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Abstract

Advances in federated learning (FL) algorithms, along with
technologies like differential privacy and homomorphic en-
cryption, have led to FL being increasingly adopted and used
in many application domains. Traditional tree-based paral-
lelization schemes can enable FL aggregation to scale to thou-
sands of participants, but (i) waste a lot of resources due to the
fact that training on participants, as opposed to aggregation,
is the bottleneck in many FL jobs, (ii) require a lot of effort
for fault tolerance and elastic scalability.
In this paper, we present a new architecture for FL aggre-
gation, based on serverless technology/cloud functions. We
describe how our design enables FL aggregation to be dy-
namically deployed only when necessary, elastically scaled to
handle participant joins/leaves and is fault tolerant with min-
imal effort required on aggregator side. We also demonstrate
that our prototype based on Ray (Moritz et al. 2018) scales
to thousands of participants, and is able to achieve a > 90%
reduction in resource utilization with minimal impact on ag-
gregation latency.

Introduction
Federated Learning (FL) (Kairouz et al. 2019) provides a
collaborative training mechanism, which allows multiple
parties to build a joint machine learning model. FL allows
parties to retain private data within their controlled domains.
Only model updates are shared, typically, to a central ag-
gregation server. Though there have been demonstrated data
reconstruction (model inversion) and membership inference
attacks on model updates (Zhao, Mopuri, and Bilen 2020;
Zhu, Liu, and Han 2019; DLG git repository; iDLG git
repository; IG git repository; Geiping et al. 2020), there
have also been solutions proposed (and proven) to prevent
information leakage from model updates, including homo-
morphic encryption e.g., (Jayaram et al. 2020; Aono et al.
2017), shuffling and differential privacy (Abadi et al. 2016)
through the addition of noise to model updates. These se-
curity measures have made FL especially attractive for mu-
tually distrusting/competing training participants as well as
holders of sensitive data (e.g., health and financial data)
seeking to preserve data privacy. Recently, FL has been ap-
plied to several real world problems on private data, e.g.,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Google Gboard (Bonawitz et al. 2019) and COVID CT-
Scans (Dayan 2021) and has been shown to achieve signifi-
cant increases in model utility.

Aggregation of model updates is arguably the most impor-
tant component of an FL job. The increased adoption and use
of FL has made apparent the lack of scalable, fault-tolerant
and resource efficient FL aggregation platforms. Most exist-
ing FL platforms (IBM FL (Ludwig et al. 2020), FATE (Liu
et al. 2021), NVFLARE (NVIDIA 2021)) are based on a
client-server model with aggregators deployed in datacen-
ters waiting for model updates. Often, training at the party
takes much longer compared to model update fusion/aggre-
gation, resulting in under-utilization and wastage of comput-
ing resources. This is a significant problem even in so-called
“cross-silo” deployments, where the number of parties is
small; parties have dedicated resources available for train-
ing and are actively participating. It is further compounded
in “cross-device” deployments, where the number of parties
is very large (> 1000), parties are highly intermittent and do
not have dedicated resources for training. This results in ag-
gregators having to wait for long periods of time for parties
to finish local training and send model updates.

This paper proposes a flexible parameter aggregation ar-
chitecture and mechanism for federated learning, that:
• supports both intermittent and active participants effec-

tively,
• is scalable both with respect to participants – effective

for cross-silo and cross-device deployments, and with re-
spect to geography – single cloud or hybrid cloud or mul-
ticloud,

• is efficient, both in terms of resource utilization with sup-
port for automatic elastic scaling, and in terms of aggre-
gation latency.

The core technical contribution of this paper is the design,
implementation and evaluation of a new FL aggregation sys-
tem – λ-FL, which has the following novel features:
1. λ-FL reduces state in aggregators and treats aggregators

as serverless functions. In many existing FL jobs, every
aggregator instance typically acts on a sequence of in-
puts and produces a single output. State, if present, is
not local to the aggregator instance and may be shared
by all aggregators. Such state is best left in an external
store, and consequently aggregators can be completely



stateless and hence, serverless. This is the case with most
federated learning algorithms.

2. λ-FL leverages current serverless technologies to deploy
and tear down aggregator instances dynamically in re-
sponse to participant model updates. There is no reason
to keep aggregators deployed all the time and simply
“awaiting input”.

3. λ-FL is implemented using the popular Ray (Moritz et al.
2018) distributed computing platform, and can run arbi-
trary Python code in aggregation functions, and use ac-
celerators if necessary.

