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Abstract

Federated learning (FL) is an efficient learning framework
that assists distributed machine learning when data cannot be
shared with a centralized server due to privacy and regula-
tory restrictions. Recent advancements in FL use predefined
architecture-based learning for all the clients. However, given
that clients’ data are invisible to the server and data distribu-
tions are non-identical across clients, a predefined architec-
ture discovered in a centralized setting may not be an optimal
solution for all the clients in FL. Motivated by this challenge,
in this work, we introduce SPIDER, an algorithmic frame-
work that aims to Search PersonalIzed neural architecture
for feDERated learning. SPIDER is designed based on two
unique features: (1) alternately optimizing one architecture-
homogeneous global model (Supernet) in a generic FL man-
ner and one architecture-heterogeneous local model that is
connected to the global model by weight sharing-based reg-
ularization (2) achieving architecture-heterogeneous local
model by a novel neural architecture search (NAS) method
that can select optimal subnet progressively using operation-
level perturbation on the accuracy value as the criterion.
Experimental results on CIFAR10 and CIFAR100 datasets
demonstrate that SPIDER outperforms other state-of-the-art
personalization methods, and the searched personalized ar-
chitectures are more inference efficient.

1 Introduction
Federated Learning (FL) is a promising decentralized ma-
chine learning framework that facilitates data privacy and
low communication costs. It has been extensively explored
in various machine learning domains such as computer vi-
sion, natural language processing, and data mining. Despite
many benefits of FL, one major challenge involved in FL is
data heterogeneity, meaning that the data distributions across
clients are not identically or independently (non-I.I.D) dis-
tributed. The non-I.I.D distributions result in the varying
performance of a globally learned model across different
clients. In addition to data heterogeneity, data invisibility is
another challenge in FL. Since clients’ private data remain
invisible to the server, from the server’s perspective, it is un-
clear how to select a pre-defined architecture from a pool of
all available candidates. In practice, it may require extensive
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experiments and hyper-parameter tuning over different ar-
chitectures, a procedure that can be prohibitively expensive.

To address the data-heterogeneity challenge, variants of
the standard FedAvg have been proposed to train a global
model, including the FedProx (Li et al. 2018), FedOPT
(Reddi et al. 2020), and FedNova (Wang et al. 2020). In
addition to training of a global model, frameworks that fo-
cus on training personalized models have also gained a lot of
popularity. The Ditto (Li et al. 2021b), PerFedAvg (Fal-
lah, Mokhtari, and Ozdaglar 2020a), and pFedMe (Dinh,
Tran, and Nguyen 2020) are some of the recent works that
have shown promising results to obtain improved perfor-
mance across clients. However, all these works exploit pre-
defined architectures and operate at the optimization layer.
Consequently, in addition to their inherent hyper-parameters
tuning, these personalization frameworks often encounter
the data-invisibility challenge that one has to select a suit-
able model architecture involving a lot of hyper-parameter
tuning.

In this work, we adopt a different and complementary
technique to address data heterogeneity challenge for FL.
We introduce SPIDER, an algorithmic framework that aims
to Search PersonalIzed neural architecture for feDERated
learning. Recall that in a centralized setting, the neural archi-
tecture search (NAS) aims to search for optimal architecture
to address system design challenges such as lower latency
(Wu et al. 2019), lesser memory cost (Li et al. 2021a), and
smaller energy consumption (Yang et al. 2020). For architec-
ture search, there are three well known methods explored in
literature, gradient-based (Liu, Simonyan, and Yang 2018),
evolutionary search (Liu et al. 2021), and reinforcement
learning (Jaafra et al. 2019). Out of these, gradient-based
methods are generally considered more efficient because of
their ability to yield higher performance in comparatively
lesser time (Santra, Hsieh, and Lin 2021).

To achieve personalization at the architecture level in
FL, we propose a unified framework, SPIDER. This frame-
work essentially deploys two models, local and global mod-
els, on each client. Initially, both models use the DARTS
search space based Supernet (Liu, Simonyan, and Yang
2018), an over-parameterized architecture. In the proposed
framework, the global model is shared with the server for
the FL updates and therefore, stays the same in the archi-
tecture design. On the other hand, the local model stays



