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Abstract

Federated learning (FL) provides a privacy-aware learning
framework by enabling a multitude of participants to jointly
construct models without collecting their private training data.
However, federated learning has exhibited vulnerabilities to
Byzantine attacks. Many existing methods defend against such
Byzantine attacks by monitoring the gradients of clients in
the current round, i.e., gradients in one round. Recent works
have demonstrated that such naive defend methods can hardly
achieve satisfying performance. Defenses based on one-round
gradients could be compromised by adding a small well-
crafted bias to the benign gradients, due to the high variance
of one-round (benign) gradients. To address this problem, we
propose a new Average of Gradients (AG) framework, which
detects Byzantine attacks with the average of multi-round gra-
dients (i.e., gradients across multiple rounds). We theoretically
show that our AG framework leads to lower variance of the
benign gradients, and thus can reduce the effects of Byzantine
attacks. Experiments on various real-world datasets verify the
efficacy of our AG framework.

1 Introduction
Deep neural networks (DNNs) have demonstrated remark-
able success in various machine learning applications (He
et al. 2016; Chen et al. 2019; Wang et al. 2019). In conven-
tional cloud-centric methods (Kantarci and Mouftah 2014),
all clients first upload their data to a (central) server, and
then the server trains DNN models on the collected data.
However, such methods require centralized storage of clients’
private data, which raises serious privacy concerns (Shokri
and Shmatikov 2015; He et al. 2020). In particular, in privacy-
sensitive applications such as biomedical (Buch, Ahmed, and
Maruthappu 2018) and financial domains (Abbe, Khandani,
and Lo 2012), the server is not allowed to access clients’
sensitive data.

To make DNN models compliant with privacy regulations,
e.g., general data protection regulation (GDPR) (Voigt and
Von dem Bussche 2017), while preserving high-quality model
prediction ability, federated learning (FL) has attracted sig-
nificant attention in recent years (McMahan et al. 2017; Yang
et al. 2019; Lyu, Yu, and Yang 2020; Tian et al. 2022; Wu
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et al. 2020, 2021; Lyu et al. 2020). In FL systems, clients train
their local models on their own local data and upload their
local gradients (instead of the private data) to the server for
(secure) aggregation. Since local training data never leave the
clients, FL provides a privacy-aware solution for scenarios
where data is sensitive.

However, due to the distributed data storage, FL systems
become vulnerable to Byzantine attacks (Xie, Koyejo, and
Gupta 2020; Baruch, Baruch, and Goldberg 2019; Lyu et al.
2022). In FL systems, the server is not allowed to access
clients’ private data and therefore cannot directly monitor
their behaviors. A malicious party can easily create a small
number of Byzantine clients, i.e., malicious clients, to bias
the model predictions (Baruch, Baruch, and Goldberg 2019).
Different from the benign gradients, Byzantine clients can
upload crafted Byzantine gradients to poison the model, thus
degrading model utility. Therefore, developing a FL system
that is robust against Byzantine attacks is of paramount im-
portance.

A body of works have tried to defend against such Byzan-
tine attacks (Shen, Tople, and Saxena 2016; Blanchard et al.
2017; Bernstein et al. 2019; Yin et al. 2018). Most existing de-
fense methods in FL detect Byzantine attacks by monitoring
clients’ abnormal behaviors. For example, Krum (Blanchard
et al. 2017) aggregated Byzantine gradients that are close to
each other, AUROR (Shen, Tople, and Saxena 2016) detected
Byzantine gradients with cluster-based methods.

However, most existing defense methods detect Byzantine
attacks with one-round gradients (the gradients of clients
in the current round), which can hardly achieve satisfying
performance. Recent attacks (Baruch, Baruch, and Goldberg
2019; Xie, Koyejo, and Gupta 2020) have shown the possi-
bility of compromising the existing defenses and attacking
the FL systems. These attacks assume the variance of the
benign gradients is large enough, and the smallest and the
largest benign gradients are far away from each other. In such
scenarios, Byzantine clients can upload well-crafted Byzan-
tine gradients which are between the smallest and the largest
benign gradients. As a result, the Byzantine clients can com-
promise existing defenses and modify the optimal gradients.
The main reason for the success of these attacks is that the
one-round benign gradients have a large variance, and such a
large variance leads to the failure of existing defenses (Xie,
Koyejo, and Gupta 2020).



To address this problem, in this paper, we propose a new
Average of Gradients (AG) framework. Instead of one-round
gradients, we argue to use the average of multi-round gradi-
ents (i.e., gradients across multiple rounds) for detection. In
particular, in each round t, besides the gradients uploaded
in t-th round, we also utilize the gradients uploaded in the
previous t − 1 rounds for detection. We argue that the gra-
dients in the previous rounds contain the information of the
clients, thus can help the defense. Additionally, we theoret-
ically prove that using multi-round gradients can alleviate
the high variance issue of one-round gradients and lead to a
more robust defense against Byzantine attacks.

We summarize our main contributions as follows.

