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Abstract
The paradigm of Federated learning (FL) enables collaborative
learning across data parties who have different data quantity
and distributions. To ensure the fast convergence and high
accuracy on such heterogeneous clients, it is imperative to
timely select clients who can effectively contribute to learn-
ing. A relevant but overlooked case are Maverick clients, who
monopolizes the possession of certain data types, e.g., chil-
dren hospitals possess most of the data on pediatric cardiology.
In this paper, we tackle the challenges of Maverick. We ex-
plore two types of client selection strategies, based on Shapley
Value measurement and distribution distance. We first show —
theoretically and through simulations— that Shapley Value un-
derestimates the contribution of Maverick and thus fall shorts
in selecting the right clients. We also propose FEDEMD, an
adaptive client selection strategy based on the Wasserstein
distance between the local and global data distributions, sup-
ported by a proven convergence bound. As FEDEMD adapts
the selection probability such that Mavericks are preferably
selected when the model benefits from improvement on rare
classes, it consistently ensures the fast convergence in the pres-
ence of different types of Mavericks. Compared to existing
strategies, including Shapley Value based ones, FEDEMD im-
proves the convergence of neural network classifiers by 26.9%
with FedAvg aggregation and its performance works across
various levels of heterogeneity.

Introduction
Federated Learning (FL) enables clients (either individuals
or institutes who own data) to collaboratively train a global
machine learning models via exchanging locally trained mod-
els, instead of data (Yang et al. 2019; McMahan et al. 2017;
Zawad et al. 2021; Han and Zhang 2020). Thus, Federated
Learning allows the training of models that cannot be per-
formed on a central server and is hence often a suitable al-
ternative for medical research and other domains with high
privacy requirements. The effectiveness of FL, in terms of ac-
curacy and convergence, highly depends on how those local
models are selected and aggregated.

Deviating from the prevailing assumption that clients’ data
are identically and independent distributed (i.i.d.), distributed
clients differ in data distribution as well in quantities in real-
world scenarios. Compared with i.i.d. data, the risk of weight
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Figure 1: Illustration of Mavericks.

divergence of FL increases in multitudes when facing such a
heterogeneous data set (Zhao et al. 2018). The prior art has
recently addressed the challenge of heterogeneity from either
the perspective of skewed distribution (Huang et al. 2021; Li
et al. 2021) or skewed quantity (Wang et al. 2021) among
all clients.However, a common scenario, where one or a
small group of clients monopolize the possession of a certain
class, is universally overlooked. For example, in the widely
used image classification benchmark, Cifar-10 (Krizhevsky,
Hinton et al. 2009), most people can contribute images of
cats and dogs. However, deer images are bound to be owned
by comparably few clients. Another relevant example arises
from learning predictive medicine from clinics who specialize
in different conditions, e.g., AIDS and Amyotrophic Lateral
Sclerosis, and own data of exclusive disease types. We call
these this of clients Mavericks.

If a system has Mavericks, they own one or more classes
(almost) exclusively whereas the non-Maverick clients have
a relatively balanced distribution for the remaining classes.
Multiple Mavericks could own separate classes or jointly
own one class. The latter is referred to as Shared Mavericks.
As illustrated in Fig. 1, non-Mavericks hold balanced data
for toothache and stomach disease, while the exclusive Mav-
erick owns AIDS in addition but ALS data are distributed
merely among Shared Mavericks. Without Mavericks, it is
impossible to achieve high accuracy on the classes for which
they own the majority of all training data, e.g., accurate clas-
sification of rare diseases.

Given its importance, it is not well understood when to
best involve such Mavericks in FL, e.g., frequently selecting
Mavericks in early v.s. later epochs. When selecting clients



into FL from the available ones, the existing client selection1

considers either the contribution of local models (Chai et al.
2020) or difference of data distributions (Muhammad et al.
2020). The contribution-based approaches select clients with
self-defined contribution scores, whereas the distance-based
methods choose clients based on the pairwise feature distance.
Both two types of selection methodologies have their suitable
application scenarios and it it hard to weigh the benefits of
one over the other in general.

There exist a number of proposals for contribution mea-
surement, i.e., algorithms that determine the quality of the
service provided by the clients (Kang et al. 2019; Aono et al.
2017; Adam, Aris, and Boi 2019; Guan, Charlie, and Ziye
2019; Liu et al. 2020; Song, Tong, and Wei 2019; Wang
et al. 2020c; Adam, Aris, and Boi 2020; Wei et al. 2020;
Sim et al. 2020). In particular, previous work established that
Shapley Value, which measures the marginal loss caused by
a client’s sequential absence from the training, offer accurate
contribution measurements among many metrics (Huang et al.
2020a). While Shapley Value is shown to be effective in mea-
suring contribution for the i.i.d. case, it is largely unknown if
Shapley Value can assess the contribution of Mavericks and
effectively involve them via the selection strategy.

