather than features. A RealNVP model typically consists of
multiple stacks of affine coupling transformation function. In
each function, input is split into two parts, and the function is
optimized to model the transformation between the two. The
typical way to split the image input is to apply a pixel-level
checkerboard pattern (often called checkerboard masking) .
This architecture can be good at producing realistic images,
but may assign high likelihood to images outside the training
set, if the graphical style matches the training set. For our
task of clustering MNIST, digit images consist of similar
graphical images with a large portion of black background
and a pattern of strokes, thus clustering based on likelihoods
would have failed.

We consider two different solutions to tackle this issue.
First, we consider randomizing the background of the digit
images, as shown in Figure 4. For black pixels with value
less than 0.01, we randomly set pixel value from [0, 1]. Be-
cause the background does not have a pattern, we expect
models can focus more to the strokes of the digits. Second,
we apply one of the methods proposed to address this issue in
(Kirichenko, Izmailov, and Wilson 2020), which changes the
masking pattern of the RealNVP models from the checker-
board type to the cyclic one in each coupling function. For
details, we refer to (Kirichenko, Izmailov, and Wilson 2020).
We adapt their proposed architectural change to UIFCA from
the author’s code repository, and observe improved clustering
performance compared to standard RealNVP models.

In order to select best configuration, we conduct an abla-
tion study of these two solutions. We evaluate sample cluster
assignment of two RealNVP flow models based on its like-
lihood, each trained with digit 2 and 3 respectively. The
experiment measures the ability of distinguishing the sam-
ples in training set and the sample outside the training set,
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Figure 6: Mean loss of correctly-clustered samples and misclustered samples, measured with k = 2 models, in single cluster
iteration.

Default RB CM RB+CM
ACC(%) 50.7 95.09 99.0 98.6

Table 2: Ablation study of two methods: randomizing the
background of digit images(RB), and changing masking pat-
tern of in RealNVP(CM).

which is similar to Out-of-distribution detection. The results
are shown in Table 2. We found changing masking pattern by
itself is most effective. Randomizing background helps for
the standard RealNVP model, but does not improve when the
model’s masking pattern is changed. Hence, we conclude that
using changed masking pattern is best option for our setting.

For experiments of clustering rotations and digits of
MNIST, we run Algorithm 2 for T = 20 cluster rounds,
each having τ = 40 communication rounds and M = 100
local updates. We use the SGD optimizer with a learning rate
1× 10−4, combined with the FedAvg algorithm. For cluster-
GAN (Mukherjee et al. 2019), we use the model imported
from the author’s code repository, and use SGD optimizer
with learning rate 5× 10−3 for local batch updates. We set
the number of clients n to be same number as clusters k.

We report cluster accuracies for p ∈
{0.0, 0.25, 0.5, 0.75, 1.0} in Table 3. For raw im-
ages(Rotated, Digits), k-FED performs overall best.
As expected, clusterGAN works best at i.i.d. case (p = 0.0)
but fails as moving towards high heterogeneity case
(p = 1.0), due to FedAvg’s bad convergence under
heterogeneous environment. We observe that ours reach
higher cluster accuracy for high heteogeneity level cases
compared to clusterGAN, but yields overall very low cluster
accuracy. For clustering representations, we find that UIFCA
often works better than the k-FED approach. The k-FED +
UIFCA approach gives overall best performance, showing
that generative models can often find better structure in
distributions than k-means based approaches, and that
UIFCA can also benefit from giving good initializations,

especially when the cluster accuracies are low.
One of the key reason that UIFCA perform bad is that the

cluster accuracy often worsens if model training gets long.
We plot a sample trace of the cluster accuracies measured
at each epoch in single cluster iteration of Algorithm 2 in
Figure 5. The horizontal line is the cluster accuracy of assign-
ments from previous cluster round, which is the cluster set
that the models are trained with. We can observe that cluster
accuracy does not always increase and converge as training
progresses. It decreases after certain point, toward original
cluster accuracy. Under the hood, we observe that cluster
assignments are becoming similar to assignments of previous
iteration.