4. λ-FL uses NO long lived network connections anywhere,
and instead uses a message queue to record the presence
of model updates. With serverless functions, aggregator
instances (at all levels) can appear when there are model
updates, and be torn down when their work is finished.
Aggregator outputs go back to the message queue, and
aggregators (functions) are not coupled to each other.

5. Increased reliability and fault tolerance by reducing state
in aggregators, eliminating persistent network connec-
tions between aggregators, and through dynamic load
balancing of participants.

FL Aggregation, Approaches and Problems
FL Aggregation and Rounds
The federated learning process between parties most com-
monly uses a single aggregator, which can quickly become a
bottleneck and impact the scalability of the FL platform/job.
An aggregator would coordinate the overall process, com-
municate with the parties, and integrate the results of the
training process. Most typically, for neural networks, par-
ties would run a local training process on their training data,
share the weights of their model with the aggregator, which
would then aggregate the weight vectors of all parties using
a fusion algorithm. Then, the merged/aggregated model is
sent back to all parties for the next round of training.

An FL job thus proceeds over a number of fusion/syn-
chronization rounds, determined by the batch size (B) used.
Setting B to ∞ means that each party trains on its entire lo-
cal dataset before model fusion. For each round, a model up-
date generated by a party is often intended to be ephemeral,
but must be durably stored by the aggregator until model fu-
sion is complete, and the aggregated model is durably stored.
Model updates may be retained by each party according to
its local data retention policy, but the default behavior on
the aggregator side is to delete the model updates once the
fused model is durably stored. If required by legal or au-
dit regulations, or for model explainability, aggregators may
store model updates long term with the permission of par-
ties. Durable storage means reliable replicated distributed
storage (like Cloud Object Stores).

Cross-silo vs. Cross-device
Federated Learning is typically deployed in two scenarios:
cross-device and cross-silo. The cross-device scenario in-
volves a large number of parties (> 1000), but each party
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Figure 1: Hierarchical/Tree-based Aggregation

has a small number of data items, constrained compute ca-
pability, and limited energy reserve (e.g., mobile phones or
IoT devices). They are highly unreliable/asynchronous and
are expected to drop and join frequently. Examples include a
large organization learning from data stored on employees’
devices and a device manufacturer training a model from
private data located on millions of its devices (e.g., Google
Gboard (Bonawitz et al. 2019)). A trusted authority, which
performs aggregation and orchestrates training, is typically
present in a cross-device scenario.

Contrarily, in the cross-silo scenario, the number of par-
ties is small, but each party has extensive compute capabil-
ities (with stable access to electric power and/or equipped
with hardware accelerators) and large amounts of data. The
parties have reliable participation throughout the entire fed-
erated learning training life-cycle, but are more susceptible
to sensitive data leakage. Examples include multiple hospi-
tals collaborating to train a tumor detection model on radio-
graphs, multiple banks collaborating to train a credit card
fraud detection model, etc. In cross-silo scenarios, there of-
ten exists no presumed central trusted authority. The deploy-
ments often involve hosting aggregation in public clouds, or
alternatively one of the parties acting as, and providing in-
frastructure for aggregation.

In FL, aggregation is typically provided as a service by
one or two organizations, which are trusted by participants
to faithfully aggregate model updates. Although recent re-
search has explored peer-to-peer (P2P) aggregation and us-
ing blockchain to publish model updates, such techniques,
in practice require participants to trust more intermediaries.
P2P aggregation involves model updates passing through
and visible to multiple entities, requiring participants to trust
all of them. Model updates posted to blockchain distributed
ledgers are typically public to all participants. Hence, aggre-
gation in a datacenter/cloud, as a software service provided
by an organization, is the predominant deployment mode.

Associativity of Aggregation
Given the differences in use cases, deployment environ-
ments and performance expectations, different FL aggrega-
tion architectures are used for cross-silo and cross-device



FL.
In this scenario, given that the number of participants

varies between FL jobs, and within a job (over time) as par-
ticipants join and leave, horizontal scalability of FL aggre-
gation software is vital. Horizontally scalable aggregation
is only feasible if the aggregation operation is associative –
assuming ⊕ denotes the aggregation of model updates (e.g.,
gradients) Ui, ⊕ is associative if U1 ⊕ U2 ⊕ U3 ⊕ U4 ≡
(U1⊕U2)⊕ (U3⊕U4). Associativity enables us to partition
participants among aggregator instances, with each instance
responsible for handling updates from a subset of partici-
pants. The outputs of these instances must be further aggre-
gated. A common design pattern in parallel computing (Ku-
mar 2002) is to use tree-based or hierarchical aggregation
in such scenarios, with a tree topology connecting the ag-
gregator instances. The output of each aggregator goes to its
parent for further aggregation.