• We propose a novel Average of Gradients (AG) frame-
work, which utilizes the average of multi-round gradients
to detect Byzantine attacks. We show that AG framework
can effectively reduce the variance of one-round gradients
with theoretical guarantee, thus providing a more robust
defense against Byzantine attacks.

• Our AG framework is a compatible approach, which
can be combined with most existing defenses such as
Krum (Blanchard et al. 2017) and AUROR (Shen, Tople,
and Saxena 2016). Our AG framework can reduce the
variance of the original defenses and improve the effec-
tiveness of the defenses.

• Experiments on various real-world datasets and Byzantine
attacks corroborate the efficacy of our AG framework.

2 Notations and background
2.1 Notations
We use bold lower-case letters such as m to represent vectors,
lower-case letters such as m to represent scalars, upper-case
letters such as U to represent distributions, and upper-case
curlicue letters such as S to represent sets. Aggregated vec-
tors are denoted by a line over vectors such as m. Byzantine
vectors are denoted by a tilde over vectors such as m̃. ∥m∥
denotes the Euclidean norm of m. |S| is the cardinality of set
S . Gradients are denoted by g. Model parameters are denoted
by θ. We use superscripts to denote rounds, e.g., gt is the
aggregated gradient in round t. We use subscripts to denote
client indices, e.g., gt

i is the gradient of client i in round t.

2.2 Federated learning
A federated learning (FL) system consists of a (central) server
and m clients (McMahan et al. 2017). We use Di to denote
the data of the i-th client. In each (communication) round,
client i trains the model with its own data Di, computes
local gradients gi, and uploads the gradients gi to the server.
Then the server computes the aggregated gradients g with the
gradients of the clients. For fair comparison with previous
defenses, we follow the setting of (Xie, Koyejo, and Gupta
2020) by assuming the data of all clients are independent and
identically distributed (IID), and each client has the same
number of data, i.e., |D1| = · · · = |Dm|. The algorithm of a
FL system with different defenses is shown in Algorithm 1.

Algorithm 1: Training of a FL system with different defenses
Input: Learning rate η, number of client m, clients’ datasets
D1, . . . ,Dm, number of training rounds T , and filter function
F ().
Output: Trained model parameter θT

1: procedure
2: Initialize θ0

3: for each round t = 1, 2, ..., T do
4: for each client i = 1, . . . ,m do in parallel
5: Compute gt

i with dataset Di

6: end for
7: Option I (no defense):
8: gt ← 1

m

∑m
i=1 g

t
i

9: Option II (defense with one-round gradients):
10: Sb ← F (gt

1, · · · ,gt
m)

11: gt ← 1
|Sb|

∑
i∈Sb

gt
i

12: Option III (our AG framework (Section 3)):
13: for i = 1, . . . ,m do
14: gt

i,avg ← t−1
t gt−1

i,avg +
1
tg

t
i

15: end for
16: Sb ← F (gt

1,avg, . . . ,g
t
m,avg)

17: gt ← 1
|Sb|

∑
i∈Sb

gt
i

18: θt ← θt−1 − ηgt

19: end for
20: end procedure

Client optimization First, we show how the clients train
their models locally. Consider the following problem of min-
imizing an objective function:

L(θ) = Ex∼D[ℓ(θ;x)],

where ℓ() is the loss function, θ is the model parameter, and
D is the whole dataset. We can easily compute the gradients
of the above problem as follows.

gt =
1

|D|
∑
x∈D

∂ℓ(θt−1;x)/∂θt−1. (1)

We call gt the optimal gradients in round t.
However, in FL, the data is partitioned into m clients, and

each client can only compute the local gradient with its own
dataset. In particular, in round t, client i computes its local
gradient as follows.

gt
i =

1

ni

∑
x∈Di

∂ℓ(θt−1;x)/∂θt−1, (2)

where ni = |Di| is the number of client i’s local data, gt
i

are the local gradients of client i in round t, and θt−1 are
the aggregated model parameters in round t − 1, i.e., the
initialized model parameters in round t. Note that in real-
world scenarios, we use stochastic gradient descent (SGD)
to approximate Eq. (2). We further discuss their differences
in Section 3.2. Then, client i uploads gt

i to the server for
aggregation.



Server aggregation After receiving the uploaded gradi-
ents from the m clients, the server computes the aggregated
gradients and the model parameters.

Specifically, in round t, the server aggregates the uploaded
gradients according to the data size of each client (McMahan
et al. 2017):

gt =

m∑
i=1

ni

n
gt
i , (3)

where gt are the aggregated gradients in round t, n =∑m
i=1 ni is the total number of data points across all clients.

Note that we follow the previous work (Xie, Koyejo, and
Gupta 2020) to suppose all clients have the same number of
data. Thus, the gradient aggregation can be simplified as:

gt =
1

m

m∑
i=1

gt
i . (4)

The aggregation procedure is shown in Option I of Algo-
rithm 1. Afterwards, the server computes the aggregated
model parameter as follows.

θt = θt−1 − ηgt, (5)

where θt are the model parameters in round t, η is the learn-
ing rate. Afterward, the server distributes θt to the clients for
training in the next round.

