
SSFL: Tackling Label Deficiency in Federated Learning via
Personalized Self-Supervision

Chaoyang He, Zhengyu Yang, Erum Mushtaq, Sunwoo Lee
Mahdi Soltanolkotabi, Salman Avestimehr

Viterbi School of Engineering
University of Southern California

{chaoyang.he,yang765,emushtaq,sunwool,soltanol,avestime}@usc.edu

Abstract

Federated Learning (FL) is transforming the ML training
ecosystem from a centralized over-the-cloud setting to dis-
tributed training over edge devices in order to strengthen data
privacy, reduce data migration costs, and break regulatory re-
strictions. An essential, but rarely studied, challenge in FL is
label deficiency at the edge. This problem is even more pro-
nounced in FL, compared to centralized training, due to the
fact that FL users are often reluctant to label their private data
and edge devices do not provide an ideal interface to assist
with annotation. Addressing label deficiency is also further
complicated in FL, due to the heterogeneous nature of the
data at edge devices and the need for developing personalized
models for each user. We propose a self-supervised and per-
sonalized federated learning framework, named (SSFL), and a
series of algorithms under this framework which work towards
addressing these challenges. First, under the SSFL frame-
work, we analyze the compatibility of various centralized self-
supervised learning methods in FL setting and demonstrate
that SimSiam networks performs the best with the standard
FedAvg algorithm. Moreover, to address the data heterogene-
ity at the edge devices in this framework, we have innovated a
series of algorithms that broaden existing supervised personal-
ization algorithms into the setting of self-supervised learning
including perFedAvg, Ditto, and local fine-tuning, among
others. We further propose a novel personalized federated self-
supervised learning algorithm, Per-SSFL, which balances
personalization and consensus by carefully regulating the dis-
tance between the local and global representations of data. To
provide a comprehensive comparative analysis of all proposed
algorithms, we also develop a distributed training system and
related evaluation protocol for SSFL. Using this training sys-
tem, we conduct experiments on a synthetic non-I.I.D. dataset
based on CIFAR-10, and an intrinsically non-I.I.D. dataset
GLD-23K. Our findings show that the gap of evaluation accu-
racy between supervised learning and unsupervised learning in
FL is both small and reasonable. The performance comparison
indicates that representation regularization-based personaliza-
tion method is able to outperform other variants. Ablation
studies on SSFL are also conducted to understand the role of
batch size, non-I.I.D.ness, and the evaluation protocol.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 Introduction
Federated Learning (FL) is a contemporary distributed ma-
chine learning paradigm that aims at strengthening data pri-
vacy, reducing data migration costs, and breaking regulatory
restrictions (Kairouz et al. 2021; Wang et al. 2021). It has
been widely applied to computer vision, natural language
processing, and data mining. However, there are two main
challenges impeding its wider adoption in machine learning.
One is data heterogeneity, which is a natural property of FL
in which diverse clients may generate datasets with differ-
ent distributions due to behavior preferences (e.g., the most
common cause of heterogeneity is skewed label distribution
which might result from instances where some smartphone
users take more landscape pictures, while others take more
photos of daily life). The second challenge is label deficiency
at the edge, which is relatively less studied. This issue is
more severe at the edge than in a centralized setting because
users are reluctant to annotate their private and sensitive
data, and/or smartphones and IoT devices do not have a user-
friendly interface to assist with annotation.

To mitigate the data heterogeneity issue among clients,
researchers have proposed algorithms for training a global
model FedAvg (McMahan et al. 2017), FedProx (Li et al.
2018), FedNova (Wang et al. 2020), FedOPT (Reddi et al.
2020), as well as personalized FL frameworks (e.g., pFedMe,
Ditto, Per-FedAvg). These algorithms all depend on the
strong assumption that the data at the edge has sufficient la-
bels. To address the label deficiency issue in FL, recent works
(Liu et al. 2020; Long et al. 2020; Itahara et al. 2020; Jeong
et al. 2020; Liang et al. 2021; Zhao et al. 2020; Zhang et al.
2020a,b) assume that the server or client has a fraction of
labeled data and use semi-supervised methods such as consis-
tency loss (Miyato et al. 2018) or pseudo labeling (Lee 2013)
to train a global model. A more realistic but challenging set-
ting is fully unsupervised training. Although a recent work
in FL (Saeed et al. 2020) attempts to address this challenge
through Siamese networks proposed around thirty years ago
(Bromley et al. 1993), its design does not tackle data hetero-
geneity for learning personalized models, and it only trains
on small-scale sensor data in IoT devices. Moreover, these
existing works in FL have not examined recent progress in
the Self-Supervised Learning (SSL) community where meth-
ods such as SimCLR (Chen et al. 2020), SwAV(Caron et al.
2021), BYOL (Grill et al. 2020), and SimSiam (Chen and

Figure 1: Depiction of the Self-supervised and Personalized Federated Learning (SSFL) framework.

He 2020) have shown tremendous improvement in reducing
the amount of labeled data required to achieve state-of-the-
art performance. As such, it remains still unclear how these
SSL methods can be incorporated into FL and how well they
would perform, especially when intertwined with the data
heterogeneity challenge that does not exist in centralized
training.

In this paper, we propose Self-Supervised Federated Learn-
ing (SSFL), a unified self-supervised and personalized fed-
erated learning framework, and a series of algorithms under
this framework to address these challenges. As shown in Fig-
ure 1, this framework brings state-of-the-art self-supervised
learning algorithms to the realm of FL in order to enable
training without using any supervision, while also integrat-
ing model personalization to deal with data heterogeneity
(Section 3.1). More specifically, under the SSFL framework,
we analyze the compatibility of various centralized self-
supervised learning methods in the FL setting and demon-
strate that SimSiam networks performs the best with the
standard FedAvg algorithm (Section 3.2). Moreover, to ad-
dress the data heterogeneity at edge devices, we have inno-
vated a series of algorithms that broaden the reach of exist-
ing supervised personalization algorithms into the setting
of self-supervised learning, including perFedAvg (Fallah,
Mokhtari, and Ozdaglar 2020a), Ditto (Li et al. 2021),
and local fine-tuning, among others. We further pro-
pose a novel personalized federated self-supervised learning
algorithm, per-SSFL (Section 3.3), which balances person-
alization and consensus by carefully regulating the distance
between the local and global representations of data (shown
as the yellow block in Figure 1).

To provide a comprehensive and comparative analysis of
the proposed algorithms, we also develop a distributed train-
ing system and evaluation protocol for SSFL. Using this
training system, we conduct experiments on a synthetic non-
I.I.D. dataset based on CIFAR-10 and a natural non-I.I.D.
dataset GLD-23K. Our experimental results demonstrate that
all algorithms in our framework work reliably. In FL, the
gap of evaluation accuracy between supervised learning and
unsupervised learning is small. Personalized SSFL performs

better than FedAvg-based SSFL. We also conduct ablation
studies to fully understand the SSFL framework, namely the
role of batch size, different degrees of non-I.I.D.ness, and
performance in more datasets. Finally, our unified API design
can serve as a suitable platform and baseline, enabling further
developments of more advanced SSFL algorithms.

2 Preliminaries
SSFL builds upon two fundamental areas in machine learning:
federated optimization and self-supervised learning. Thus, we
first introduce some basics and formulations in these areas.