Hierarchical/Tree-based Aggregation
Establishing a tree-based aggregation topology starts by
identifying the number of participants that can be com-
fortably handled by an aggregator instance. This is de-
pendent on (i) size/hardware capability of the instance
(CPU/RAM/GPU) and its network bandwidth. This matters
irrespective of whether a single physical server or a virtual
machine (VM) or a container hosts the instance, and (ii) the
size of the model, which directly corresponds to the size
of the model update and the memory/compute capabilities
needed for aggregation. Assuming that each instance can
handle k participants, a complete and balanced k-ary tree
can be used; ⌈n

k ⌉ leaf aggregators are needed to handle n
participants, the tree will have O(⌈n

k ⌉) nodes.
While a tree-based aggregation overlay is conceptually

simple, it does involve significant implementation and de-
ployment effort for fault tolerant aggregation. Typically,
the aggregation service provider instantiates aggregator in-
stances using virtual machines (VMs) or containers (e.g.,
Docker) and manages them using a cluster management sys-
tem like Kubernetes. These instances are then arranged in
the form of a tree, i.e., each instance is provided with the
IP address/URL of its parent, expected number of child ag-
gregators, credentials to authenticate itself to said parent
and send aggregated model updates. Failure detection and
recovery has to be implemented, and is typically done us-
ing heartbeats and timeouts, between each instance, its par-
ents and children. Once faults happen, the service provider
should typically take responsibility for recovering the in-
stance, and communicating information about the recovered
instance to its children for further communications. Things
become complicated when an instance fails at the same time
as one of its parent or child instances. In summary, the aggre-
gation service provider has to maintain dedicated microser-
vices to deploy, monitor and heal these aggregation overlays.
Another issue, common in distributed software systems, that
arises in this scenario is network partitions. Yet another fac-
tor, in geographically distributed settings, is that aggregator
instances may live on different data centers and failure/par-
tition detection and recovery can involve co-ordination be-
tween multiple cluster managers.

“Idle Waiting” in Hierarchical Aggregation
Even if some technologies like Kubernetes pods and service
abstractions are able to simplify a few of these steps, a more
serious problem with tree-based aggregation overlays is that
aggregator instances are “always on” waiting for updates,
and this is extremely wasteful in terms of resource utilization
and monetary cost. To see why keeping aggregators alive
is wasteful, it is useful to consider that parties in FL can
participate actively or intermittently.

• Active participation means that parties have dedicated
resources to the FL job, and will promptly respond to
aggregator messages. That is, for every synchronization
round, once the aggregator sends the updated model, the
party starts the next local training round and sends a (lo-
cal) model update as soon as it is done. Active partici-
pation does not mean specific types of optimization al-
gorithms are used. Generally, active participation is only
seen in small scale FL jobs, and more often in cross-silo
settings.

• Intermittent participation means that for every FL round,
each party trains at its convenience; this may be when
connected to power in the case of mobile phones, or when
(local) resource utilization from other computations is
low, or when there are no pending jobs with higher pri-
ority. In these scenarios, the aggregator expects to hear
from the participant eventually (typically over a several
hours or maybe once a day). Generally, FL, at scale in-
volves intermittent participants.

To handle FL jobs across thousands of parties, the ag-
gregation service provider must support intermittent parties
effectively. Given that, for every round, parties may send
model updates over an extended time period (hours), aggre-
gators spend the bulk of their time waiting – most aggre-
gations of model updates are simple arithmetic operations
taking seconds. This wastes resources and increases aggre-
gation cost. A tree-based aggregation overlay compounds re-
source wastage and cost.

Re-configuring tree-based aggregation overlays is also
difficult. This is needed, for example, when midway through
a job, a hundred (or a thousand) participants decide to join.
Supporting them would require reconfiguration at multiple
levels of the aggregation overlay. Reconfigurations are also
necessary to scale down the overlay when participants leave.
Thus, elasticity of aggregation is hard to achieve in the hier-
archical setting.