completely private, and performs personalized architecture
search, and therefore, gets updated. To search for the per-
sonalized child model, SPIDER deploys SPIDER-Searcher
on each client’s local model. The SPIDER-Searcher is built
upon a well-known gradient based NAS method, named
perturbation based NAS (Wang et al. 2021). The main ob-
jective of the SPIDER framework is to allow each client
to search and optimize their local models using SPIDER-
Searcher while benefiting from the global model. To achieve
this goal, we propose an alternating bi-level optimization
based SPIDER Trainer, that trains local and global models
in an alternate fashion. However, the challenge here is the
optimization of an evolving local model architecture while
exploiting a fixed global architecture. To address this chal-
lenge, SPIDER-Trainer performs weight sharing based regu-
larization, that regularizes the common connections between
global model’s Supernet and local model’s child model. This
aids clients to search and train heterogeneous architectures
tailored for their local data distributions. In nutshell, this ap-
proach not only yields architecture personalization in FL but
also facilitates model privacy (in the sense that the derived
child local model is not shared with the server at all).

To evaluate the performance of the proposed algorithm,
we consider a cross-silo FL setting and use Dirichlet dis-
tribution to create non-I.I.D data distribution across clients.
For evaluation, we report test accuracy at each client on the
20% of training data kept as test data for each client. We
show that the architecture personalization yields better re-
sults than state-of-the-art personalization algorithms based
solely on the optimization layer, such as Ditto (Li et al.
2021b), perFedAvg (Fallah, Mokhtari, and Ozdaglar 2020a),
and local adaptation (Cheng, Chadha, and Duchi 2021).

To summarize, the following are the key contributions of
our work.

• We propose and formulate a personalized neural archi-
tecture search framework for FL named SPIDER, from a
perspective complementary to the state-of-the-arts to ad-
dress data heterogeneity challenges in FL.

• SPIDER is designed based on two unique features: (1)
maintaining two models at each client, one to communi-
cate with the server and the other to perform a local pro-
gressive search, and (2) operating local search and train-
ing at each client by an alternating bilevel optimization
and weight sharing-based regularization along the FL up-
dates.

• We run extensive experiments to demonstrate the benefit
of SPIDER compared with state-of-the-art personalized
FL approaches such as Ditto (Li et al. 2021b), perFe-
dAvg (Fallah, Mokhtari, and Ozdaglar 2020a) and Local
Adaptation (Cheng, Chadha, and Duchi 2021). In partic-
ular on CIFAR10 dataset with heterogeneous distribution
we demonstrate an increase of the average local accuracy
by 2.8%, 1.7%, and 5.5%, over Ditto, PerFedAvg, and
Local Adaption, respectively.

• We also demonstrate that SPIDER learns smaller per-
sonalized architectures of average size around 14MB,
which is three times smaller than a pre-defined architec-
ture Resnet18 (of size 44MB).

2 Related Works
Heterogeneous Neural Architecture for FL Heteroge-
neous neural architecture is one way to personalize the
model in FL. For personalization, the primal-dual frame-
work (Smith et al. 2017a), clustering (Sattler, Müller,
and Samek 2020), fine-tuning with transfer learning (Yu,
Bagdasaryan, and Shmatikov 2020a), meta-learning (Fal-
lah, Mokhtari, and Ozdaglar 2020a), regularization-based
method (Hanzely and Richtárik 2020; Li et al. 2021b) are
among the popular methods explored in the FL literature.
Although these techniques achieve improved personalized
performance, all of them use a pre-defined architecture for
each client. HeteroFL (Diao, Ding, and Tarokh 2020) is a
recent work that accomplishes the aggregation of heteroge-
neous models by assigning sub-parts of the global model
based on their computation budget and aggregating the pa-
rameters common between different clients. Another work
(Lin et al. 2020a) accomplishes this task by forming clusters
of clients of the same model and allowing for heterogeneous
models across clusters. On the server-side, the aggregation
is based on cluster-wise aggregation followed by a knowl-
edge distillation from the aggregated models into the global
model. Given data invisibility in FL, deciding which pre-
defined architecture would work for which client is a chal-
lenging task and requires exploration. As such, our proposed
method aims to achieve personalized architecture automati-
cally.

Neural Architecture Search for FL Neural Architecture
Search (NAS) has gained momentum in recent literature to
search for a global model in a federated setting. FedNAS
(He, Annavaram, and Avestimehr 2020a) explores the com-
patibility of MileNAS solver with Fed averaging algorithm
to search for a global model. Direct Federated NAS (Hu
et al. 2020) is another work in this direction that explores the
compatibility of a one-shot NAS method, DSNAS (Hu et al.
2020), with Fed averaging algorithm with the same applica-
tion, in search of a global model. (Zhu and Jin 2021) uses
evolutionary NAS to design a master (global) model. (Singh
et al. 2020) explores the concept of differential privacy us-
ing DARTs solver (Liu, Simonyan, and Yang 2018) to ex-
plore the trade-off between accuracy and privacy of a global
model. (Xu et al. 2020) starts with a pre-trained handcraft
model and continues pruning the model until it satisfies the
efficiency budget. Where all these models search for a uni-
fied global model, a key distinction of our work with these
works is that we aim to search for a personalized model for
each client.