2.1 Federated Optimization
Federated optimization refers to the distributed optimization
paradigm that a network of K devices collaboratively solve
a machine learning task. In general, it can be formulated as a
distributed optimization problem with the form (McMahan
et al. 2017): minθ

∑K
k=1

|Dk|
|D| L(θ,Dk). Here, each device k

has a local dataset Dk drawn from a local distribution Xk.
The combined dataset D = ∪Kk=1Dk is the union of all lo-
cal datasets Dk. θ represents the model weight of a client
model. L is the client’s local loss function that measures
the local empirical risk over the heterogeneous dataset Dk.
Under this formulation, to mitigate the non-I.I.D. issue, re-
searchers have proposed algorithms such as FedProx (Li
et al. 2018), FedNova (Wang et al. 2020), and FedOPT
(Reddi et al. 2020) for training a global model, as well as per-
sonalized FL frameworks such as Ditto (Li et al. 2021), and
Per-FedAvg (Fallah, Mokhtari, and Ozdaglar 2020b). All
of these algorithms have a strong assumption that data at the
edge have sufficient labels, meaning that their analysis and
experimental settings are based on a supervised loss function,
such as the cross-entropy loss for image classification.

2.2 Self-supervised Learning
Self-supervised learning (SSL) aims to learn meaningful rep-
resentations of samples without human supervision. Formally,
it aims to learn an encoder function fθ : X 7→ Rd where θ
is the parameter of the function, X is the unlabeled sample
space (e.g. image, text), and the output is a d dimensional

vector containing enough information for downstream tasks
such as image classification and segmentation. The key to
SSL’s recent success is the inductive bias that ensures a good
representation encoder remains consistent under different
perturbations of the input (i.e. consistency regularization).

One prominent example among recent advances in modern
SSL frameworks is the Siamese architecture (Bromley et al.
1993) and its improved variants SimCLR (Chen et al. 2020),
SwAV (Caron et al. 2021), BYOL (Grill et al. 2020), and
SimSiam (Chen and He 2020). Here we review the most
elegant architecture, SimSiam, and defer the description
and comparison of the other three to Appendix A. SimSiam
proposes a two-head architecture in which two different views
(augmentations) of the same image are encoded by the same
network fθ. Subsequently, a predictor Multi Layer Perceptron
(MLP) hθ and a stop-gradient operation denoted by ·̂ are
applied to both heads. In the SSL context, “stop gradient”
means that the optimizer stops at a specific neural network
layer during the back propagation and views the parameters
in preceding layers as constants. Here, θ is the concatenation
of the parameters of the encoder network and the predictor
MLP. The algorithm aims to minimize the negative cosine
similarity D(·, ·) between two heads. More concretely, the
loss is defined as

LSS(θ,D) =
1

|D|
∑
x∈D

D(fθ(T (x)), ¤�hθ(fθ(T (x)))), (1)

where T represents stochastic data augmentation and D is
the data set.

3 SSFL: Self-supervised Federated Learning
In this section, we propose SSFL, a unified framework for
self-supervised federated learning. Specifically, we introduce
the method by which SSFL works for collaborative training
of a global model and personalized models, respectively.

3.1 General Formulation
We formulate self-supervised federated learning as the fol-
lowing distributed optimization problem:

min
Θ

{θk}k∈[K]

G (L (θ1,Θ;X1) , . . . ,L (θK ,Θ;XK)) (2)

where θk is the parameter for the local model (fθk , hθk); Θ is
the parameter for the global model (fΘ, hΘ); L(θk,Θ;Xk)
is a loss measuring the quality of representations encoded by
fθk and fΘ on the local distribution Xk; and G(·) denotes the
aggregation function (e.g. sum of client losses weighted by
|Dk|
|D|). To capture the two key challenges in federated learning

(data heterogeneity and label deficiency), we hold two core
assumptions in the proposed framework: (1) Xk of all clients
are heterogeneous (non-I.I.D.), and (2) there is no label.

To tackle the above problem, we propose a unified train-
ing framework for federated self-supervised learning, as de-
scribed in Algorithm 1. This framework can handle both
non-personalized and personalized federated training. In
particular, if one enforces the constraint θk = Θ for all
clients k ∈ [K], the problem reduces to learning a global

model. When this constraint is not enforced, θk can be dif-
ferent for each client, allowing for model personalization.
ClientSSLOPT is the local optimizer at the client side
which solves the local sub-problem in a self-supervised man-
ner. ServerOPT takes the update from the client side and
generates a new global model for all clients.

Algorithm 1: SSFL: A Unified Framework for Self-
supervised Federated Learning

input :K,T,Θ(0), {θ(0)k }k∈[K], CLIENTSSLOPT , SERVEROPT

1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5 Solve local sub-problem of equation 2:

θk,Θ
(t)
k ← CLIENTSSLOPT (θ

(t)
k ,Θ(t),∇L (θk,Θ;Xk))

6 Send ∆
(t)
k := Θ

(t)
k −Θ(t) back to server

7 Θ(t+1) ← SERVEROPT
Ä
Θ(t), {∆(t)

k }k∈S(t)

ä
return :{θk}k∈[K],Θ

(T)

Next, we will introduce specific forms of
ClientSSLOPT and ServerOPT for global training and
personalized training.

3.2 Global-SSFL: Collaboration Towards a Global
Model without Supervision

To train a global model using SSFL, we design a spe-
cific form of ClientSSLOPT using SimSiam. We choose
SimSiam over other contemporary self-supervised learning
frameworks (e.g., SimSiam, SwAV, BYOL) based on the fol-
lowing analysis as well as experimental results (see Section
5.1).

The simplicity in neural architecture and training
method. SimSiam’s architecture and training method are
relatively simple. For instance, compared with SimCLR,
SimSiam has a simpler loss function; compared with SwAV,
SimSiam does not require an additional neural component
(prototype vectors) and Sinkhorn-Knopp algorithm; com-
pared with BYOL, SimSiam does not need to maintain an
additional moving averaging network for an online network.
Moreover, the required batch size of SimSiam is the small-
est, making it relatively friendly for resource-constrained
federated learning. A more comprehensive comparison can
be found in Appendix A.

Interpretability of SimSiam leads to simpler local opti-
mization. More importantly, SimSiam is more interpretable
from an optimization standpoint which simplifieds the local
optimization. In particular, it can be viewed as an implemen-
tation of an Expectation-Maximization (EM) like algorithm,
meaning that optimizing LSS in Equation 1 is implicitly opti-
mizing the following objective

min
θ,η

E T
x∼X

î
∥fθ(T (x))− ηx∥22

ó
. (3)

Here, fθ is the encoder neural network parameterized by θ.
η is an extra set of parameters, whose size is proportional
to the number of images, and ηx refers to using the image
index of x to access a sub-vector of η. This formulation
is w.r.t. both θ and η and can be optimized via an alternat-
ing algorithm. At time step t, the ηtx update takes the form
ηtx ← ET [fθt(T (x))], indicating that ηtx is assigned the
average representation of x over the distribution of augmen-
tation. However, it is impossible to compute this step by go-
ing over the entire dataset during training. Thus, SimSiam
uses one-step optimization to approximate the EM-like two-
step iteration by introducing the predictor hθ to approximate
η and learn the expectation (i.e. hθ (z) ≈ ET [fθ(T (x))])
for any image x. After this approximation, the expectation
ET [·] is ignored because the sampling of T is implicitly dis-
tributed across multiple epochs. Finally, we can obtain the
self-supervised loss function in Equation 1, in which nega-
tive cosine similarity D is used in practice (the equivalent
L2 distance is used in Equation 3 for the sake of analysis).
Applying equation 1 as ClientSSLOPT simplifies the local
optimization for each client in a self-supervised manner.