λ-FL : Design and Implementation
The key motivation behind our design is to reduce state in
aggregators to decouple aggregator instances. This enables
said instances to execute as serverless functions, which are
spawned only when model updates arrive, and are torn down
when parties are busy training (no updates available to ag-
gregate). An aggregation function instance can be triggered
once a specific number of model updates are available; or
multiple instances can be triggered once the expected num-
ber of model updates for the current FL round are available.
Once aggregation is complete and the fused model is sent



back to the parties, all aggregator functions exit, releasing
resources.
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Aggregator functions are executed in containers on a
cluster managed by Kubernetes, which multiplexes multi-
ple workloads and enables the cluster to be shared by mul-
tiple FL jobs and/or other workloads. Also, since there is
no static topology, more (or less) aggregator functions can
be spawned depending on the number of parties (model up-
dates), thereby handling party joins/leaves effectively. The
challenge in executing aggregation as serverless functions,
which are ephemeral and have no stable storage, is manag-
ing FL job state. We have determined that it is possible to
split any associative aggregation operation into the follow-
ing two components:

1. A (leaf aggregation) function implementing logic to fuse
raw model/gradient updates Ui from a group of k par-
ties to generate a partially aggregated model update Uk.
For example, in the case of FedSGD or FedAvg (McMa-
han et al. 2017a,b) where fusion involves simple gradient
averaging of gradients, this function would take ki gradi-
ent update vectors and return the sum Si of these vectors
along with ki. That is, Uki

= (Si, ki)

2. An (intermediate aggregation) function implementing
logic to further aggregate partially aggregated model up-
dates (Uk), in stages, to produce the final aggregated
model update (UF ). In the case of FedSGD or FedAvg,

this function would aggregate (add up) multiple (Si, ki).
If all expected model updates have arrived from n par-
ties, i.e., if

∑
i ki equals n, then the final fused gradient

update is 1
n

∑
i Si.

We note that such decomposition is fundamental even for
hierarchical aggregation to work; λ-FL takes associativity
one step further. We also note that splitting aggregation into
leaf and intermediate functions makes the logic simpler. It
is also possible to have a single serverless function that can
operate on both raw updates and partially fused updates; do-
ing that will increase the complexity of the function. For this
decoupling split to work, λ-FL employs the following com-
ponents:

Party-Aggregator Communication This is done using a
distributed message queue (Kafka). Kafka is a topic-based
message queue offering standard publish/subscribe seman-
tics. That is, each queue has a “name”, and multiple dis-
tributed entities can write to (publish) and read from (sub-
scribe to) it. Kafka enables us to set a replication level per
queue, which ensures durability of messages between the
aggregator instances and parties. For each FL job (with an
identifier JobID, two queues are created at deployment time
– JobID-Agg and JobID-Parties. Only the aggregator can
publish to JobID-Agg and all parties subscribe to it. Any
party can publish to JobID-Parties but only the aggregator
can both publish to and read from it. This ensures that model
updates sent to JobID-Parties are private and do not leak to
other parties. When the job starts, the aggregator publishes
the initial model on JobID-Agg; parties can then download
the model and start training. At the end of each job round,
parties publish their model updates to JobID-Parties. Inter-
Aggregator Communication, is also handled using Kafka.
Partially fused model updates are published by aggregation
functions into Kafka, and can trigger further function invo-
cations.

Aggregation Trigger. For serverless functions to execute,
they must be triggered by some event. λ-FL provides sev-
eral flexible and configurable triggers. The simplest one trig-
gers an aggregation function for every k updates published
to JobID-Parties. For FL jobs that use a parameter server
for model updates, it is possible in λ-FL to implement the
update logic as a serverless function and trigger it every time
an update is published by a party. Complicated triggers in-
volve the periodic execution of any valid Python code (also
as a serverless function) which triggers aggregation.

Job Metadata Management. Metadata associated with
the FL jobs like the number of parties (and the number of up-
dates to expect), timeouts associated with a synchronization
round (i.e., how long to wait before assuming that a party
is not going to respond or has failed). These help determine
when aggregation can terminate. This information is typi-
cally stored in external distributed stable storage in the dat-
acenter like a key value store (like cloud object store, Mon-
goDB, Cassandra, ETCD, etc.), in λ-FL as well as in exist-
ing single-aggregator and hierarchical systems. This aspect
of FL aggregation does not change in λ-FL.