In this paper, we aim to effectively select Mavericks in
FL via both contribution-based (specifically, Shapley Value
based) and distance-based client selection, so that users are
able to collaboratively train an accurate model without endur-
ing high number of communication rounds.

Contributions. More concretely, our main contributions
for this work can be summarized as follows:

• We identify and address the important but overlooked case
of Mavericks in FL and explore the effectiveness of both
contribution-based and distance-based selection strategies
for Mavericks.

• Both our theoretical and empirical result show that clients
with skewed data or very large quantity is measured below
average by Shapley Value.

• We propose FEDEMD, a novel adaptive client selection
based on Wasserstein distances, with a convergence bound
derived. It is shown to significantly outperform SOTA
selection methods across different scenarios of Mavericks.

Related Studies
Contribution Measurement. Existing work on contribution
measurement can be categorized into two classes: i) local
approach: clients exchange the local updates, i.e., model
weights or gradients, and measure the contribution of each
other, e.g., by creating a reputation system (Kang et al. 2019),
and ii) global approach: all clients send all their model up-
dates to the federator who in turn aggregates and computes
the contribution via the marginal loss (Adam, Aris, and Boi
2019; Guan, Charlie, and Ziye 2019; Liu et al. 2020; Song,
Tong, and Wei 2019; Wang et al. 2020c; Adam, Aris, and

1Note that here we only discuss selection on statistical chal-
lenges, the selections considering system resources, e.g., unreliable
networks are left for other works.

Boi 2020; Wei et al. 2020). The main drawbacks of local ap-
proaches are the excessive communication overhead and the
lower privacy due to directly exchanged model updates (Aono
et al. 2017). In contrast, the global approach has lower com-
munication overhead and avoids the privacy leakage to other
clients by communicating only with the federator. Prevail-
ing examples of globally measuring contribution are Influ-
ence (Adam, Aris, and Boi 2019, 2020) and Shapley Value
(Guan, Charlie, and Ziye 2019; Wei et al. 2020; Wang et al.
2020c; Sim et al. 2020). The prior art demonstrates that Shap-
ley Value can effectively measure the client’s contribution for
the case when clients’ data is i.i.d. or of biased quantity (Sim
et al. 2020). (Wang et al. 2020d) has proposed federated Shap-
ley Value to capture the effect of participation order on data
value. The experimental results indicate that Shapley Value is
less accurate in estimating the contribution of heterogeneous
clients than for i.i.d. cases. Yet, the paper does not provide
the reason or any analysis. Similarly, a recent experimental
study (Zhang et al. 2020) demonstrates that the correlation
between a user’s data quality and its Shapley Value is limited.
The results raise doubts whether Shapley Value is really a
suitable choice for contribution measurement. However, there
is no rigorous analysis on whether Shapley Value can effec-
tively evaluate the contribution from heterogeneous users
with skewed data distributions.

Client Selection. Selecting clients within a heterogeneous
group of potential clients is key to enabling fast and accu-
rate learning based on high data quality. The state-of-the-art
client selection strategies focus on the resource heterogene-
ity (Nishio and Yonetani 2019; Xu and Wang 2020; Huang
et al. 2020b) or data heterogeneity (Chai et al. 2020; Cho,
Wang, and Joshi 2020; Li et al. 2020a; Chai et al. 2019). In
the case of data heterogeneity, which is a focus of our work,
selection strategies (Cho, Wang, and Joshi 2020; Goetz et al.
2019; Chai et al. 2020) gain insights on the distribution of
clients’ data and then select them in specific manners. Goetz
et. al (Goetz et al. 2019) apply active sampling and Cho et. al
(Cho, Wang, and Joshi 2020) use Power-of-Choice to favor
clients with higher local loss. TiFL (Chai et al. 2020) con-
siders both resource and data heterogeneity to mitigate the
impact of straggler and skewed distribution. TiFL applies a
contribution-based client selection by evaluating the accuracy
of selected participants each round and chooses clients of
lower accuracy. FedFast (Muhammad et al. 2020) chooses
classes based on clustering and achieves fast convergence
for recommendation systems. However, there is no selection
strategy that addresses the Maverick scenario.