3.3 Per-SSFL: Learning Personalized Models
without Supervision

In this section, we explain how SSFL addresses the data
heterogeneity challenge by learning personalized models.
Inspired by the interpretation in Section 3.2, we define the
following sub-problem for each client k ∈ [K]:

min
θk,ηk

E T
x∼Xk

ï
∥fθk(T (x))− ηk,x∥22 +

λ

2
∥ηk,x −H∗

x∥
2
2

ò
s.t. Θ∗,H∗ ∈ argmin

Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
∥fΘ(T (x))−Hx∥22

ó
(4)

Compared to global training, we additionally include Θ,
the global model parameter, andH, the global version of η,
and the expected representations which correspond to the
personalized parameters θk and ηk. In particular, through
the term ∥ηk,x −H∗

x∥
2
2, we aim for the expected local rep-

resentation of any image x to reside within a neighborhood
around the expected global representation of x. Therefore, by
controlling the radius of the neighborhood, hyperparameter
λ helps to balance consensus and personalization.

We see that Equation 4 in the above objective is an opti-
mization problem w.r.t. both θ and η. However, as the above
target is intractable in practice, following an analysis similar
to Section 3.2, we use the target below as a surrogate:

min
θk

LSS (θk, Dk)

+
λ

|Dk|
∑
x∈Dk

D (hθk ◦ fθk ◦ T (x), hΘ∗ ◦ fΘ∗ ◦ T (x))

s.t. Θ∗ ∈ argmin
Θ
LSS (Θ, D)

In practice, Θ can be optimized independently of θk

through the FedAvg (McMahan et al. 2017) algorithm. To
make the computation more efficient, we also apply the sym-
metrization trick proposed in (Chen and He 2020). We refer

to this algorithm as Per-SSFL and provide a detailed de-
scription in Algorithm 2 (also illustrated in Fig. 1).

Regarding the theoretical analysis. To our knowledge, all
self-supervised learning frameworks do not have any theoreti-
cal analysis yet, particularly the SimSiam dual neural network
architecture. Our formulation and optimization framework
are interpretable, they are built based on an EM-like algo-
rithm for SimSiam and minimizing the distance between the
private model and the global model’s data representation.

Innovating baselines to verify SSFL. Note that we have
not found any related works that explore a Siamese-like SSL
architecture in an FL setting. As such, to investigate the
performance of our proposed algorithm, we further propose
several other algorithms that can leverage the SSFL frame-
work. 1. LA-SSFL. We apply FedAvg (McMahan et al.
2017) on the SimSiam loss LSS for each client to obtain a
global model. We perform one step of SGD on the clients’
local data for local adaption; 2. MAML-SSFL. This algorithm
is inspired by perFedAvg (Fallah, Mokhtari, and Ozdaglar
2020b) and views the personalization on each devices as
the inner loop of MAML (Finn, Abbeel, and Levine 2017).
It aims to learn an encoder that can be easily adapted to
the clients’ local distribution. During inference, we perform
one step of SGD on the global model for personalization; 3.
BiLevel-SSFL. Inspired by Ditto (Li et al. 2021), we learn
personalized encoders on each client by restricting the param-
eters of all personalized encoders to be close to a global en-
coder independently learned by weighted aggregation. More
details of these algorithms, formulation, and pseudo code
are introduced in Appendix B. In Section 5.3, we will show
the comparison results for these proposed SSFL algorithmic
variants.

4 Training System and Evaluation Pipeline
for SSFL

A Distributed Training System to accelerate the algorith-
mic exploration in SSFL framework. We also contributed
to reproducible research via our distributed training system.
This is necessary for two reasons: (1) Running a stand-alone
simulation (training client by client sequentially) like most
existing FL works requires a prohibitively long training time
when training a large number of clients. In SSFL, the model
size (e.g., ResNet-18 v.s. shallow CNNs used in the original
FedAvg paper) and the round number for convergence (e.g.,
800 epochs in the centralized SimSiam framework) is rela-
tively larger than in FL literature. By running all clients in
parallel on multiple CPUs/GPUs, we can largely accelerate
the process. (2) Given that SSFL is a unified and generic
learning framework, researchers may develop more advanced
ways to improve our work. As such, we believe it is necessary
to design unified APIs and system frameworks in line with
the algorithmic aspect of SSFL. See Appendix C for more
details on our distributed training system.

Evaluation Pipeline. In the training phase, we use a KNN
classifier (Wu et al. 2018) as an online indicator to monitor
the quality of the representations generated by the SimSiam
encoder. For Global-SSFL, we report the KNN test accu-

Algorithm 2: Per-SSFL

input :K,T, λ,Θ(0), {θ(0)i }k∈[K], s: number of local iteration, β: learning rate
1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk from local dataset Dk, and do s local iterations
/* Optimize the global parameter Θ locally */

6 Z1, Z2 ← fΘ(t)(T (Bk)), fΘ(t)(T (Bk))
7 P1, P2 ← hΘ(t)(Z1), hΘ(t)(Z2)

8 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

, where ·̂ stands for stop-gradient
/* Optimize the local parameter θk */

9 z1, z2 ← fθk (T (Bk)), fθk (T (Bk))
10 p1, p2 ← hθk (z1), hθk (z2)

11 θk ← θk − β∇θk

Ä
D(p1,”z2)+D(p2,”z1)

2
+ λD(p1,P1)+D(p1,P2)+D(p2,P1)+D(p2,P2)

4

ä
12 Send ∆

(t)
k := Θ

(t)
k −Θ(t) back to server

13 SERVEROPTΘ(t+1) ← Θ(t) +
∑

k∈S(t)
|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

racy using the global model and the global test data, while
in Per-SSFL, we evaluate all clients’ local encoders sep-
arately with their local test data and report their averaged
accuracy. After self-supervised training, to evaluate the per-
formance of the trained encoder, we freeze the encoder and
attach a linear classifier to the output of the encoder. For
Global-SSFL, we can easily verify the performance of
SimSiam encoder by training the attached linear classifier
with FedAvg. However, for Per-SSFL, each client learns
a personalized SimSiam encoder. As the representations
encoded by personalized encoders might reside in different
spaces, using a single linear classifier trained by FedAvg
to evaluate these representations is unreasonable (see exper-
iments in Section 5.4). As such, we suggest an additional
evaluation step to provide a more representative evaluation of
Per-SSFL’s performance: for each personalization encoder,
we use the entire training data to train the linear classifier but
evaluate on each client’s local test data.

5 Experiments
In this section, we introduce experimental results for SSFL
with and without personalization and present a performance
analysis on a wide range of aspects including the role of batch
size, different degrees of non-IIDness, and understanding the
evaluation protocol.

Implementation. We develop the SSFL training system
to simplify and unify the algorithmic exploration. Details of
the training system design can be found in Appendix C. We
deploy the system in a distributed computing environment
which has 8 NVIDIA A100-SXM4 GPUs with sufficient
memory (40 GB/GPU) to explore different batch sizes (Sec-
tion 5.4). Our training framework can run multiple parallel
training workers in a single GPU, so it supports federated
training with a large number of clients. The client number
selected per round used in all experiments is 10, which is a
reasonable setting suggested by recent literature (Reddi et al.

2020).
Learning Task. Following SimCLR (Chen et al. 2020),

SimSiam (Chen and He 2020), BYOL (Grill et al. 2020),
and SwAV (Caron et al. 2020) in the centralized setting, we
evaluate SSL for the image classification task and use repre-
sentative datasets for federated learning.