Byzantine attacks in FL Nevertheless, in real-world ap-
plications, not all clients are benign, i.e., there are Byzantine
clients in the FL systems (Blanchard et al. 2017). Since the
server cannot access the clients’ private data, a malicious
party can easily create a small number of Byzantine clients
to attack the FL system. Benign clients always upload the
gradients computed with their own datasets honestly, while
Byzantine clients can upload arbitrary gradients to bias the
model. For the gradients uploaded by benign clients, we call
them benign gradients. Similarly, for the gradients uploaded
by Byzantine clients, we call them Byzantine gradients.

We suppose Byzantine clients conduct untargeted attacks,
i.e., they aim to reduce the overall performance on the main
task of FL (e.g., accuracy on classification tasks). To guaran-
tee the applicability of the defenses, we consider a stronger
attack scenario where the Byzantine clients have access to
the benign gradients of all benign clients before conducting
the attacks. Moreover, Byzantine clients may cooperate with
each other.

If a FL system directly computes the aggregated gradients
by averaging (by following Eq. (4)), the FL system can be
easily attacked by the Byzantine clients (Blanchard et al.
2017). For example, suppose there are m− 1 benign clients
and 1 Byzantine client. The ground truth aggregated gradients
are the average of all benign clients’ gradients, formally,
gt = 1

m−1

∑m−1
i=1 gt

i in round t. A Byzantine client j can
make the model train in an opposite direction by uploading
Byzantine gradients g̃t

j = − 2m−1
m−1

∑m−1
i=1 gt

i . As a result, the
aggregated gradients computed by the server (according to
Eq. (4)) are gt = 1

m

(∑m−1
i=1 gt

i + g̃t
j

)
= − 1

m−1

∑m−1
i=1 gt

i ,

and such aggregated gradients make the global model unable
to converge and adversely hurt the FL system. Therefore,
developing defense methods against Byzantine attacks in FL
systems is an urgent need.

Defenses in FL We first define the defense in FL. Since
the uploaded gradients are not guaranteed benign, the server
needs to filter out the Byzantine gradients before aggregation.
In particular, in round t, after receiving the gradients, the
server uses a filter function F () to select the benign gradients
with one-round gradients:

Sb = F (gt
1, · · · ,gt

m), (6)

where Sb is the set of benign clients chosen by the filter
function. We can choose any defense methods as the filter
function, e.g., Krum (Blanchard et al. 2017), AUROR (Shen,
Tople, and Saxena 2016), etc. Afterward, the server aggre-
gates all the gradients of clients in S as follows,

gt =
1

|Sb|
∑
i∈Sb

gt
i . (7)

The Byzantine gradients filtering process with one-round
gradients is shown in Option II of Algorithm 1.

Second, we briefly introduce two state-of-the-art de-
fense methods, i.e., Krum (Blanchard et al. 2017) and AU-
ROR (Shen, Tople, and Saxena 2016).

Suppose there are m clients in a FL system, m̃ of the
clients are Byzantine, the other m − m̃ clients are benign.
Krum precluded the clients’ gradients that are too far away.
Specifically, for each client i in round t, Krum defined a
score s(i) =

∑
i−→j

∥∥gt
i − gt

j

∥∥, where i −→ j denotes the
indices of the m − m̃ − 2 nearest gradients of gt

i . Then,
Krum kept the gradients of the client that has the minimum
score and removed all other clients’ gradients, i.e., Sb =
{i∗}, where i∗ = argmini s(i). Last, Krum assigned the
aggregated gradients with the gradients of i∗, i.e., gt = gt

i∗
.

Blanchard et al. also proposed a variant of Krum, namely
MultiKrum. Instead of keeping the gradients of a single client,
MultiKrum aggregated gradients of n− ñ clients that have
the minimum scores.

AUROR divided all the clients {1, . . . ,m} into 2 clusters:
Sb = {s1, . . . , sm1} and L = {l1, . . . , lm2}, where si, lj ∈
{1, . . . ,m} are the indices of clients, m1 and m2 are the
number of clients in each cluster that satisfy m1 +m2 = m
and m1 ≥ m2. Then, AUROR removed all the clients in L
and aggregated the gradients of clients in Sb (Eq. (7)).

However, we argue that most existing defense methods can-
not achieve satisfying defense performance against Byzantine
attacks, due to the fact that they only consider one-round gra-
dients, i.e., gradients in one round. Recent studies (Baruch,
Baruch, and Goldberg 2019; Xie, Koyejo, and Gupta 2020)
showed that they can compromise the existing defenses and
launch effective attacks by adding a small bias to the benign
gradients in each round. Xie, Koyejo, and Gupta claimed
that as long as the variance of the benign gradients is high,
they can successfully attack the server and modify the ag-
gregated gradients. In particular, when the variance is high,
the smallest benign gradients and the largest benign gradi-
ents are far away from each other. The Byzantine clients can



always find Byzantine gradients between the smallest and
the largest gradients that can attack the global model without
being detected.