Data Heterogeneity. As an alternative to client selection
strategies, multiple methodologies have been suggested to
properly account for data heterogeneity in FL systems (Li
et al. 2021; Deng, Kamani, and Mahdavi 2020; Dinh, Tran,
and Nguyen 2020; Fallah, Mokhtari, and Ozdaglar 2020;
Hanzely et al. 2020). Early solutions require the federator
to distribute a shared global training set (Zhao et al. 2018),
which is demanding and violates data privacy. Later stud-
ies either focus on the local learning stage (Li et al. 2020a;
Karimireddy et al. 2020) or improved aggregation (Wang et al.
2020b). For instance, FedProx (Li et al. 2020a) improves the
local objective by adding an additional L2 regularization



term, whereas FedNova (Wang et al. 2020b) first normalizes
the local model updates based on the number of their local
steps and aggregates the local models. The downside of afore-
mentioned solutions is the requirement of higher computation
overhead for client, leading to longer training durations and
higher energy usage.

Federated Learning with Mavericks
In this section, we first formalize a Federated Learning frame-
work with Mavericks. Then we rigorously analyze the contri-
bution of clients based on Shapley Value and argue that the
contribution of Mavericks is underestimated by the Shapley
Value metric, which leads to severe selection bias and a sub-
optimal integration of Mavericks into the learning process.

Suppose there are a total of K clients in a federated learn-
ing system. We denote the set of possible inputs as X and the
set of L class labels as Y = {1, 2, ..., L}. Let f : X �! P
be a prediction function and ! be the learnable weights of
the machine learning tasks, the objective is then defined as:
minL(!) = min

PL
l=1 p(y = l)Ex|y=l [log fl(x,!)].

The training process of a FL system consists of the follow-
ing steps2:

• INITIALIZATION. Initialize global model !0 and dis-
tribute it to the available clients, i.e., a set C of N clients.

• CLIENT SELECTION. Enumerate the K clients C(⇡,!t),
selected in round t with selection strategy ⇡, by
C1, . . . , CK .

• UPDATE AND UPLOAD. Each client Ck selected in round
t computes local updates !k

t and the federator aggregates
the results. Concretely, with ⌘ being the learning rate, Ck

updates their weights in the t-th global round by:

!k
t = !t�1 � ⌘

PL
l=1 p

k(y = l)r!Ex|y=l [log fl(x,!t�1)] .
(1)

• AGGREGATION. Client updates are aggregated to one
global update. The most common aggregation method is
FedAvg, defined as follows with n

k indicating the data
quantity of Ck

!t =
KX

k=1

n
k

PK
k=1 n

k
!k

t . (2)

To facilitate our discussions, we also define the following:
Local Distribution: the array of all L class quantities
Di(y = l), l 2 {1, .., L} owned by client Ci.
Global Distribution: the quantity of all clients’ data by
class as Dg =

PN
i=1 D

i(y = l), l 2 {1, .., L}.
Current Distribution at R: by summing up the class quan-
tity of all clients’ data reported, which have been chosen up
to time R as: Dc

R =
PR

t=1

P
Ck2Kt DCk .

Definition 1 (Maverick). Let YMav be the set of class labels
that are primarily owned by Mavericks. A Maverick is one

2Here we assume all of the clients are honest. Since we focus on
the statistical challenge, the impact by unreliable networking and
insufficient computation resources is ignored.

client that own one or more classes exclusively. A shared-
Maverick is a small group of clients who jointly own one
class exclusively. That is:

Di =

(
{{xl, yl}il2YMav

, {xl, yl}il/2YMav
}, if Ci is a Maverick

{xl, yl}il/2YMav
, if Ci is not a Maverick,

(3)
where Di denotes the dataset for Ci, {xl, yl}i denotes the

dataset in Ci with label l. In the rest of the paper, we assume
the global distribution organized by the server’s preprocess-
ing has high similarity with the real-world (test dataset) dis-
tribution, which is balanced, so that data {xl, yl}l/2YMav

are
evenly distributed across all parties, whereas {xl, yl}l2YMav

either belong to one exclusive Maverick or are evenly dis-
tributed across all shared-Maverick parties. We focus our
analysis on exclusive Mavericks since shared Maverick are a
straightforward extension. Based on the assumptions above,
we have properties of Maverick as follows.
Property 1. Because the data distribution is balanced, Mav-
ericks have a larger data quantity than non-Mavericks. Con-
cretely, let nn be the data size a non-Maverick, nm is for
Maverick, then n

m = ((N/m� 1) ⇤YMav +L) ⇤nn, where
m is the number of (shared) Mavericks.
Property 2. Assume N > 2, the KL divergence of Mav-
erick to normalized global distribution is expected to be
larger than non-Maverick due to its specific distribution, i.e.,
DKL(Pg||Pm) > DKL(Pg||Pn), where Pm, Pn are the data
distribution with class labels for Maverick and non-Maverick,
where Pg denotes for global distribution.