Dataset. We run experiments on synthetic non-I.I.D.
dataset CIFAR-10 and intrinsically non-I.I.D. dataset Google
Landmark-23K (GLD-23K), which are suggested by multiple
canonical works in the FL community (Reddi et al. 2020; He
et al. 2020; Kairouz et al. 2019). For the non-I.I.D. setting, we
distribute the dataset using a Dirichlet distribution (Hsu, Qi,
and Brown 2019), which samples pc ∼ Dir(α) (we assume a
uniform prior distribution) and allocates a pc,k proportion of
the training samples of class c to local client k. We provide a
visualization of the data distribution in Appendix E.1.

Model Architecture. For the model architecture, ResNet-
18 is used as the backbone of the SimSiam framework, and
the predictor is the same as that in the original paper.

Next, we focus on results from the curated CIFAR-10
dataset and defer GLD-23K to Appendix D.

5.1 Comparisons on SimSiam, SimCLR, SwAV,
and BYOL

Our first experiment determines which SSL method is ideal
for FL settings. We run experiments using FedAvg for these
four methods and obtain two findings: (1) SimSiam outper-
forms SimCLR in terms of accuracy; (2) BYOL and SwAV do
not work in FL; we tested a wide range of hyper-parameters,
but they still are unable to converge to a reasonable accuracy.
These experimental results confirm our analysis in Section
3.2.

5.2 Evaluation on Global-SSFL
The goal of this experiment is to understand the accuracy gap
between supervised and self-supervised federated learning

0 200 400 600

round
0

0.2

0.4

0.6

0.8 Accuracy

SSFL on non-I.I.D (0.5)
SSFL on I.I.D (0.5)

(a) Training Time Accuracy
0 200 400 600

round
-0.8

-0.6

-0.4

-0.2

Loss

SSFL on non-I.I.D (0.5)
SSFL on I.I.D (0.5)

(b) Training Loss

Figure 2: Training and Evaluation using SSFL

in both I.I.D. and non-I.I.D. settings where we aim to train a
global model from private data from clients.

Setup and Hyper-parameters. We evaluate Global-SSFL
using non-I.I.D. data from CIFAR-10: we set α = 0.1 for the
Dirichlet distribution. For supervised learning, the test accu-
racy is evaluated on a global test dataset. For self-supervised
training, we follow the evaluation protocol introduced in
Section 4. We use SGD with Momentum as the client-side
optimizer and a learning rate scheduler across communica-
tion rounds. We searched the learning rate on the grid of
{0.1, 0.3, 0.01, 0.03} and report the best result. The experi-
ment is run three times using the same learning rate with fixed
random seeds to ensure reproducibility. The training lasts for
800 rounds, which is sufficient to achieve convergence for all
methods. More hyperparameters are in Appendix E.2.

We display the training curves in Figure 2 which demon-
strates that SSFL can converge reliably in both I.I.D. and
non-I.I.D. settings. For the I.I.D. data, we find that SSFL
can achieve the same accuracy as the centralized accuracy
report in the SimSiam paper (Chen and He 2020). For the
non-I.I.D. data, SSFL achieves a reasonable accuracy com-
pared to the centralized accuracy. The accuracy comparisons
in different dimensions (supervised v.s. self-supervised; I.I.D.
v.s. non-I.I.D.) are summarized in Table 1.

5.3 Evaluation on Per-SSFL
Based on the results of SSFL with FedAvg, we further add
the personalization components for SSFL introduced in Sec-
tion 3.3 (Per-SSFL).

Setup and Hyper-parameters. For a fair comparison, we
evaluate Per-SSFL on non-I.I.D. data from CIFAR-10 and
set α = 0.1 for the Dirichlet distribution. For Per-SSFL
training, we follow the evaluation protocol introduced in
Section 4. Similar to SSFL, we use SGD with Momen-
tum as the client-side optimizer and the learning rate sched-
uler across communication rounds. We search for the learn-
ing rate on a grid of {0.1, 0.3, 0.01, 0.03} and report the
best result. For Per-SSFL and BiLevel-SSFL, we also
tune the λ of the regularization term with a search space
{1, 10, 0.1, 0.01, 0.001}. The experiments are run three times
with the same learning rate and with fixed random seeds to
ensure reproducibility. The training also lasts for 800 com-
munication rounds, which is the same as Global-SSFL.
Other hyperparameters can be found in Appendix E.2.

We illustrate our results in Figure 3 and Table 2. To con-
firm the convergence, we draw loss curves for all methods
in Figure 3(b) (note that they have different scaled values
due to the difference of their loss functions). Figure 3(b) in-
dicates that Per-SSFL performs best among all methods.
MAML-SSFL is also a suggested method since it obtains com-
parable accuracy. LA-SSFL is a practical method, but it does
not perform well in the self-supervised setting. In Figure 3(b),
the averaged personalized accuracy of LA-SSFL diverges
in the latter phase. Based on BiLevel-SSFL’s result, we
can conclude such a method is not a strong candidate for per-
sonalization, though it shares similar objective functions as
Per-SSFL. This indicates that regularization through repre-
sentations encoded by SimSiam outperforms regularization
through weights.

5.4 Performance Analysis
Role of Batch Size FL typically requires a small batch
size to enable practical training on resource-constrained edge
devices. Therefore, understanding the role of batch size in
SSFL is essential to practical deployment and applicability.
To investigate this, we use different batch sizes and tune the
learning rate to find the optimal accuracy for each one. The
results in Figure 4 show that SSFL requires a large batch size
(256); otherwise, it reduces the accuracy or diverges during
training. Since system efficiency is not the focus of this paper,
we use gradient accumulation, which is a simple yet effective
method. We fix the batch size at 32 and use accumulation step
8 for all experiments. For an even larger batch size (e.g., 512),
the memory cost is significant, though there is no notable gain
in accuracy. Therefore, we discontinue the search for batch
sizes larger than larger than 256. A more advanced method
includes batch-size-one training and knowledge distillation.
We defer the discussion to Appendix F.

On Different Degrees of Non-I.I.D.ness We investigate
the impact of the degree of data heterogeneity on the SSFL
performance. We compare the performance between α = 0.1
and α = 0.5. These two settings provide a non-negligible gap
in the label distribution in each client (see our visualization in
Appendix E.1). Figure 5(a) and 5(b) shows the learning curve
comparisons. It is clearly observed that the higher degree of
data heterogeneity makes it converge more slowly, adversely
affecting the accuracy.

Accuracy

Supervised Self-Supervised Acc. Gap

I.I.D 0.932 0.914 0.018
non-I.I.D 0.8812 0.847 0.0342
Acc. Gap 0.0508 0.06 N/A

Table 1: Evaluation accuracy comparison between
supervised FL and SSFL.

Method KNN Indicator Evaluation

LA-SSFL 0.9217 0.8013
MAML-SSFL 0.9355 0.8235

BiLevel-SSFL 0.9304 0.8137
Per-SSFL 0.9388 0.8310

Table 2: Evaluation Accuracy for Various Per-SSFL
Methods.