3 Average of Gradients (AG) framework
In this section, we focus on detecting Byzantine gradients in
FL systems, i.e., the filter function F () in Eq. (6). We first
introduce our proposed Average of Gradients (AG) frame-
work. Then, we theoretically prove that our AG framework
can reduce the variance of benign gradients.

3.1 Detection with AG framework
As discussed in Section 2.2, recent attacks (Baruch, Baruch,
and Goldberg 2019; Xie, Koyejo, and Gupta 2020) can al-
ways compromise the defenses which use one-round gradi-
ents for detection. To this end, we propose a new Average
of Gradients (AG) framework, which utilizes multi-round
gradients (i.e., gradients across multiple rounds) to detect
Byzantine attacks. Our detection procedure with multi-round
gradients is shown in Option III of Algorithm 1. Specifically,
in each round t, the server first averages the gradients of each
client from the first round till the current round t:

gt
i,avg =

1

t

t∑
k=1

gk
i , (8)

where i = 1, . . . ,m are the indices of clients, gt
i,avg is the av-

erage of gradients for the i-th client in round t. To accelerate
the computation, we can calculate the average of gradients in
round t by:

gt
i,avg =

t− 1

t
gt−1
i,avg +

1

t
gt
i . (9)

Then, the server detects Byzantine attacks with the average
of gradients:

Sb = F (gt
1,avg, . . . ,g

t
m,avg). (10)

Note that previous defenses (e.g., Krum, AUROR) improve
their effectiveness by modifying the filter function F (), while
our AG framework changes the inputs of F () by utilizing
multi-round gradients. Thus, our AG framework is a com-
patible approach, which can be combined with most existing
defenses by modifying the filter function F ().

Moreover, our AG framework can generalize to a more
practical setting, where only a portion of clients take part in
the training in each round. In particular, in round t, suppose
Pt ⊆ {1, · · · ,m} with |Pt|

m = α is the proportion of clients
that take part in the training, and we call α the client training
rate. The server computes average gradients for the clients in
Pt as follows.

gt
i,avg =

1

Ti

∑
k∈Ti

gk
i , (11)

where i ∈ Pt are the clients that take part in the training in
round t, Ti ⊆ {1, · · · , t} are the rounds that client i took part
in. Then, the server uses {gt

i,avg}i∈Pt
to filter out Byzantine

clients.

3.2 Theoretical analysis
As discussed in Section 2.2, we use gt

i to denote the gradients
computed by gradient descent (GD) (shown in Eq. (2)) for
client i in round t. However, in real-world scenarios, the local
gradients of the clients are computed by SGD instead of GD.
We use gradients computed by SGD ĝt

i to approximate gt
i as

ĝt
i =

1

B

∑
x∈Bt

i

∂ℓ(θt−1;x)/∂θt−1, (12)

where B is the size of minibatch for SGD, Bti ⊆ Di is a
random minibatch of SGD for client i in round t.

In t-th round, there are certain discrepancies between local
SGD gradients ĝt

i and optimal gradients gt. The discrep-
ancies originate from two aspects: one is the differences
between local datasets and the whole dataset used to com-
pute gradients; the other is the random sampling in SGD.
Therefore, we model the discrepancies ĝt

i − gt as follows.

ĝt
i − gt = (ĝt

i − gt
i) + (gt

i − gt), (13)

ĝt
i − gt

i ≈ ζt
i ∼

1√
B
N (0,Σt

i) (14)

gt
i − gt = µt

i, (15)

whereN (0,Σt
i) are normal distributions with zero mean and

covariance matrix Σt
i. We use µt

i to represent the gradient
discrepancies caused by the difference of datasets in round
t and ζt

i to characterize the gradient discrepancies caused
by random sampling in SGD. Particularly, the stochastic
gradient is a sum of independent, uniformly sampled contri-
butions. Invoking the central limit theorem, ζt

i is assumed to
be Gaussian with covariance Σt

i/B (Mandt, Hoffman, and
Blei 2017).

The average of gradients (computed by SGD) of client i in
the first t rounds are denoted as

ĝt
i,avg =

1

t

t∑
k=1

ĝk
i . (16)

In order to measure the dispersion of {ĝt
i,avg}mi=1, we define

variance vt as

vt =
1

m

m∑
i=1

∥ĝt
i,avg − µ̂t∥2, (17)

where µ̂t =
∑m

i=1 ĝ
t
i,avg/m.

We make the following assumptions for theoretical analy-
sis.

Assumption 1. [Gradient bound] Client gradients gt
i

and optimal gradients gt are bounded, i.e., ∥gt
i∥ ≤ c1,

∥gt∥ ≤ c1, t = 0, 1, · · · , T .