Shapley Value for Mavericks
Definition 2 (Shapley Value). Let K denote the set of clients
selected in a round excluding Ck, K \ {Ck} denote moving
Ck from K. Shapley Value of Ck is:

SV (Ck) =
X

S✓K\{Ck}

|S|!(|K|� |S|� 1)!

|K|! �Ck(S). (4)

Here we let �Ck(S) be the Influence (Adam, Aris, and Boi
2019)3 on S [ Ck.
Lemma 1. Based on Shapley Value in Eq. 4, the difference
of Maverick Cm’s and non-Maverick Cn’s Shapley Value is:

SV (Cm)� SV (Cn) =
1

|K|!

✓
(|K|� 1)!(L(Cm)�L(Cn))

+
X

S✓S�

|S|!(|K|� |S|� 1)!(InfS(Cm)� InfS(Cn))

+
X

S✓S+

|S|!(|K|� |S|� 1)!(InfS(Cm)� InfS(Cn))

◆
,

(5)
with S� = K \ {Cn, Cm}, S+ = K \ {Cn, Cm} [ CM ,

CM 2 {Cn, Cm}. Note that we simplify InfS[Ci(Ci) as
InfS(Ci) for readability.
Property 3. Shapley Value and Influence share the same
trend in contribution measurement for Mavericks.

3Influence can be defined on loss, accuracy, etc., here we apply
the most commonly used loss-based Influence.



Theorem 1. Let Cm and Cn be a Maverick and a non-
Maverick client, respectively, and denote by SVt(Ck) the
Shapley value of Ck in round t. Then SV1(Cm) < SV1(Cn)
and SVt(Cm) converges towards SVt(Cn).

Proof: Let !t/k denote the weights at round t if Ck is ex-
cluded from the aggregation and !i

t refer to the local updates
of Ci. Then, the Influence of Ck at round t is:

InfC(Ck) =
�
L(!t)�L(!t/k)

�
=

 
L(!t)�L

 PK
i=1 n

i!i
t � n

k!k
tPk�1

i=1 ni +
PK

i=k+1 n
i

!!
.

(6)
Consider the Kullback-Leibler Divergence (KLD), which
measures the difference between two distributions. Let
P(!t/n), P(!g) and P(!t/m) denote the data size distribu-
tion corresponding to !t/n, !g (global model weights) and
!t/m, respectively. According to Property. 2, we have4:

DKL(P(!g)||P(!t/n)) < DKL(P(!g)||P!t/m)). (7)

Substituting the definition of KLD (Kullback and Leibler
1951), that is:

�
PL

l=1 P
l(!g) log(Pl(!t/n)) < �

PL
l=1 P

l(!g) log(Pl(!t/m)).
(8)

Eq. 8 can be written as L(!t/n) < L(!t/m). Recall
Eq. 6, it indicates InfC(Cm) < InfC(Cn). As the round t

increases, we have:

DKL(P(!g)||P(!t/n)) ⇡ DKL(P(!g)||P!t/m)), (9)

�
PL

l=1 P
l(!g) log(Pl(!t/n)) ⇡ �

PL
l=1 P

l(!g) log(Pl(!t/m))
(10)

gives InfC(Cn) ⇡ InfC(Cm). Based on Property. 3 and
the conclusion on Influence, Theorem. 1 holds.

Empirical Verification: We present the empirical evi-
dences of how one or multiple Mavericks are measured by
Shapley Value. To provide a clear verification, here we only
discuss about the results of single exclusive Mavericks while
moving the multiple Maverick cases for our generalization
analysis in section Experimental Evaluation. We use Fashion-
MNIST (2a) and Cifar-10 (2b) as learning scenarios, with
random client selection with FedAvg.

(a) FMNIST-Maverick (b) Cifar10- Maverick

Figure 2: Relative Shapley Value during training under multi-
ple exclusive and shared Mavericks.