Durability. Aggregation checkpointing for fault tolerance
determines how frequently the aggregator checkpoints its
state to external stable storage. While this is needed for tradi-
tional FL platforms, λ-FL does not use checkpointing. If the
execution of a serverless aggregation function fails, it is sim-
ply restarted. All aggregator state (updates from parties, par-
tially fused models, etc) is durably stored in message queues.
This aspect of λ-FL is vital to understanding λ-FL’s resource
usage; we observe that the resource overhead of using mes-
sage queues is equal to that of checkpointing using cloud
object stores in single/hierarchical aggregator schemes.

Implementation and Elastic Scaling
We implement λ-FL using the popular Ray (Moritz et al.
2018) distributed computing platform. Ray provides several
abstractions, including powerful serverless functions (Ray
remote functions). We explored a couple of alternate im-
plementations, including KNative (Kubernetes 2021) and
Apache Flink (Carbone et al. 2015), and settled on Ray be-
cause it provides arbitrarily long serverless functions, is well
integrated with common Python libraries (numpy, scikit-
learn, Tensorflow and PyTorch) and provides the freedom to
use accelerators if necessary. Ray’s internal message queue
could have been used in lieu of Kafka, but we found Kafka
to be more robust. Aggregation triggers are implemented us-
ing Ray, and support typical conditions on JobID-Parties
(receipt of a certain number of messages, etc.), but are flex-
ible enough to execute user functions that return booleans
(whether aggregation should be triggered or not).

Our implementation using Ray executes on the Kuber-
netes cluster manager. Ray’s elastic scaler can request ad-
ditional Kubernetes pods to execute serverless functions,
depending on how frequently aggregation is triggered. It
is also aggressive about releasing unused pods when there
are no model updates pending. When aggregation is trig-
gered, groups of model updates are assigned to serverless
function invocations. Each invocation is assigned 2 vCPUs
and 4GB RAM (this is configurable). If there are insuffi-
cient pods to support all these invocations, Ray autoscales
to request more Kubernetes pods. This also enables λ-FL to
handle large scale party dropouts and joins effectively. Only
the exact amount of compute required for aggregation is de-
ployed – overheads to spawn tasks on Kubernetes pods and
create new pods are minimal, as demonstrated in our empir-
ical evaluation.

It is also vital to ensure that model updates are not con-
sumed twice by aggregation functions. When aggregation is
triggered for a model update in a Kafka queue, it as marked
using a flag. The flag is released only after the output of
the function is written to Kafka. If the aggregation function
crashes, Ray restarts it, thereby guaranteeing “exactly once”
processing and aggregation semantics.

Evaluation

In this section, we evaluate the efficacy of using server-
less functions for FL aggregation, in λ-FL, by examining
whether (1) serverless functions increase the latency of an

FL job, as perceived by a participant, and (2) serverless func-
tions decrease the resources needed for aggregation and cost.

Metrics

When compared to a static hierarchical deployment of ag-
gregator instances, serverless functions are dynamically in-
stantiated in response to model updates. Deployment of
serverless functions takes a small amount of time (< 100
milliseconds) and elastic scaling of a cluster in response
to bursty model update can also take 1-2 seconds. Conse-
quently, the overhead of aggregation in λ-FL will usually
manifest in the form of increased aggregation latency. Given
that aggregation depends on whether the expected number of
model updates are available, we define aggregation latency
as the time elapsed between the reception of the last model
update and the availability of the aggregated/fused model/-
gradient. It is measured for each FL synchronization round,
and the reported numbers in the paper are averaged over all
the rounds of the FL job. We want aggregation latency to be
as low as possible.

The benefit of using serverless technologies is to improve
resource utilization and prevent “idle waiting” for model up-
dates. We execute both hierarchical aggregation and λ-FL
using containers on Kubernetes pods in our datacenter, and
measure the number of container seconds used by an FL
job from start to finish. This includes all the resources used
by the ancillary services, including MongoDB (for meta-
data), Kafka and Cloud Object Store. Measuring container
seconds helps us use publicly available pricing from cloud
providers like Microsoft Azure to project the monetary cost
of aggregation, in both cases, and project cost savings.