Assumption 2. [Variance bound] (Bernstein et al.
2019)

√
Bζt

i have coordinate bounded variance, i.e.
V ar[(

√
Bζt

i)j ] ≤ σ2
ij , j = 1, 2, · · · , d, where (

√
Bζt

i)j is
the j-th component of

√
Bζt

i, V ar[(
√
Bζt

i)j ] represents
the variance of (

√
Bζt

i)j , and d is the dimension of model
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Figure 1: Accuracy of different defense methods under LIE attack on MNIST across m̃={10, 20, 30} Byzantine clients.
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Figure 2: Accuracy of different defense methods under LIE attack on Fashion-MNIST across m̃={10, 20, 30} Byzantine clients.

parameters θ.

Assumption 3. [Client independence and sampling
independence] (Mandt, Hoffman, and Blei 2017) Gradient
computation (by SGD) on different clients is independent,
and random sampling in SGD in different rounds is
independent, i.e., {ζt

i}i,t are independent random variables.

Assumption 1 can be easily satisfied by clipping the gra-
dients during training. Assumption 2 directly follows (Bern-
stein et al. 2019). In Assumption 3, the independence of
different clients is a basic setting in FL while the indepen-
dence of random sampling follows from (Mandt, Hoffman,
and Blei 2017). With the above assumptions, we provide the
following variance reduction guarantee of ĝt

i,avg.
Proposition 1. If Assumption 1, 2, 3 hold, then the expec-

tation of the variance of the averaged gradients {ĝt
i,avg}mi=1

is upper bounded as follows.

E[vt] ≤ (1− 1

m
)
c2
B
t−1 + 8(1− 1

m
)c21, (18)

where c2 =
∑m

i=1

∑d
j=1 σ

2
ij/m, d is the dimension of model

parameters θ.
In Proposition 1, c1, c2, and p are constants, B is the mini-

batch size for SGD, and m is the number of clients. The proof
is provided in Appendix A. Since p ∈ [0, 1), the upper bound
of the expectation of the variance E[vt] gets smaller as the
number of rounds t increases. Therefore, we can conclude

that the variance of one-round gradients has a higher upper
bound, while the variance of multi-round gradients has a
lower upper bound. Consequently, our AG framework can re-
duce the variance of benign gradients by utilizing multi-round
gradients, and further improve the strength of the defenses.

4 Experiments
4.1 Experimental setup
Attack methods In our experiments, we apply two state-of-
the-art attack methods: “fall of empires” (FE) (Xie, Koyejo,
and Gupta 2020) and “a little is enough” (LIE) (Baruch,
Baruch, and Goldberg 2019).

Suppose there are m clients: m̃ of them are Byzantine and
their gradients are g̃t

1, . . . , g̃
t
m̃ in round t, and m− m̃ of the

clients are benign and their gradients are gt
1, . . . ,g

t
(m−m̃).

FE attacks the global model by sending the opposite values
of the benign gradients to the server, i.e., g̃t

1 = . . . = g̃t
m̃ =

ϵ
m−m̃

∑m−m̃
i=1 −gt

i . We set the coefficient ϵ = 1 according to
the original paper.

LIE adds the standard deviations to the benign gradients,
i.e., g̃t

1 = . . . = g̃tm̃ = 1
m−m̃

∑m−m̃
i=1 gti + ϵσ, where σ is

the element-wise standard deviation of gt
1, . . . ,g

t(m−m̃). We
set the coefficient ϵ = 1.5 according to the original paper.

Baselines We modify MultiKrum (Blanchard et al. 2017)
and AUROR (Shen, Tople, and Saxena 2016) to their AG ver-
sions, i.e., AG-MultiKrum and AG-AUROR. MultiKrum and
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Figure 3: Accuracy of different defense methods under LIE attack on CIFAR-10 across m̃={10, 20, 30} Byzantine clients.

Table 1: Accuracy (mean± standard deviation) of different defenses under FE attack on MNIST, Fashion-MNIST, and CIFAR-10
datasets. Best results are shown in bold.

m̃ Dataset MultiKrum AG-MultiKrum AUROR AG-AUROR No defense

10
MNIST 97.58 ± 0.05 99.03 ± 0.07 98.06 ± 0.04 99.18 ± 0.06 97.05 ± 0.01

FMNIST 84.26 ± 0.04 89.01 ± 0.04 84.95 ± 0.08 89.45 ± 0.10 82.91 ± 0.02
CIFAR-10 51.61 ± 0.63 53.16 ± 0.50 51.78 ± 1.80 54.55 ± 1.02 49.59 ± 1.55

20
MNIST 94.87 ± 0.12 97.59 ± 0.07 96.52 ± 0.08 98.98 ± 0.03 94.90 ± 0.09

FMNIST 82.89 ± 0.19 87.53 ± 0.19 83.63 ± 0.20 89.11 ± 0.38 79.27 ± 0.16
CIFAR-10 44.10 ± 1.33 46.59 ± 0.57 50.75 ± 1.31 54.42 ± 0.72 44.34 ± 0.75

30
MNIST 93.90 ± 0.30 95.94 ± 0.24 95.80 ± 0.56 98.44 ± 0.04 11.37 ± 1.55

FMNIST 72.70 ± 0.96 82.29 ± 1.55 81.88 ± 1.06 86.39 ± 0.22 12.43 ± 1.07
CIFAR-10 35.16 ± 1.05 39.40 ± 1.61 46.56 ± 0.54 49.28 ± 1.10 10.00 ± 0.00

AUROR use one-round gradients to detect Byzantine attacks,
while AG-MultiKrum and AG-AUROR utilize multi-round
gradients for detection. Overall, we compare the performance
of four defense methods: MultiKrum, AG-MultiKrum, AU-
ROR, and AG-AUROR.