Fig. 2 shows the global accuracy and the relative Shapley
Value during training, with the average relative Shapley Value
of the 5 selected clients out of 50 indicated by the dotted
line. The contribution is only evaluated when a Maverick is

4
DKL(P (X)||Q(X)) refers to the KLD from distribution Q(X) to P (X).

selected. Looking at Fig.(2a), (2b), the Shapley Value for two
datasets see an increase but lower than average before around
160 rounds, which confirms Theorem. 1. Also we see the
accuracy increasing with the joining of Maverick, meaning
that measuring contribution of Maverick by Shapley Value is
essentially unreasonable as it is lower than average especially
in the early stage. All of the empirical results are consistent
with our theoretical analysis before.

Then we extend our conclusion to more general heteroge-
neous data distributions and extreme case in data quantity.
Remark 1. The conclusion of Shapley Value for Maverick
holds for any client with larger than average KLD to global
distribution in an FL system.

If the data quantity of client Ck is very large: i.e., nk �
(1� ✏)

PK
i=1 n

i, ✏ > 0 and ✏ is small, it follows Eq. 6 that:

L

 PK
i=1 n

i!i
t � n

k!k
tPk�1

i=1 ni +
PK

i=k+1 n
i

!
⇡ L(nk(!t � !k

t )), (11)

and hence:
Inf(Ck)� Inf(Cn)

⇡
�
L(!t)�L(nk(!t � !k

t )
�
�
�
L(!t)�L(!t/n)

�

⇡L(!t/n)�L(nk(!t � !k
t )) ⇡ L(!t)�L(nk(!t � !k

t )),
(12)

where difference !t � !k
t represents the difference between

Ck’s weights rather than weights related to the learning pro-
cess, whose loss can be expected to be high.

Initially, L(!t) is expected to be large but still smaller
than the completely random L(nk(!t � !k

t )) with high
probability. It follows that InfC(Cn) ' InfC(Ck). When t

increases, L(!t) is expected to decrease while L(nk(!t �
!k

t )) stays high, the decayed learning rate results in decayed
learning rate will lead to L(!t) ⇡ L(!t � !k

t ) and hence
indeed InfC(Cn) ⌅ InfC(Ck). Also based on Property. 3,
we have Remark. 2 as follows.
Remark 2. For extreme case when the data quantity own by
a client is very large: i.e., nk � (1� ✏)

PK
i=1 n

i, ✏ > 0, the
measured Shapley Value has a high probability (with random
factor) to be lower than average in the early stage, while
staying no greater than the average in the later stage.

As a commonly adopted contribution-based metric, we
will evaluate Shapley Value based selection strategy where
the probability to select a client is proportional to its Shap-
ley Value later in this paper. However, based on our analysis
above, Shapley Value is a biased metric for evaluating the
contribution of Mavericks, so the effectiveness of the Shapley
Value based client selection is doubted when Mavericks ex-
ist. To tackle this problem and compare with distance-based
approach, we propose a new framework to select clients by
exploiting the dynamic changes of distribution differences
between the current model and global model. We will show
shortly that our proposed methods outperforms Shapley Value
based client selection strategy.

FEDEMD
In this section, we propose a novel adaptive client selection
algorithm FEDEMD, which enables FL systems with Mav-



ericks to achieve faster convergence compared with SOTA
methods, including Shapley Value-based ones. The key idea
is to assign a higher probability for selecting Maverick clients
initially to accelerate convergence; later we reduce the se-
lection probability to avoid skewing the distribution towards
Maverick classes. To measure the differences in data distri-
butions, we adopt Wasserstein Distance (EMD) (Arjovsky,
Chintala, and Bottou 2017), which has been used to char-
acterize weight divergence in FL (Zhao et al. 2018). The
Wasserstein Distance (EMD) is defined as:

EMD(Pr, P✓) = inf�2⇧
P

x,y kx� yk�(x, y) = inf�2⇧ E(x,y)⇠�kx� yk,
(13)

where ⇧(Pr, P✓) represents the set of all possible joint prob-
ability distributions of Pr, P✓. �(x, y) represents the proba-
bility that x appears in Pr and y appears in P✓.

Algorithm 1: FEDEMD Clients Selection
Data: Di for i 2 1, 2, ..., N .
Result: K: selected participants.

1 Set: distance coefficient � > 0;
2 initialize probability Proba

1;
3 initialize current distribution D1

c ;
4 Dg  

PN
i=1 D

i;
5 calculate gemdg by Eq. 15;
6 for round t = 1, 2, ..., R do
7 Kt = rand(K,C, P roba

t)

8 Dt+1
c  Dt

c +
Pt

Ck2K DCk ;

9 calculate gemd
t

c by Eq. 16;
10 for client i = 1, ..., N do
11 update Proba

t+1 by Eq. 14

Overview Complete steps are shown in Alg. 1: i) Data
Reporting and Initialization (Line 1–3): Clients perform data
quantity self-reporting so that the federator is able to sum
up the global data size array Dg and initialize the current
size array D1

c . ii) Dynamic Weights Calculation (Line 4–11):
In this key step, we utilize a light-weight measure based on
EMD to calculate dynamic selection probabilities over time,
which achieve faster convergence, yet avoid overfitting:

Proba
t = softmax(gemdg � t�gemd

t

c) (14)

where Proba
t
i is the probability for selecting Ci in round t.