0 200 400 600 800

round-0.8

-0.6

-0.4

-0.2

0

 LA-SSFL

 MAML-SSFL

 Per-SSFL

Bilevel-SSFL

Loss

(a) Training Loss

0 200 400 600 800

round
0.88

0.9

0.92

Accuracy

 LA-SSFL
 MAML-SSFL

 Per-SSFL
Bilevel-SSFL

(b) Averaged Personalized Accuracy

Figure 3: Training and Evaluation using SSFL

0 200 400 600

round
0

0.2

0.4

0.6

0.8

Batch Size: 8
Batch Size: 16
Batch Size: 32
Batch Size: 64
Batch Size: 256

Accuracy

Figure 4: Results for batch sizes

0 200 400 600 800

round0.88

0.9

0.92

0.94 Accuracy

alpha (0.1)
alpha (0.5)

(a) Averaged Personalized
Accuracy

0 200 400 600 800

round-0.12

-0.1

-0.08

-0.06

-0.04

-0.02 Loss

alpha (0.1)
alpha (0.5)

(b) Training Loss

Figure 5: Evaluation on Different Degress of Non-I.I.D.ness

0 20 40 60 80 100

round
0.3

0.4

0.5

0.6

0.7

0.8

 Per-SSFL

 LA-SSFL

Accuracy

Figure 6: Understanding the Evaluation Protocol

Understanding the Linear Evaluation of Personalized En-
coders As we discussed in 4, in SSFL, we can easily verify
the quality of the SimSiam encoder using federated linear
evaluation; however, in Per-SSFL, each client learns a per-
sonalized SimSiam encoder. Such heterogeneity in diverse
encoders makes a fair evaluation difficult. To demonstrate
this, we run experiments with naive federated linear eval-
uation on personalized encoders and surprisingly find that
such an evaluation protocol downgrades the performance.
As shown in Figure 6, the federated linear evaluation for
Per-SSFL performs worse than even LA-SSFL. This may
be attributed to the fact that the naive aggregation drags close
to the parameter space of all heterogeneous encoders, making
the encoder degenerate in terms of personalization.

6 Related Works
Federated Learning (FL) with Personalization. pFedMe
(Dinh, Tran, and Nguyen 2020), perFedAvg (Fallah,
Mokhtari, and Ozdaglar 2020a), and Ditto (Li et al. 2021) are
some representative works in this direction. However, these
methods all have a strong assumption that users can provide
reliable annotations for their private and sensitive data, which
we argue to be very unrealistic and impractical.
Label deficiency in FL. There are a few related works to
tackle label deficiency in FL (Liu et al. 2020; Long et al.
2020; Itahara et al. 2020; Jeong et al. 2020; Liang et al. 2021;
Zhao et al. 2020; Zhang et al. 2020b). Compared to these
works, our proposed SSFL does not use any labels during
training. FedMatch (Jeong et al. 2020) and FedCA (Zhang
et al. 2020a) requires additional communication costs to syn-
chronize helper models or public labeled dataset. (Saeed et al.
2020) addresses the fully unsupervised challenge on small-
scale sensor data in IoT devices. However, compared to our
work, it uses the Siamese networks proposed around thirty
years ago (Bromley et al. 1993), lacking consideration on

the advance in the past two years (i.e., SimCLR (Chen et al.
2020), SwAV(Caron et al. 2021), BYOL (Grill et al. 2020),
and SimSiam (Chen and He 2020)). Moreover, these works
does not have any design for learning personalized models.

7 Conclusion
We propose Self-supervised Federated Learning (SSFL)
framework and a series of algorithms under this framework
towards addressing two challenges: data heterogeneity and la-
bel deficiency. SSFL can work for both global model training
and personalized model training. We conduct experiments
on a synthetic non-I.I.D. dataset based on CIFAR-10 and
the intrinsically non-I.I.D. GLD-23K dataset. Our experi-
mental results demonstrate that SSFL can work reliably and
achieves reasonable evaluation accuracy that is suitable for
use in various applications.

References
Berthelot, D.; Carlini, N.; Cubuk, E. D.; Kurakin, A.; Sohn,
K.; Zhang, H.; and Raffel, C. 2020. ReMixMatch: Semi-
Supervised Learning with Distribution Matching and Aug-
mentation Anchoring. In International Conference on Learn-
ing Representations.
Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.;
Oliver, A.; and Raffel, C. A. 2019. MixMatch: A Holistic Ap-
proach to Semi-Supervised Learning. In Neural Information
Processing Systems, 5049–5059.
Brendan McMahan, H.; Moore, E.; Ramage, D.; Hampson,
S.; and Agüera y Arcas, B. 2016. Communication-Efficient
Learning of Deep Networks from Decentralized Data. arXiv
e-prints, arXiv:1602.05629.
Bromley, J.; Bentz, J. W.; Bottou, L.; Guyon, I.; LeCun, Y.;
Moore, C.; Säckinger, E.; and Shah, R. 1993. Signature
verification using a “siamese” time delay neural network.
International Journal of Pattern Recognition and Artificial
Intelligence, 7(04): 669–688.
Cai, H.; Gan, C.; Zhu, L.; and Han, S. 2020. TinyTL: Reduce
Memory, Not Parameters for Efficient On-Device Learning.
Advances in Neural Information Processing Systems, 33.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.;
and Joulin, A. 2020. Unsupervised learning of visual fea-
tures by contrasting cluster assignments. arXiv preprint
arXiv:2006.09882.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; and
Joulin, A. 2021. Unsupervised Learning of Visual Features
by Contrasting Cluster Assignments. arXiv:2006.09882.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International conference on machine learning,
1597–1607. PMLR.
Chen, X.; and He, K. 2020. Exploring Simple Siamese Rep-
resentation Learning.
Cuturi, M. 2013. Sinkhorn Distances: Lightspeed Computa-
tion of Optimal Transportation Distances. arXiv:1306.0895.
Dinh, C. T.; Tran, N. H.; and Nguyen, T. D. 2020. Personal-
ized Federated Learning with Moreau Envelopes.

Fallah, A.; Mokhtari, A.; and Ozdaglar, A. 2020a. Person-
alized federated learning: A meta-learning approach. arXiv
preprint arXiv:2002.07948.
Fallah, A.; Mokhtari, A.; and Ozdaglar, A. 2020b. Personal-
ized Federated Learning: A Meta-Learning Approach.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P. H.;
Buchatskaya, E.; Doersch, C.; Pires, B. A.; Guo, Z. D.;
Azar, M. G.; et al. 2020. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733.
He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.;
Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; Zhao, P.;
Kang, Y.; Liu, Y.; Raskar, R.; Yang, Q.; Annavaram, M.;
and Avestimehr, S. 2020. FedML: A Research Library and
Benchmark for Federated Machine Learning. arXiv preprint
arXiv:2007.13518.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring the
effects of non-identical data distribution for federated visual
classification. arXiv preprint arXiv:1909.06335.
Hu, Z.; Yang, Z.; Hu, X.; and Nevatia, R. 2021. SimPLE:
Similar Pseudo Label Exploitation for Semi-Supervised Clas-
sification.
Itahara, S.; Nishio, T.; Koda, Y.; Morikura, M.; and Ya-
mamoto, K. 2020. Distillation-Based Semi-Supervised
Federated Learning for Communication-Efficient Collabo-
rative Training with Non-IID Private Data. arXiv preprint
arXiv:2008.06180.
Jeong, W.; Yoon, J.; Yang, E.; and Hwang, S. J. 2020. Feder-
ated Semi-Supervised Learning with Inter-Client Consistency.
arXiv preprint arXiv:2006.12097.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A.; Bonawitz, K.; Charles, Z. B.; Cormode, G.;
Cummings, R.; D’Oliveira, R. G. L.; Rouayheb, S.; Evans, D.;
Gardner, J.; Garrett, Z.; Gascón, A.; Ghazi, B.; Gibbons, P. B.;
Gruteser, M.; Harchaoui, Z.; He, C.; He, L.; Huo, Z.; Hutchin-
son, B.; Hsu, J.; Jaggi, M.; Javidi, T.; Joshi, G.; Khodak, M.;
Konecný, J.; Korolova, A.; Koushanfar, F.; Koyejo, O.; Lep-
oint, T.; Liu, Y.; Mittal, P.; Mohri, M.; Nock, R.; Özgür, A.;
Pagh, R.; Raykova, M.; Qi, H.; Ramage, D.; Raskar, R.; Song,
D.; Song, W.; Stich, S. U.; Sun, Z.; Suresh, A. T.; Tramèr, F.;
Vepakomma, P.; Wang, J.; Xiong, L.; Xu, Z.; Yang, Q.; Yu, F.;
Yu, H.; and Zhao, S. 2021. Advances and Open Problems in
Federated Learning. Found. Trends Mach. Learn., 14: 1–210.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977.
Laine, S.; and Aila, T. 2016. Temporal Ensembling for Semi-
Supervised Learning.