Datasets Our experiments are conducted on 3 real-world
datasets in CV domain: MNIST (LeCun et al. 1998), Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), and CIFAR-
10 (Krizhevsky, Hinton et al. 2009). MNIST dataset con-
tains binary images of handwritten digits. There are 60,000
training images and 10,000 testing images in MNIST
dataset. Fashion-MNIST is a dataset of Zalando’s article
images—consisting of a training set of 60,000 examples
and a test set of 10,000 examples. Each example is a 28x28
grayscale image, associated with a label from 10 classes.
CIFAR-10 dataset consists of 60,000 32x32 color images in
10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images in CIFAR-10 dataset.

Settings The number of total client m is set to 100. We
consider different capabilities of the attacker, where the num-
ber of Byzantine clients m̃={10, 20, 30}. We train the model
using SGD with momentum=0.5, and learning rate η = 0.1.
We set the number of training rounds T = 100 for MNIST
and Fashion-MNIST datasets, and T = 200 for CIFAR-10
dataset. In each round, the client trains its local data for
5 epochs and the batch size is 64. Following the setting
of (McMahan et al. 2017), we utilize a 4-layer CNN to train
the model on MNIST and Fashion-MNIST datasets and a

5-layer CNN on CIFAR-10 dataset. All experiments are run
on the same machine with Intel E5-2665 CPU, 32GB RAM,
and four GeForce GTX 1080Ti GPU. We set the client train-
ing rate α=0.1, i.e., randomly select 10% of the clients for
training in each round. All experiments are run five times,
and we report the average results.

4.2 Results under “a little is enough” (LIE) attack
Figure 1, Figure 2, and Figure 3 illustrate the results of differ-
ent defense methods under LIE attack across m̃={10, 20, 30}
Byzantine clients on MNIST, Fashion-MNIST, and CIFAR-
10 datasets, respectively. From these three figures, we can
observe that:

(1) Our AG framework generally outperforms all the orig-
inal version of defenses on all datasets across m̃={10, 20,
30} Byzantine clients, which verifies the efficacy of our AG
framework.

(2) When m̃={10, 20}, AG-MultiKrum only gives a
slightly better performance than MultiKrum. Our interpreta-
tion is that when there are few Byzantine clients, MultiKrum
is capable of dealing with the Byzantine attacks. Nevertheless,
when m̃=30, MultiKrum fails to detect the Byzantine attacks.
We hypothesise that the reason is that when the number of
benign clients becomes small, the variance of benign gradi-
ents becomes high, and MultiKrum fails to defend against
the Byzantine attacks when m̃ becomes large. By contrast,
our AG framework can successfully reduces the variance
of benign gradients by utilizing the multi-round gradients
for detection. Thus, AG-MultiKrum can effectively detect



Table 2: Accuracy of MultiKrum and AG-MultiKrum under
LIE attack on CIFAR-10 dataset across different α. Best
results are shown in bold.

α 0.05 0.1 0.2 0.3 0.4 0.5
MultiKrum 21.18 22.61 24.90 24.81 25.53 26.61

AG-MultiKrum 44.33 52.50 52.76 52.84 52.99 53.36

Table 3: Variance of one-round (benign) gradients and
multi-round (benign) gradients on CIFAR-10 dataset across
α={0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Lower variances are in bold.

α 0.05 0.1 0.2 0.3 0.4 0.5
One-round gradients 12.33 11.14 10.91 10.72 10.59 10.44

Multi-round gradients 5.67 4.62 4.49 4.43 4.37 4.32

Byzantine attacks even when m̃ is large.
(3) When m̃=10, all defense methods have similarly high

accuracies on MNIST and Fashion-MNIST datasets. Even
the accuracy of “No defense” is very high. We hypothesise
that the reason is that when the number of Byzantine clients
is small, these Byzantine clients can hardly affect the global
model. As m̃ becomes larger, the accuracy of MultiKurm and
AUROR start to drop while AG-MultiKrum and AG-AUROR
can still maintain high accuracy.

(4) As shown in Figure 3, AUROR exhibits bad perfor-
mance on CIFAR-10 dataset and oscillates during the train-
ing progress, we hypothesise that this is because the variance
of benign gradients is high enough for the attack to com-
promise AUROR. By contrast, our AG-AUROR can largely
improve the performance of AUROR by utilizing multi-round
gradients.

4.3 Results under “fall of empires” (FE) attack
Table 1 demonstrates the results of different defense methods
under FE attack across m̃={10, 20, 30} Byzantine clients on
CIFAR-10, MNIST, and Fashion-MNIST datasets, respec-
tively. As evidenced by Table 1, our AG framework achieves
a better performance than the baseline methods.