� is a coefficient to weigh the global and current distance
and shall be adapted for different initial distributions, i.e.,
different dataset and distribution rules. gemdg and gemd

t

c are
the normalized EMDs between the global/current and local
distributions (Line 5, 9), being:

gemdg = Norm([EMD(Dg,D
i)
��
i2{1,...,N}]), (15)

which is constant through the learning process as long as
the local distribution of clients stays the same. The larger
gemdg is, the higher the probability Proba

t
i that a client Ci

is selected to increase model accuracy (Line 11), since Ci

brings more distribution information to train !t. However,

for convergence, a smaller gemdc is preferred in selection,
note that gemdc is also weighed over round t:

gemd
t

c = Norm([EMD(Dt
c,D

i)
��
i2{1,...,N}]), (16)

where Dt
c is the accumulated Di of selected clients over

rounds (Line 8). Let l denote one class randomly chosen by
the federator except for the Maverick class from D, here we
apply normalization: Norm(emd,D) = emdPN

i=1 Di(y=l)/N
.

iii) Weighted Random Client Selection (Line 7): At each
round t, we select clients based on a probability distribu-
tion characterized by the set of dynamic weights (Vitter
1985)(Efraimidis and Spirakis 2006) Proba

t:

Kt = rand(K,C, P roba
t). (17)

Sampling for selecting K out of N clients based on Proba
t

has complexity of O(K log(N/K)), so comparably low.
Thus, Maverick with larger global distance and smaller

current distance initially are preferred to be selected. As t

increases, so does the impact of the current distance, reducing
the probability to select a Maverick, as intended.

Convergence Analysis: For deriving the convergence
bound, we follow the setting applied in (Li et al. 2020b).
We let Fk be the local objective of client Ck and define
F (!) , PN

k=1 pkFk(!), where pk is the weight of client
Ck when doing the aggregation. We have the FL optimiza-
tion framework min! F (x) = min!

PN
k=1 pkFk(!). We

make the L-smooth and µ-strongly convex assumptions on
the functions F1, ..., FN . Let T be the total number of SGDs
in a client, E be the number of local iterations of each
client in each round. t is used to index the SGDs in each
client. F ⇤ and F

⇤
k are the minimum values of F and Fk.

� = F
⇤ �

PN
k=1 pkF

⇤
k is used to represent the degree of

heterogeneity. We obtain the following theorem:
Theorem 2. Let ⇠kt be a sample chosen from the local data.
For k 2 [N ], assume that E

��5Fk(!k
t , ⇠

k
t )� Fk(!k

t )
��2
2


�
2
k and E

��Fk(!k
t , ⇠

k
t )
��2
2
 G

2. Then let ✏ = L
µ , � =

max{8✏, E} and the learning rate ⌘t = 2
µ(�+t) . We have

the following convergence guarantee for Algorithm 1.

E[F (!T )]� F
⇤  ✏

�+T�1

⇣
2( +�)

µ + µ�
2 E k!1 � !⇤k22

⌘
,

(18)
where  =

PN
k=1 (Proba

T
k )

2
�k

2 + 6L� + 8(E � 1)2G2

and � = 4
KE

2
G

2.
Since all the notations except T in Expression (18) are

constants, we have O( 1
T ) convergence rate for the algorithm

where limT!1 E[F (!T )]� F
⇤ = 0.

Experimental Evaluation
In this section, we comprehensively evaluate the effective-
ness and convergence of FEDEMD. in comparison to Shapley
Value based selection and SOTA baselines. The evaluation
considers both (single/multiple) exclusive and shared Maver-
ick types.

Datasets and Classifier Networks We use public im-
age datasets: i) Fashion-MNIST (Xiao, Rasul, and Vollgraf



2017) for bi-level image classification; ii) MNIST (LeCun
et al. 1998) for simpler tasks which need less data to do fast
learning; iii) Cifar-10 (Krizhevsky, Hinton et al. 2009) for
more complex task such as colored image classification; iv)
STL-10 (Coates, Ng, and Lee 2011) for applications with
small amounts of local data for all clients. We note that light-
weight neural networks are more applicable for FL scenarios,
where clients typically have limited computation and commu-
nication resources (Muhammad et al. 2020). Thus, here we
apply light-weight CNN for each dataset correspondingly.