Lee, D.-H. 2013. Pseudo-Label : The Simple and Efficient
Semi-Supervised Learning Method for Deep Neural Net-
works.
Li, T.; Hu, S.; Beirami, A.; and Smith, V. 2021. Ditto: Fair
and Robust Federated Learning Through Personalization.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2018. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127.
Liang, X.; Liu, Y.; Luo, J.; He, Y.; Chen, T.; and Yang, Q.
2021. Self-supervised Cross-silo Federated Neural Architec-
ture Search. arXiv preprint arXiv:2101.11896.
Liu, Y.; Yuan, X.; Zhao, R.; Zheng, Y.; and Zheng, Y. 2020.
RC-SSFL: Towards Robust and Communication-efficient
Semi-supervised Federated Learning System. arXiv preprint
arXiv:2012.04432.
Long, Z.; Che, L.; Wang, Y.; Ye, M.; Luo, J.; Wu, J.;
Xiao, H.; and Ma, F. 2020. FedSemi: An Adaptive Fed-
erated Semi-Supervised Learning Framework. arXiv preprint
arXiv:2012.03292.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, 1273–1282.
Miyato, T.; Maeda, S.-i.; Koyama, M.; and Ishii, S. 2018.
Virtual adversarial training: a regularization method for su-
pervised and semi-supervised learning. IEEE transactions on
pattern analysis and machine intelligence, 41(8): 1979–1993.
Miyato, T.; Maeda, S.-I.; Koyama, M.; and Ishii, S. 2019.
Virtual Adversarial Training: A Regularization Method for
Supervised and Semi-Supervised Learning. 41(8): 1979–
1993.
Reddi, S.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.;
Konečnỳ, J.; Kumar, S.; and McMahan, H. B. 2020. Adaptive
Federated Optimization. arXiv preprint arXiv:2003.00295.
Saeed, A.; Salim, F. D.; Ozcelebi, T.; and Lukkien, J. 2020.
Federated Self-Supervised Learning of Multisensor Represen-
tations for Embedded Intelligence. IEEE Internet of Things
Journal, 8(2): 1030–1040.
Sajjadi, M.; Javanmardi, M.; and Tasdizen, T. 2016. Regu-
larization with stochastic transformations and perturbations
for deep semi-supervised learning. In Neural Information
Processing Systems, 1171–1179.
Salimans, T.; and Kingma, D. P. 2016. Weight Normalization:
A Simple Reparameterization to Accelerate Training of Deep
Neural Networks. CoRR, abs/1602.07868.
Tan, M.; and Le, Q. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, 6105–6114. PMLR.
Wang, J.; Charles, Z. B.; Xu, Z.; Joshi, G.; McMahan, H. B.;
Arcas, B. A. Y.; Al-Shedivat, M.; Andrew, G.; Avestimehr,
S.; Daly, K.; Data, D.; Diggavi, S.; Eichner, H.; Gadhikar,
A.; Garrett, Z.; Girgis, A. M.; Hanzely, F.; Hard, A.; He,
C.; Horvath, S.; Huo, Z.; Ingerman, A.; Jaggi, M.; Javidi,
T.; Kairouz, P.; Kale, S.; Karimireddy, S. P. R.; Konecný,
J.; Koyejo, S.; Li, T.; Liu, L.; Mohri, M.; Qi, H.; Reddi,
S. J.; Richtárik, P.; Singhal, K.; Smith, V.; Soltanolkotabi,

M.; Song, W.; Suresh, A. T.; Stich, S. U.; Talwalkar, A. S.;
Wang, H.; Woodworth, B. E.; Wu, S.; Yu, F. X.; Yuan, H.;
Zaheer, M.; Zhang, M.; Zhang, T.; Zheng, C.; Zhu, C.; and
Zhu, W. 2021. A Field Guide to Federated Optimization.
ArXiv, abs/2107.06917.
Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; and Poor, H. V.
2020. Tackling the objective inconsistency problem in
heterogeneous federated optimization. arXiv preprint
arXiv:2007.07481.
Wu, Z.; Xiong, Y.; Yu, S.; and Lin, D. 2018. Unsupervised
Feature Learning via Non-Parametric Instance-level Discrim-
ination. arXiv:1805.01978.
Zhang, F.; Kuang, K.; You, Z.; Shen, T.; Xiao, J.; Zhang,
Y.; Wu, C.; Zhuang, Y.; and Li, X. 2020a. Federated
Unsupervised Representation Learning. arXiv preprint
arXiv:2010.08982.
Zhang, Z.; Yang, Y.; Yao, Z.; Yan, Y.; Gonzalez, J. E.; and
Mahoney, M. W. 2020b. Improving Semi-supervised Feder-
ated Learning by Reducing the Gradient Diversity of Models.
arXiv preprint arXiv:2008.11364.
Zhao, Y.; Liu, H.; Li, H.; Barnaghi, P.; and Haddadi, H. 2020.
Semi-supervised Federated Learning for Activity Recogni-
tion. arXiv preprint arXiv:2011.00851.

Appendix
A Comparison of Self-supervised Learning

Frameworks
We compare state-of-the-art self-supervised learning frame-
works (SimCLR, SwAV, BYOL) with SimSiam (Chen and
He 2020) in light of federated learning.

We choose SimSiam (Chen and He 2020) because it re-
quires a much smaller batch to perform normally. In the
centralized setting, for each method to reach an accuracy
level similar to that of SimSiam, a much larger batch size
is necessary. Table 3 adopted from (Chen and He 2020) pro-
vides a brief comparison between all listed self-supervised
learning frameworks.

Another reason we prefer SimSiam (Chen and He 2020)
as the basic framework to build SSFL is that the design of
SimSiam simplifies all other baselines and also obtains a
relatively higher accuracy. Figure 7 abstracts these methods.
The “encoder” contains all layers that can be shared between
both branches (e.g., backbone, projection MLP (Chen et al.
2020), prototypes (Caron et al. 2021)). The components in
red are those missing in SimSiam.

encoder

similarity

encoder

predictor

image

SimSiam

encoder

similarity &
dissimilarity

encoder

image

SimCLR

encoder

similarity

encoder

Sinkhorn-Knopp

image

SwAV

encoder

similarity

momentum
encoder

predictor

image

moving
average

BYOL

grad grad

grad grad

grad

Figure 7: (Chen and He 2020) Comparison on Siamese
architectures. The encoder includes all layers that can be
shared between both branches. The dashed lines indicate the
gradient propagation flow. In BYOL, SwAV, and SimSiam,
the lack of a dashed line implies stop-gradient, and their sym-
metrization is not illustrated for simplicity. The components
in red are those missing in SimSiam.

SimCLR (Chen et al. 2020). SimCLR relies on negative
samples (“dissimilarity”) to prevent collapsing. SimSiam
can be thought of as “SimCLR without negatives". In every
mini-batch, for any image, one augmented view of the same
image is considered to be its positive sample, and the remain-
ing augmented views of different images are considered to
be its negative samples. A contrastive loss term is calculated
to push positive samples together and negative samples away.