Main cause of this phenomenon overfitting of each cluster
model to its cluster set. To see this issue in detail, we repro-
duce the same issue in synthetic data setting of 2 gaussian
clusters. For each cluster, we define correct samples as sam-
ples that are the majority type of the cluster’s set, and all other
samples as incorrect. In Figure 6 we plot the mean loss of
correct and incorrect samples in cluster 1, evaluated with two
cluster models θ1, θ2, for m = 800, 2400, 4000 cases. For
the correct sample x in cluster 1, trained the model parame-
ters results in fθ1(x) < fθ2(x). For the incorrect sample x′,
we expect fθ1(x

′) > fθ2(x
′) so that x′ can move to cluster 2

at the next cluster round. However, in Figure 6a, we observe
this can happen only in early epochs. However, as the train-
ing proceeds, we observe fθ1(x

′) < fθ2(x
′) again, due to x′

becoming overfitted to model 1. The sample x′ is assigned to
cluster 1 again as a result, making no improvement in cluster
iterations. Note that this issue gets reduced when number
of data m increases, as we see Figure 6b and Figure 6c.
Figure 6c shows the plot of the same configuration with
m = 4000, and shows that two model loss fθ1(x), fθ2(x),
are not crossing, meaning that the misclustered sample will
be correctly clustered at any timestep of model training.

One may consider heuristics like applying early stopping
based on validation stats. We find this method often works
well at synthetic settings, but fails when training with real-



Table 3: Cluster accuracies(%) of MNIST based datasets over different value of client heterogeneity level p.

p 0.0 0.25 0.5 0.75 1.0

MNIST Rotated
UIFCA 63.5 60.8 63.4 79.5 79.6

ClusterGAN 95.7 78.9 49.1 36.4 28.8
k-FED 92.2 87.1 80.5 78.3 100

MNIST Digits
UIFCA 34.2 31.3 33.7 38.9 43.1

ClusterGAN 71.3 57.4 39.4 27.5 16.8
k-FED 57.0 59.1 53.3 51.6 62.3

MNIST Representations
k-FED 86.0 80.2 63.1 57.6 96.8
UIFCA 43.6 56.4 78.2 79.5 99.5

k-FED + UIFCA 85.1 85.4 80.1 81.8 99.6

world noisy data. The model should be trained to a level
where correctly clustered data are well fit, and at the same
time incorrectly clustered data are not overfit, therefore deter-
mining the optimal stopping point would be difficult without
access to the ground truth cluster label. Finding the solution
for this issue remains open.

Future work
Our framework has simple structure that clusters by loss
given by the generative models trained with each cluster set.
For the future research direction, we consider augmenting our
method to involve more information. An interesting direction
would be using more information than loss statistics for the
cluster assignment stage, such as involving different aspects
of the model (such as sample’s activation on specific layer).
Another way of improvement would be explicitly feeding
supervision signal in training the model, such as maximizing
the loss for the samples outside the cluster, which can help
models in distinguishing samples inside the cluster from
outside. We believe applying these methods improve our
framework in model training and clustering, and paritally
reduce the issue of cluster assignment converging.

Conclusions
In this paper, we address a clustering problem in a hetero-
geous federated learning setting where each client can have
data from more than one cluster. Based on the previous work
for clustered federated learning, we propose a solution that
trains multiple normalizing flow models that captures each
cluster, and assigns data a cluster membership by compar-
ing the model’s likelihoods. We observe that our framework
correctly recovers cluster information in synthetically gener-
ated data. For real-world unsupervised dataset, we observe
that our framework performs worse than baselines in some
cases, and discuss possible key reason for it. For improv-
ing our framwork, involving more information in clustering
and model training would be an interesting future research
direction.
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