Federated Learning System The system considered has
50 participants with homogeneous computation and com-
munication resources and 1 federator. At each round, the
federator selects 10% clients (Tolpegin et al. 2020) using
different client selection algorithms. The federator uses aver-
age or quantity-aware aggregation to aggregate local models
from selected clients. We set one local epoch for both aggre-
gations to enable a fair comparison of the two approaches.
Two types of Mavericks are considered: exclusive and shared
Mavericks with up to 3 Mavericks. We demonstrate the case
of single Maverick owning an entire class of data in most of
our experiments.

Evaluation Metrics i) Global test accuracy for all classes;
ii) Source recall for classes owned by Mavericks exclusively;
iii) R@99: the number of communication rounds required
to reach 99% of test accuracy of random selection based
results; iv) Normalized Shapley Value ranging between [0, 1]
to measure the contribution of Mavericks.

Baselines We consider four selection strategies: Ran-
dom (McMahan et al. 2017), Shapley Value-based, Fed-
Fast (Muhammad et al. 2020), and recent TiFL (Chai et al.
2020)5 under both average and quantity-aware aggregation
methods. Further, in order to compare with state-of-the-art
solutions for heterogeneous FL that focus on the optimizer,
we evaluate FedProx (Li et al. 2020a) as one of the baselines.

FEDEMD is Effective for Client Selection

(a) FMNIST-average (b) FMNIST-quantity

Figure 3: Comparison on FEDEMD with SVB.
Fig. 3 shows global accuracy over rounds. FEDEMD

achieves an accuracy close to the maximum almost imme-
diately for FedAvg while SVB requires about 100 rounds
(72 and 104 rounds for R@99 for SVB and FEDEMD). For
average aggregation, both client selection methods have a
slower convergence but FEDEMD still only requires about
half the number of rounds to achieve the same high accuracy

5We focus on their client selection and leave out other features,
e.g., communication acceleration in TiFL. We apply distribution
mean clustering for FedFast.

(a) Exclusive Mavericks (b) Shared Mavericks

Figure 4: Convergence rounds R@99 for multiple Mavericks.

as SVB. Concretely, SVB fails in reaching R@99 within 200
rounds. The reason lies in SVB rarely selecting the Maverick
in the early phase of the training, as it has a below-average
Shapley Value.

We evaluate the effects of choosing hyper-parameter �. To
choose �, the server can apply a preliminary client selection
simulation before training based on the self-reported data size
array. FEDEMD works best when the average probability of
selecting Maverick is limited in [1/N � ✏, 1/N + ✏], where ✏
is a task-aware small number and ✏ > 0. In our example with
Fashion-MNIST, based on the simulation record, we choose
� equal to 0.008, 0.009 and 0.01 in Fig. 3, which satisfies the
average probability setting above. The results shows that all
of the three numbers work for Fashion-MNIST, verifying the
effectiveness of FEDEMD over sensitive hyper-parameter. A
counterexample is to choose � = 0.1 where the Maverick is
selected too rarely.

Comparison with baselines. We summarize the compari-
son with the state-of-the-art methodologies in Table 1. The
reported R@99 is averaged over three replications. Note that
we run each for 200 rounds, which is mostly enough to see
the convergence statistics for these lightweight networks. The
rare exceptions when 99% maximal accuracy is not achieved
for random selection are indicated by > 200.

Due to to its distance-based weights, FEDEMD consis-
tently achieves faster convergence than all other algorithms.
The reason for this result is that FEDEMD enhances the
participation of the Maverick during early training period,
speeding up learning of the global distribution. For most set-
tings, the difference in convergence rounds is considerable
and clearly visible.

The only exception are relatively easy tasks with simple
averaging rather than weighted, e.g., Cifar-10 with average
aggregation, which indicates our distribution-based selection
method is especially useful for data size-aware aggregation
and more complex tasks. Quantity-aware aggregation nearly
always outperforms plain average aggregation as its weighted
averaging assigns more impact to the Maverick. While such
an increased weight caused by larger data size can lead to a
decrease in accuracy in the latter phase of training, Mavericks
are rarely selected in the latter phase of training by FEDEMD,
which successfully mitigates the effect and achieves a faster
convergence.