SwAV(Caron et al. 2021). SimSiam is conceptually anal-
ogous to “SwAV without online clustering". SimSiam en-
courages the features of the two augmented views of the
same image to be similar, while SwAV encourages features
of the two augmented views of the same image to belong to

the same cluster. An additional Sinkhorn-Knopp (SK) trans-
form (Cuturi 2013) is required for online clustering of SwAV.
The authors of SimSiam (Chen and He 2020) build up the
connection between SimSiam and SwAV by recasting a few
components in SwAV. (i) The shared prototype layer in SwAV
can be absorbed into the Siamese encoder. (ii) The prototypes
were weight-normalized outside of gradient propagation in
(Caron et al. 2021); the authors of SimSiam instead imple-
ment by full gradient computation (Salimans and Kingma
2016). (iii) The similarity function in SwAV is cross-entropy.
With these abstractions, a highly simplified SwAV illustration
is shown in Figure 7.

BYOL (Grill et al. 2020). SimSiam can be thought of as
“BYOL without the momentum encoder", subject to many im-
plementation differences. Briefly, in BYOL, one head of the
Siamese architecture used in SimSiam is replaced by the ex-
ponential moving average of the encoder. As the momentum
encoder has an identical architecture to that of the encoder,
the introduction of an additional momentum encoder doubles
the memory cost of the model.

SSL’s recent success is the inductive bias that ensures a
good representation encoder remains consistent under differ-
ent perturbations of the input (i.e. consistency regularization).
The perturbations can be either domain-specific data augmen-
tation (e.g. random flipping in the image domain) (Berthelot
et al. 2019; Laine and Aila 2016; Sajjadi, Javanmardi, and
Tasdizen 2016; Berthelot et al. 2020; Hu et al. 2021), drop
out (Sajjadi, Javanmardi, and Tasdizen 2016), random max
pooling (Sajjadi, Javanmardi, and Tasdizen 2016), or an ad-
versarial transformation (Miyato et al. 2019). With this idea,
a consistency loss L is defined to measure the quality of the
representations without any annotations.

B Formulation and Pseudo Code for
Algorithms Under SSFL Framework

Inspired by recent advances in personalized FL and self-
supervised learning, we innovate several representative al-
gorithms under SSFL framework. For each algorithm, we
present its mathematical formulation and its pseudo code.

B.1 Per-SSFL
For Per-SSFL, as the formulation and algorithm have al-
ready been presented in Equation 4 and Algorithm 2, we
provide a PyTorch style pseudo code in Algorithm 3 for
additional clarity.

B.2 Personalized SSFL with Local Adaptation
(FedAvg-LA)

FedAvg-LA apply FedAvg (Brendan McMahan et al.
2016) on the SimSiam loss LSS for each client to obtain a
global model. We perform one step of SGD on the clients’
local data for local adaption. The objective is defined in Equa-
tion 5, and the algorithm is provided in Algorithm 4.

min
Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
∥fΘ(T (x))−Hx∥22

ó
(5)

method batch
size

negative
pairs

momentum
encoder 100 ep 200 ep 400 ep 800 ep

SimCLR (repro.+) 4096 ✓ 66.5 68.3 69.8 70.4
BYOL (repro.) 4096 ✓ 66.5 70.6 73.2 74.3
SwAV (repro.+) 4096 66.5 69.1 70.7 71.8
SimSiam 256 68.1 70.0 70.8 71.3

Table 3: (Chen and He 2020) Comparisons on ImageNet linear classification. All are based on ResNet-50 pre-trained with
two 224×224 views in a centralized setting. Evaluation is on a single crop. “repro.” denotes reproduction conducted by authors
of SimSiam (Chen and He 2020), and “+” denotes improved reproduction v.s. original papers.

B.3 Personalized SSFL with MAML-SSFL
MAML-SSFL is inspired by perFedAvg (Fallah, Mokhtari,
and Ozdaglar 2020b) and views the personalization on each
devices as the inner loop of MAML (Finn, Abbeel, and
Levine 2017). It aims to learn an encoder that can be easily
adapted to the clients’ local distribution. During inference,
we perform one step of SGD on the global model for per-
sonalization. The objective is defined in Equation 6, and the
algorithm is provided in Algorithm 5.

min
Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
∥fΘ′(T (x))−Hx∥22

ó
s.t. Θ′ = Θ−∇Θ

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
∥fΘ(T (x))−Hx∥22

ó
(6)

B.4 Personalized SSFL with BiLevel-SSFL
Inspired by Ditto (Li et al. 2021), BiLevel-SSFL learns
personalized encoders on each client by restricting the pa-
rameters of all personalized encoders to be close to a global
encoder independently learned by weighted aggregation. The
objective is defined in Equation 7, and the algorithm is pro-
vided in Algorithm 6.

min
θk,ηk

E T
x∼Xk

ï
∥fθk(T (x))− ηk,x∥22 +

λ

2
∥θk −Θ∗

x∥
2
2

ò
s.t. Θ∗,H∗ ∈ argmin

Θ,H

n∑
i=1

|Dk|
|D|

E T
x∼Xi

î
∥fΘ(T (x))−Hx∥22

ó
(7)

C Distributed Training System for SSFL
We develop a distributed training system for our SSFL frame-
work which contains three layers. In the infrastructure layer,
communication backends such as MPI are supported to fa-
cilitate the distributed computing. We abstract the communi-
cation as ComManager to simplify the message passing be-
tween the client and the server. Trainer reuses APIs from
PyTorch to handle the model optimizations such as forward
propagation, loss function, and back propagation. In the algo-
rithm layer, Client Manager and Server Manager
are the entry points of the client and the server, respectively.
The client managers incorporates various SSFL trainers, in-
cluding Per-SSFL, MAML-SSFL, BiLevel-SSFL, and

LA-SSFL. The server handles the model aggregation using
Aggregator. We design simplified APIs for all of these
modules. With the abstraction of the infrastructure and algo-
rithm layers, developers can begin FL training by developing
a workflow script that integrates all modules (as the “SSFL
workflow” block shown in the figure). Overall, we found
that this distributed training system accelerates our research
by supporting parallel training, larger batch sizes, and easy-
to-customize APIs, which cannot be achieved by a simple
single-process simulation.

D Experimental Results on GLD-23K Dataset
We also evaluate the performance of SSFL on GLD-23K
dataset. We use 30% of the original local training dataset as
the local test dataset and filter out those clients that have a
number of samples less than 100. Due to the natural non-
I.I.D.ness of GLD-23K dataset, we only evaluate the Per-
SSFL framework. The results are summarized in Table 4.
Note: we plan to further explore more datasets and run more
experiments; thus we may report more results during the
rebuttal phase.

E Extra Experimental Results and Details
E.1 Visualization of Non-I.I.D. dataset
E.2 Hyper-parameters
All experiments set the local epoch number as 1, round num-
ber as 800, batch size as 256 (batch size 32 with 8 gradient
accumulation steps).

F Discussion
To overcome the large batch size requirement in SSFL and
practical FL edge training, one direction is to use efficient
DNN models such as EfficientNet (Tan and Le 2019) and
MobileNet (Howard et al. 2017) as the backbone of SimSiam.
However, we tested its performance under our framework
and found that the performance downgrades to a level of
accuracy that is not useful (less than 60%). A recent work in
centralized self-supervised learning mitigates these models’
accuracy gap by knowledge distillation, which works in a
centralized setting but is still not friendly to FL since KD re-
quires additional resources for the teacher model. In practice,
we can also explore batch size 1 training (Cai et al. 2020) at
the edge, which dramatically reduces the memory cost with
additional training time.