From all the results, we can also observe that when m̃={10,
20}, AG-MultiKrum and AG-AUROR only achieve a slightly
better performance than their original versions, and when
m̃={30}, combining with our AG framework can signifi-
cantly outperform the baselines. Our interpretation is that
when benign clients are the overwhelming majority, the vari-
ance of the benign gradients is low, and therefore the Byzan-
tine clients are unable to effectively attack the model. As the
number of benign clients decreases, the variance of benign
gradients becomes large, and Byzantine clients can achieve
more efficient attack performance. Our AG framework can
decrease the variance of benign gradients, make the Byzan-
tine clients more difficult to attack the model, and thus can
improve the performance of MultiKrum and AUROR.

4.4 Results on different client training rate
In this section, we discuss the impact of client training rate α.
A higher α means more benign clients. Table 2 demonstrates
the accuracy of MultiKrum and AG-MultiKrum under “a
little is enough” (LIE) attack on CIFAR-10 dataset across

α={0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. As shown in Table 2, AG-
MultiKrum outperforms MultiKrum, which validates that
our AG framework can effectively defend against Byzantine
attacks under various client training rates. In Table 3, we
list the variance of one-round (benign) gradients and multi-
round (benign) gradients across different α. The variance of
multi-round gradients is consistently lower than one-round
gradients across all α, which verifies that our AG framework
can indeed decrease the variance of benign gradients. More-
over, in Table 2, the performance of all defense methods
increases as α becomes larger. We attribute this to the de-
crease of the variance of benign gradients as the number of
benign clients increases.

5 Conclusion and future work
In this paper, we show that existing defenses cannot well de-
fend against the Byzantine attacks, due to the high variance
of one-round gradients. To address this problem, we propose
a novel Average of Gradients (AG) framework, which uses
multi-round gradients to detect Byzantine attacks. We theoret-
ically show that our AG framework can reduce the variance
of benign gradients, and lead to better defense performance
against Byzantine attacks. Empirical studies on three real-
world datasets justify the efficacy of our AG framework. In
this paper, we only discuss Byzantine attacks that degrade
the overall performance, i.e., untargeted attacks. Defenses
against targeted attacks need further investigation.
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A Proof of Proposition 1
We make the following assumptions for theoretical analysis.

Assumption 1. [Gradient bound] Client gradients gt
i and optimal gradients gt are bounded, i.e., ∥gt

i∥ ≤ c1, ∥gt∥ ≤ c1,
t = 0, 1, · · · , T .

Assumption 2. [Variance bound]
√
Bζt

i have coordinate bounded variance, i.e. V ar[(
√
Bζt

i)j ] ≤ σ2
ij , j = 1, 2, · · · , d,

where (
√
Bζt

i)j is the j-th component of
√
Bζt

i, V ar[(
√
Bζt

i)j ] represents the variance of (
√
Bζt

i)j , and d is the dimension of
model parameters θ.

Assumption 3. [Client independence and sampling independence] Gradient computation (by SGD) on different clients is
independent, and random sampling in SGD in different rounds is independent, i.e., {ζt

i}i,t are independent random variables.

With the above assumptions, we provide the following variance reduction guarantee of ĝt
i,avg .

Proposition 1. If Assumption 1, 2, 3 hold, then the expectation of the variance of the averaged gradients {ĝt
i,avg}mi=1 is upper

bounded as follows.

E[vt] ≤ (1− 1

m
)
c2
B
t−1 + 8(1− 1

m
)c21, (19)

where c2 =
∑m

i=1

∑d
j=1 σ

2
ij/m, d is the dimension of model parameters θ.

Proof. Let gt
avg =

∑t
k=1 g

k/t, then

∥gt
avg∥ =∥

1

t

t∑
k=1

gk∥

≤1

t

t∑
k=1

∥gk∥

≤1

t
· tc1

=c1 (20)

Consider the distribution of ĝt
i,avg − gt

avg as follows.

ĝt
i,avg − gt

avg =
1

t

t∑
k=1

ĝk
i,avg −

1

t

t∑
k=1

gk

=
1

t

t∑
k=1

(ĝk
i,avg − gk)

≈1

t

t∑
k=1

(µk
i + ζk

i )

∼N (
1

t

t∑
k=1

µk
i ,

1

Bt2

t∑
k=1

Σk
i ).

Then, the variance of (ĝt
i,avg − gt

avg)j can be bounded as follows.

V ar[(ĝt
i,avg − gt

avg)j ] =
1

Bt2

t∑
k=1

(Σk
i )jj

≤ 1

Bt2
· tσ2

ij

=
σ2
ij

B
· t−1, (21)

where ()j denotes the j-th component of the vector, ()jj denotes the j-th diagonal element of the matrix. Here, the inequality is
due to Assumption 2, more specifically, (Σk

i )jj = V ar[(
√
Bζk

i )j ] ≤ σ2
ij .