FEDEMD Works among Multiple Distributions
We explore the effectiveness of FEDEMD on both types:
exclusive and shared Mavericks. We vary the number of Mav-
ericks between one and three and use the Fashion-MNIST



Table 1: Convergence rounds of selection strategies in R@99 Accuracy, under average and quantity-aware aggregation.

Average Aggregation Quantity-aware AggregationDataset Random FedProx TiFL FedFast SVB FEDEMD Random FedProx TiFL FedFast SVB FEDEMD
MNIST 132.7 117.7 111.0 >200 147.0 98.7 72.3 51.0 84.0 >200 49.0 40.0

Fashion-MNIST 144.0 135.7 140.3 >200 103.0 131.3 110.7 92.0 146.3 >200 80.0 79.7
Cifar-10 140.7 164.0 147.3 >200 184.0 140.0 143.0 143.7 119.7 173.7 132.0 107.0
STL-10 122.3 186.0 124.7 171.0 191.3 96.3 179.7 179.0 >200 153.0 181.0 95.0

dataset. The Maverick classes are ‘T-shirt’, ‘Trouser’, and
‘Pullover’. Results are shown with respect to R@99.

Fig. (4a) illustrates the case of multiple exclusive Maver-
icks. For exclusive Mavericks, the data distribution becomes
more skewed as more classes are exclusively owned by Mav-
ericks. FEDEMD always achieves the fastest convergence,
though its convergence rounds increase slightly as the num-
ber of Mavericks increases, reflecting the increased difficulty
of learning in the presence of skewed data distribution. Fed-
Fast’s K-mean clustering typically results in a cluster of
Mavericks and then always includes at least one Maverick.
In trial solution we found that constantly including a Maver-
ick hinders convergence, which is also reflected in FedFast’s
results. TiFL outperforms FedAvg with random selection for
multiple Mavericks. However, TiFL’s results differ drastically
over runs due to the random factor in local testing. Thus, TiFL
is not a reliable choice for Mavericks. Comparably, FedProx
tends to achieve the best performance among the SOTA algo-
rithms but still exhibits slower convergence than FEDEMD
as higher weight divergence entails higher penalty on the loss
function.

For shared Mavericks, a higher number of Mavericks indi-
cates a more balanced distribution. Similar to the exclusive
case, FEDEMD has the fastest convergence and FedFast
again trails the others. The improvement of FEDEMD over
the other methods is less visible due to the limited advantage
of FEDEMD on balanced data.In terms of the effectiveness
of FEDEMD handing more shared Mavericks, the conver-
gence rounds decreases slightly. However, we attribute such
an observation partially to the fact that a higher number of
Mavericks resembles the case of i.i.d.. Random performs the
most similar to FEDEMD, as random selection is best for
i.i.d. scenarios, which shared Mavericks are closer to. Note
that the standard deviation of FEDEMD is smaller, implying
a better stability.

Generalization and Limitations
We consider the contribution measurement and client se-
lection in the presence of Mavericks, who hold large data
quantities and exhibit skewed data distributions. When the
number of exclusive Mavericks increases to the extreme (i.e.
all of the clients are Mavericks, the Maverick scenario ap-
proaches the single class heterogeneous scenarios considered
in prior work (Zhao et al. 2018). More exclusive mavericks
will lessen the difference with non-Mavericks, with Shapley
Value slightly below average (see Fig. (5c)(5d)). When the
number of shared Mavericks increases, the FL system ap-
proaches an i.i.d. scenario. It is consistent with our shared
Maverick results in Fig. (5a)(5b) since the relative Shapley
Value approaches average.

In this paper, we do not consider differences in com-

(a) FM-2-shared Mavericks (b) FM-3-shared Mavericks

(c) FM-2-excl. Mavericks (d) FM-3-excl. Mavericks

Figure 5: Relative Shapley Value multiple Mavericks.

putational or network resources. We suggest to combine
FEDEMD with prior work (Nishio and Yonetani 2019;
Huang et al. 2020b) to avoid selecting clients with insuf-
ficient resources.

Conclusion
Client selection is key to successful Federated Learning as it
enables maximizing the usefulness of different diverse data
sets. In this paper, we highlighted that existing schemes fail
when clients have heterogeneous data, in particular if one
class is exclusively owned by one or multiple Mavericks. We
first explore Shapley Value-based client selection, theoreti-
cally showing its limitations in addressing Mavericks. We
then propose FEDEMD that encourages the selection of di-
verse clients at the opportune moment of the training process,
with convergence guarantee. Evaluation results on multiple
datasets across different scenarios of Mavericks show that
FEDEMD accelerates the convergence by 26.9% compared
to the state-of-the-art client selection methods.
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