Experimental Setup

Aggregation was executed on a Kubernetes cluster on CPUs,
using Docker containers. Each container (hierarchical or
serverless) was equipped with 2 vCPUs (2.2 Ghz, Intel
Xeon 4210) and 4 GB RAM. For hierarchical aggrega-
tion, each instance was encapsulated using the Kubernetes
service abstraction. Parties were emulated, and distributed
over four datacenters (different from the aggregation data-
center) to emulate geographic distribution. Each party was
also executed inside Docker containers (2 vCPUs and 4 GB
RAM) on Kubernetes, and these containers had dedicated
resources. We actually had parties running training to em-
ulate realistic federated learning, as opposed to using, e.g.,
Tensorflow Federated simulator.

We used two FL jobs (i) training EfficientNet-B7 (Tan
and Le 2019) on CIFAR-100 (Krizhevsky 2009), and (ii)
VGG16 (Das et al. 2018) on RVL-CDIP (Harley, Ufkes, and
Derpanis 2015) document classification dataset. Our goal
here is to measure latency and resource utilization and not
invent new FL optimization algorithms. Hence, we parti-
tioned the datasets randomly and uniformly among the par-
ties to create an IID scenario. We used Federated SGD for
both the jobs. Each job was executed for 50 synchronization
rounds.
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EfficientNet-B7 and CIFAR100.
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Aggregation Latency
First, we consider a scenario where the number of parties
remains constant throughout the FL job, for all synchroniza-
tion rounds. We measure aggregation latency every synchro-
nization round, and Figures 4 and 5 plot the average of these
measurements. Figures 4 and 5 illustrate how aggregation
latency varies as the number of parties increases; we see an
increase in latency, but the trend is sub-linear for both hier-
archical and serverless aggregation (latency increases by up
to ≈ 4 × when the number of parties increases 1000×).
This is expected, due to the data parallelism in hierarchical
and serverless aggregation. We also observe that the aggre-
gation latency of λ-FL is very close to that of hierarchical
aggregation, and decreases as the absolute value of the la-
tency increases. It is 0.98% for EfficentNet/CIFAR100 and
1.85% for VGG16/RVL-CDIP at 10,000 parties. Thus, we
observe that the runtime overhead of using serverless func-
tions is minimal.

Next, we illustrate how λ-FL can handle parties joining
in the middle of the job with minimal impact on aggrega-
tion latency. For this, we consider a single synchronization

# parties Hierarchical(s) Serverless(s) Hierarchical
Serverless

100 4.58 1.57 2.92x
1000 12.46 4.34 2.87x

10000 15.59 4.82 3.23x

Table 1: Effect of 20% party joins on aggregation latency
(seconds). EfficientNet-B7 and CIFAR100.

# parties Hierarchical (s) Serverless (s) Hierarchical
Serverless

100 10.59 4.29 2.47x
1000 17.6 6.45 2.73x

10000 26.82 7.4 3.62x

Table 2: Effect of 20% party joins on aggregation latency
(seconds). VGG16 on RVL-CDIP.

round, and increase the number of parties by 20%. Tables 1
and 2 illustrate the aggregation latency when 20% more par-
ties send model updates at the end of the synchronization
round. Serverless aggregation needs no overlay reconfigura-
tion, while hierarchical aggregation needs to add more ag-
gregator instances and reconfigure the tree. This manifests
as a significant increase in aggregation latency (2.47× to
3.62×). This is due to the fact that the number of serverless
function invocations depends on the aggregation workload,
and partially aggregated updates have to be only stored in
message queues. However, with a tree overlay, new aggrega-
tor nodes have to be instantiated and the topology changed.

Resource Utilization & Cost
Tables 3 and 4 measure the total resource utilization in terms
of container seconds for both FL jobs with active partici-
pants. These tables illustrate the real benefits of using server-
less aggregation, with > 85% resource and cost savings for
the EfficientNet-B7/CIFAR100 job and > 90% savings for
VGG16/RVL-CDIP. We also observe that, while compute
resources needed for aggregation increase with the number
of participants for both hierarchical and serverless aggrega-
tion, the amount of resource and cost savings remains fairly
consistent. We use Microsoft Azure’s container pricing for
illustrative purposes only; pricing is similar for other cloud
providers.