In order to bound E[vt], we rewrite vt as follows.

vt =
1

m

m∑
i=1

∥(ĝt
i,avg − gt

avg)− (µ̂t − gt
avg)∥2

=
1

m

m∑
i=1

(∥ĝt
i,avg − gt

avg∥2 + ∥µ̂
t − gt

avg∥2 − 2(ĝt
i,avg − gt

avg)
⊤(µ̂t − gt

avg))

=
1

m

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 +
1

m

m∑
i=1

∥µ̂t − gt
avg∥2 − 2 · 1

m

m∑
i=1

(ĝt
i,avg − gt

avg)
⊤(µ̂t − gt

avg)

=
1

m

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 + ∥µ̂
t − gt

avg∥2 − 2∥µ̂t − gt
avg∥2

=
1

m

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 − ∥µ̂
t − gt

avg∥2. (22)

Here, we can rewrite ∥µ̂t − gt
avg∥2 as follows.

∥µ̂t − gt
avg∥2 =∥ 1

m

m∑
i=1

(ĝt
i,avg − gt

avg)∥2

=
1

m2
(

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 + 2

m∑
i=1

m∑
l=i+1

(ĝt
i,avg − gt

avg)
⊤(ĝt

l,avg − gt
avg))

=
1

m2

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 +
2

m2

m∑
i=1

m∑
l=i+1

(ĝt
i,avg − gt

avg)
⊤(ĝt

l,avg − gt
avg). (23)

By combining Eq. (22) and Eq. (23), we can get

vt =(
1

m
− 1

m2
)

m∑
i=1

∥ĝt
i,avg − gt

avg∥2 −
2

m2

m∑
i=1

m∑
l=i+1

(ĝt
i,avg − gt

avg)
⊤(ĝt

l,avg − gt
avg).

Then, we can compute E[vt] as follows.

E[vt] =(
1

m
− 1

m2
)

m∑
i=1

E[∥ĝt
i,avg − gt

avg∥2]−
2

m2

m∑
i=1

m∑
l=i+1

E[(ĝt
i,avg − gt

avg)
⊤(ĝt

l,avg − gt
avg)]

=(
1

m
− 1

m2
)

m∑
i=1

E[∥ĝt
i,avg − gt

avg∥2]−
2

m2

m∑
i=1

m∑
l=i+1

(E[ĝt
i,avg]

⊤ − gt
avg)(E[ĝt

l,avg]− gt
avg). (24)

Here, the second equality is due to the independence of ĝt
i,avg and ĝt

j,avg for i ̸= j (client independence, Assumption 3).



We bound E[∥ĝt
i,avg − gt

avg∥2] as follows.

E[∥ĝt
i,avg − gt

avg∥2] =E[
d∑

j=1

(ĝt
i,avg − gt

avg)
2
j ]

=

d∑
j=1

E[(ĝt
i,avg − gt

avg)
2
j ]

=

d∑
j=1

(V ar[(ĝt
i,avg − gt

avg)j ] + (E[(ĝt
i,avg − gt

avg)j ])
2)

=

d∑
j=1

V ar[(ĝt
i,avg − gt

avg)j ] +

d∑
j=1

(E[(ĝt
i,avg − gt

avg)j ])
2

=

d∑
j=1

V ar[(ĝt
i,avg − gt

avg)j ] + ∥E[ĝt
i,avg − gt

avg]∥2

≤
d∑

j=1

V ar[(ĝt
i,avg − gt

avg)j ] + (∥Eĝt
i,avg∥+ ∥gt

avg∥)2

≤
d∑

j=1

σ2
ij

B
· t−1 + 4c21. (25)

Here, the first inequality is due to triangle inequality, the second inequality is due to (20), (21)and Assumption 1.
We bound (E[ĝt

i,avg]− gt
avg)

⊤(E[ĝt
l,avg]− gt

avg) as follows.

(E[ĝt
i,avg]− gt

avg)
⊤(E[ĝt

l,avg]− gt
avg) ≥− ∥E[ĝt

i,avg]− gt
avg∥ · ∥E[ĝt

l,avg]− gt
avg∥

≥ − (∥E[ĝt
i,avg]∥+ ∥gt

avg∥) · (∥E[ĝt
l,avg]∥+ ∥gt

avg∥)
≥− 4c21. (26)

Here, the first inequality is due to the lower bound of inner product, the second inequality due to triangle inequality, the third
inequality is due to (20) and Assumption 1.

Finally, by combining the (24), (25), and (26), we can get:

E[vt] =(
1

m
− 1

m2
)

m∑
i=1

E[∥ĝt
i,avg − gt

avg∥2]−
2

m2

m∑
i=1

m∑
l=i+1

(E[ĝt
i,avg]

⊤ − gt
avg)(E[ĝt

l,avg]− gt
avg)

≤( 1
m
− 1

m2
)
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i=1

(

d∑
j=1

σ2
ij

B
· t−1 + 4c21)−

2

m2
· m(m− 1)

2
(−4c21)

=(1− 1

m
)
c2
B
t−1 + 8(1− 1

m
)c21.
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