Algorithm 3: Per-SSFL PyTorch Style Pseudo Code

1 # F: global encoder
2 # H: global predictor
3 # f: local encoder
4 # h: local predictor
5

6 for x in loader: # load a mini-batch x with n samples
7 x1, x2 = aug(x), aug(x) # random augmentation
8 Z1, Z2 = F(x1), F(x2) # global projections, n-by-d
9 P1, P2 = H(Z1), H(Z2) # global predictions, n-by-d

10

11 L = D(P1, Z2) / 2 + D(P2, Z1) / 2 # global loss
12

13 L.backward() # back-propagate
14 update(F, H) # SGD update global model
15

16 z1, z2 = f(x1), f(x2) # local projections, n-by-d
17 p1, p2 = h(z1), h(z2) # local predictions, n-by-d
18

19 l = D(p1, z2) / 2 + D(p2, z1) / 2 # local loss
20

21 # distance between local and global representations
22 l = l + λ * (D(p1, P1) + D(p1, P2) + D(p2, P1) + D(p2, P2)) / 4
23

24 l.backward() # back-propagate
25 update(f, h) # SGD update local model
26

27 def D(p, z): # negative cosine similarity
28 z = z.detach() # stop gradient
29

30 p = normalize(p, dim=1) # l2-normalize
31 z = normalize(z, dim=1) # l2-normalize
32 return -(p * z).sum(dim=1).mean()

Algorithm 4: FedAvg-LA

input :K,T, λ,Θ(0), {θ(0)i }k∈[K], s: number of local iteration, β: learning rate
1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk from local dataset Dk, and do s local iterations
/* Optimize the global parameter Θ locally */

6 Z1, Z2 ← fΘ(t)(T (Bk)), fΘ(t)(T (Bk))
7 P1, P2 ← hΘ(t)(Z1), hΘ(t)(Z2)

8 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

, where ·̂ stands for stop-gradient
9 Send ∆

(t)
k := Θ

(t)
k −Θ(t) back to server

10 SERVEROPTΘ(t+1) ← Θ(t) +
∑

k∈S(t)
|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

Algorithm 5: MAML-SSFL

input :K,T, λ,Θ(0), {θ(0)i }k∈[K], s: number of local iteration, β: learning rate,M
1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk, B
′
k from local dataset Dk, and do s local iterations

/* Inner loop update */

6 Θ
′(t)
k ← Θ(t)

7 for m = 0, . . . ,M − 1 do
8 Z′

1, Z
′
2 ← fΘ′(t)(T (B′

k)), fΘ′(t)(T (B′
k))

9 P ′
1, P

′
2 ← hΘ′(t)(Z′

1), hΘ′(t)(Z′
2)

10 Θ
′(t)
k ← Θ

′(t)
k − β∇

Θ
′(t)
k

D(P ′
1,Ẑ

′
2)+D(P ′

2,Ẑ
′
1)

2
, where ·̂ stands for stop-gradient

/* Outer loop update */
11 Z1, Z2 ← fΘ′(t)(T (Bk)), fΘ′(t)(T (Bk))
12 P1, P2 ← hΘ′(t)(Z1), hΘ′(t)(Z2)

13 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

14 Send ∆
(t)
k := Θ

(t)
k −Θ(t) back to server

15 SERVEROPTΘ(t+1) ← Θ(t) +
∑

k∈S(t)
|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

Algorithm 6: BiLevel-SSFL

input :K,T, λ,Θ(0), {θ(0)i }k∈[K], s: number of local iteration, β: learning rate
1 for t = 0, . . . , T − 1 do
2 Server randomly selects a subset of devices S(t)

3 Server sends the current global model Θ(t) to S(t)

4 for device k ∈ S(t) in parallel do
5

CLIENTSSLOPT

Sample mini-batch Bk from local dataset Dk, and do s local iterations
/* Optimize the global parameter Θ locally */

6 Z1, Z2 ← fΘ(t)(T (Bk)), fΘ(t)(T (Bk))
7 P1, P2 ← hΘ(t)(Z1), hΘ(t)(Z2)

8 Θ
(t)
k ← Θ(t) − β∇Θ(t)

D(P1,Ẑ2)+D(P2,Ẑ1)
2

, where ·̂ stands for stop-gradient
/* Optimize the local parameter θk */

9 z1, z2 ← fθk (T (Bk)), fθk (T (Bk))
10 p1, p2 ← hθk (z1), hθk (z2)

11 θk ← θk − β∇θk

Å
D(p1,”z2)+D(p2,”z1)

2
+ λ

∥∥∥Θ(t) − θk
∥∥∥2

2

ã
12 Send ∆

(t)
k := Θ

(t)
k −Θ(t) back to server

13 SERVEROPTΘ(t+1) ← Θ(t) +
∑

k∈S(t)
|Dk|
|D| ∆

(t)
k

return :{θi}i∈[n],Θ
(T)

Figure 8: Distributed Training System for SSFL framework

(a) Sample Number Distribution (b) Label Distribution (deeper color stands for more samples

Figure 9: Visualization for non-I.I.D. synthesized using CIFAR-10

(a) Sample Number Distribution (X-axis: Client Index; Y-axis:
Number of Training Samples)

(b) Sample Number Distribution (X-axis: Number of Training
Samples; Y-axis: Number of Clients)

Figure 10: Visualization for non-I.I.D. on GLD-23K

Table 4: Evaluation Accuracy for Various Per-SSFL Methods.

Method KNN Indicator Evaluation

LA-SSFL 0.6011 0.4112
MAML-SSFL 0.6237 0.4365

BiLevel-SSFL 0.6195 0.4233
Per-SSFL 0.6371 0.4467

*Note: the accuracy on supervised federated training using
FedAvg is around 47%

Table 5: Hyper-parameters for Section 5.2

Method Learning Rate Local Optimizer

SSFL (I.I.D) 0.1 SGD with Momemtum (0.9)
SSFL (non-I.I.D) 0.1 SGD with Momemtum (0.9)

Table 6: Hyper-parameters for Section 5.4

Method Learning Rate λ Local Optimizer

Per-SSFL (α = 0.1) 0.03 0.1 SGD with Momemtum (0.9)
Per-SSFL (α = 0.5) 0.03 0.1 SGD with Momemtum (0.9)

Table 7: Hyper-parameters for experimental results in Section
5.3

Method Learning Rate λ Local Optimizer

LA-SSFL 0.1 1 SGD with Momemtum (0.9)
MAML-SSFL 0.03 1 SGD with Momemtum (0.9)
BiLevel-SSFL 0.1 1 SGD with Momemtum (0.9)
Per-SSFL 0.03 0.1 SGD with Momemtum (0.9)

	Introduction
	Preliminaries
	Federated Optimization
	Self-supervised Learning

	SSFL: Self-supervised Federated Learning
	General Formulation
	Global-SSFL: Collaboration Towards a Global Model without Supervision
	Per-SSFL: Learning Personalized Models without Supervision

	Training System and Evaluation Pipeline for SSFL
	Experiments
	Comparisons on SimSiam, SimCLR, SwAV, and BYOL
	Evaluation on Global-SSFL
	Evaluation on Per-SSFL
	Performance Analysis

	Related Works
	Conclusion
	Comparison of Self-supervised Learning Frameworks
	Formulation and Pseudo Code for Algorithms Under SSFL Framework
	Per-SSFL
	Personalized SSFL with Local Adaptation (FedAvg-LA)
	Personalized SSFL with MAML-SSFL
	Personalized SSFL with BiLevel-SSFL

	Distributed Training System for SSFL
	Experimental Results on GLD-23K Dataset
	Extra Experimental Results and Details
	Visualization of Non-I.I.D. dataset
	Hyper-parameters

	Discussion