We stress that the experiments in Tables 3 and 4 are con-
servative; they assume active participation. That is, parties
have dedicated resources to the FL job, parties do not fail
in the middle of training, and training on parties for each
round starts immediately after a global model is published
by the aggregator. In realistic scenarios, parties (e.g., cell
phones or laptops or edge devices) perform many functions
other than model training, have other tasks to do and can
only be expected to respond over a period of time (response
timeout). Depending on the deployment scenario, this can be
anywhere from several minutes to hours. Table 5 illustrates
resource and cost savings when response timeout is set to a



Total container seconds Proj. Total cost (USD)
# parties Hierarchical Serverless Cost/container/s Hierarchical Serverless Cost Savings (%)

10 1723 228 0.0002692 0.46 0.06 86.96%
100 2653 351 0.0002692 0.71 0.09 87.32%

1000 22340 2951 0.0002692 6.01 0.79 86.86%
10000 298900 40849 0.0002692 80.46 11 86.33%

Table 3: Resource usage and projected cost. EfficientNet-B7 on CIFAR100. Active Participants. Container cost is in USD,
obtained from Microsoft Azure’s public pricing table (Microsoft 2021).

Total container seconds Proj. Total cost (USD)
# parties Hierarchical Serverless Cost/container/s Hierarchical Serverless Cost Savings (%)

10 2002 166 0.0002692 0.54 0.04 91.7
100 3016 229 0.0002692 0.81 0.06 92.41

1000 25254 1937 0.0002692 6.8 0.52 92.33
10000 337782 28543 0.0002692 90.93 7.68 91.55

Table 4: Resource usage and projected cost. VGG16 on RVL-CDIP. Active Participants. Container cost is in USD, obtained
from Microsoft Azure’s public pricing table (Microsoft 2021).

modest 10 minutes per aggregation round. Thus, our exper-
iments reinforce our confidence that serverless aggregation
can lead to significant resource and cost savings with mini-
mal overhead.

Related Work
Parallelzing FL aggregation using a hierarchical topology
has been explored by (Bonawitz et al. 2019), though the
design pattern was introduced by and early work on data-
center parallel computing (Kumar 2002). While (Bonawitz
et al. 2019) uses hierarchical aggregation, its programming
model is different from λ-FL. Its primary goal is scalabil-
ity and consequently, it deploys long lived actors instead of
serverless functions. λ-FL aims to make FL aggregation re-
source efficient, elastic in addition to being scalable; and use
off-the-shelf open source software like Ray, Kafka and Ku-
bernetes.

Another closely related concurrent work is Fed-
Less (Grafberger et al. 2021), which predominantly uses
serverless functions for the training side (party side) of FL.
FedLess is able to use popular serverless technologies like
AWS Lambda, Azure functions and Openwhisk to enable
clients/parties on cloud platforms perform local training and
reports interesting results on using FaaS/serverless instead
of IaaS (dedicated VMs and containers) to implement the
party side of FL. It also has the ability to run a single aggre-
gator as a cloud function, but does not have the ability to par-
allelize aggregation, and does not seem to scale beyond 200
parties (with 25 parties updating per FL round, per (Graf-
berger et al. 2021)). Our work in λ-FL has the primary goal
of parallelizing and scaling FL aggregation. Fedless (Graf-
berger et al. 2021) also does not adapt aggregation based on
party behavior, and it is unclear whether parties on the edge
(phones/tablets) can train using FedLess.

A number of ML frameworks – Siren (Wang, Niu, and Li
2019), Cirrus (Carreira et al. 2019) and the work by Lamb-
daML (Jiang et al. 2021) use serverless functions for cen-
tralized (not federated) ML and DL training. Siren (Wang,
Niu, and Li 2019) allows users to train models (ML, DL
and RL) in the cloud using serverless functions with the
goal to reduce programmer burden involved in using tra-
ditional ML frameworks and cluster management technolo-
gies for large scale ML jobs. It also contains optimization
algorithms to tune training performance and reduce training
cost using serverless functions. Cirrus (Carreira et al. 2019)
goes further, supporting end-to-end centralized ML train-
ing workflows and hyperparameter tuning using serverless
functions. LambdaML (Jiang et al. 2021) analyzes the cost-
performance trade-offs between IaaS and serverless for dat-
acenter/cloud hosted centralized ML training. LambdaML
supports various ML and DL optimization algorithms, and
can execute purely using serverless functions or optimize
cost using a hybrid serverless/IaaS strategy. λ-FL differs
from Siren, Cirrus and LambdaML in significant ways –
Distributed ML (in Siren, Cirrus and LambdaML) is differ-
ent from FL. Distributed ML involves centralizing data at
a data center or cloud service and performing training at a
central location. In contrast, with FL, data never leaves a
participant. FL’s privacy guarantees are much stronger and
trust requirements much lower than that of distributed ML.

The term “serverless” has also been used to refer to peer-
to-peer (P2P) federated learning, as in (Chadha, Jindal, and
Gerndt 2020; Niu et al. 2020; Hegedüs, Danner, and Jelasity
2019). In such systems, aggregation happens over a WAN
overlay and not in a datacenter. The first step involves estab-
lishing the overlay network, by following existing technolo-
gies like publish/subscribe overlays, peer discovery, etc (Eu-
gster et al. 2003; Hirzel et al. 2014). The next step involves
establishing a spanning tree over the P2P overlay, routing



Total container seconds Proj. Total cost (USD)
# parties Hierarchical Serverless Cost/container/s Hierarchical Serverless Cost Savings (%)

10 33043 250 0.0002692 8.9 0.07 99.21%
100 33015 385 0.0002692 8.89 0.1 98.88%

1000 480036 2973 0.0002692 129.23 0.8 99.38%
10000 4500038 40870 0.0002692 1211.41 11 99.09%

Table 5: Resource usage and projected cost. VGG16 on RVL-CDIP. Intermittent participants updating over a 10 minute interval
for every synchronization round. Container cost is in USD, obtained from Microsoft Azure’s public pricing table (Microsoft
2021).

updates along the spanning tree and aggregating at each
node on the tree. Gossip based learning, (Hegedüs, Dan-
ner, and Jelasity 2019) does not construct overlays but uses
gossip-based broadcast algorithms to deliver and aggregate
model updates in a decentralized manner. While these tech-
niques are scalable and (in the case of gossip algorithms)
fault tolerant, they do require either (i) that the model be re-
vealed to more entities during routing, or (ii) homomorphic
encryption (Jayaram et al. 2020) which can be challenging
both from a key agreement and model size explosion stand-
points, or (iii) differential privacy (Abadi et al. 2016) which
reduces model accuracy in the absence of careful hyperpa-
rameter tuning.

Conclusions and Future Work
In this paper, we have presented λ-FL, a system for server-
less aggregation in federated learning. We have described
the predominant way of parallelizing aggregation using a
tree topology and examined its shortcomings. We have
demonstrated how serverless/cloud functions can be used to
effectively parallelize and scale aggregation while eliminat-
ing resource wastage and significantly reducing costs. Our
experiments show that the overhead of using serverless for
aggregation is minimal, but resource and cost savings are
substantial. We also demonstrate that serverless aggregation
can effectively handle changes in the number of participants
in the FL job.

We are currently working to extend this work in a num-
ber of directions: (i) increasing the dependability and in-
tegrity of aggregation using trusted execution environments
(TEEs), (ii) effectively supporting multi-cloud environments
by using service mesh (like Istio) to find the best aggre-
gator function to route a model update to, and (iii) ex-
tending serverless aggregation to more optimization algo-
rithms, especially those that employ compression strategies
like sketching.
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McMahan, H. B.; et al. 2019. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046.
Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi,
S.; and Tzoumas, K. 2015. Apache Flink™: Stream and
Batch Processing in a Single Engine. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineer-
ing, 36(4): 28–38.
Carreira, J.; Fonseca, P.; Tumanov, A.; Zhang, A.; and Katz,
R. 2019. Cirrus: A Serverless Framework for End-to-End
ML Workflows. In SoCC ’19, 13–24. New York, NY, USA:
ACM.
Chadha, M.; Jindal, A.; and Gerndt, M. 2020. Towards Fed-
erated Learning Using FaaS Fabric. In Proceedings of the
2020 Sixth International Workshop on Serverless Comput-
ing, WoSC’20, 49–54. New York, NY, USA: Association for
Computing Machinery. ISBN 9781450382045.
Das, A.; Roy, S.; Bhattacharya, U.; and Parui, S. K. 2018.
Document Image Classification with Intra-Domain Transfer
Learning and Stacked Generalization of Deep Convolutional
Neural Networks. arXiv:1801.09321.
Dayan, I. e. a. 2021. Federated learning for predicting clini-
cal outcomes in patients with COVID-19. Nature Medicine.
DLG git repository. 2020. Deep Leakage From Gradients.
https://github.com/mit-han-lab/dlg.
Eugster, P. T.; Felber, P. A.; Guerraoui, R.; and Kermarrec,
A.-M. 2003. The Many Faces of Publish/Subscribe. ACM
Comput. Surv., 114–131.
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
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