3 Preliminaries, Motivation, and Design
Goals

In this section, we introduce the state-of-the-art methods for
personalized federated learning, discuss the motivation for
personalizing model architectures, and summarize our de-
sign goals.

Personalized Federated Learning A natural formulation
of FL is to assume that among K distinct clients, each client



k has its own distribution Pi, draws data observations (sam-
ples) from Pi, and aims to solve a supervised learning task
(e.g., image classification) by optimizing a global model w
with other clients collaboratively. At a high-level abstrac-
tion, the optimization objective is then defined as:

min
w∗

G (F1(w), ..., FK(w)) , (1)

where Fk(w) measures the performance of the model global
w on the private dataset at client k (local objective), and
G is the global model aggregation function that aggregates
each client’s local objectives. For example, for FedAvg,
G(.) would be weighted aggregation of the local objectives,∑K

k=1 pkFk(w), where
∑K

k=1 pk = 1.
However, as distributions across individual clients are typ-

ically heterogeneous (i.e., non-I.I.D.), there is a growing line
of research that advocates to reformulate FL as a person-
alization framework, dubbed as personalized FL (PFL). In
PFL, the objective is redirected to find a personalized model
vk for device k that performs well on the local data distribu-
tion:

min
v∗
1 ,...,v

∗
K

(F1(v1), ..., FK(vK)) , (2)

To solve this challenging problem, various PFL meth-
ods are proposed, including FedAvg with local adaptation
(Local-FL) (Cheng, Chadha, and Duchi 2021; Yu, Bag-
dasaryan, and Shmatikov 2020b; Wang et al. 2019), MAML-
based PFL (MAML-FL) (Fallah, Mokhtari, and Ozdaglar
2020b; Jiang et al. 2019), clustered FL (CFL) (Ghosh et al.
2020; Sattler, Müller, and Samek 2021), personalized layer-
based FL (PL-FL) (Liang et al. 2020), federated multitask
learning (FMTL) (Smith et al. 2017b), and knowledge dis-
tillation (KD) (Lin et al. 2020b; He, Annavaram, and Aves-
timehr 2020b).

Motivation for Neural Architecture Personalization
Distinct from these existing works on PFL, we propose a
new approach to instead personalize model architecture at
each client. We are motivated by three key potential bene-
fits. First, the searched architecture at each client is expected
to fit its own distinct distribution, which has the potential to
provide substantial improvement over the existing PFL base-
lines that only personalize model weights. Second, a person-
alized architecture search can result in a more compressed
model at each client that will reduce inference latency and
efficiency. Third, a personalized architecture search allows
the clients to even keep their local model architectures pri-
vate in a sense the server and other clients neither know the
architecture nor the weights of that architecture. This fur-
ther enhances the privacy guarantees of FL and is helpful in
business cases that each client hopes to also protect its model
architecture.

Design Goals Our goal is to enable personalized neural
architecture search for all clients in FL. In this context, the
limitation of existing personalized FL methods is obvious:
Local-FL and MAML-FL need every client to have the same
architecture to perform local adaptations; In CFL, the clus-
tering step requires all clients to share a homogeneous model

architecture; PL-FL can only obtain heterogeneous architec-
tures for a small portion of personalized layers, but it does
not provide an architecture-agnostic method to determine
the boundary of personalized layers in an automated mech-
anism; FMTL is a regularization-based method which can-
not perform regularization when architectures are heteroge-
neous across clients; KD has an unrealistic assumption that
the server has enough public dataset as the auxiliary data
for knowledge distillation. In addition, an ideal FL frame-
work for deployment is the one that can jointly optimize the
inference latency/efficiency during training. However, after
federated training, none of these PFL clearly specify the
method for efficient inference. An additional model com-
pression procedure (e.g., pruning or KD-based) may be re-
quired, but it is impractical to perform a remote model com-
pression client by client.

To avoid these limitations, our goal is to design an
architecture-personalized FL framework with the following
requirements:

• R1: allowing heterogeneous architectures for all clients,
which can capture fine-grained data heterogeneity;

• R2: searching and personalizing the entire architecture
space, to avoid the heuristic search for the boundary of
personalized layers;

• R3: requiring no auxiliary data at the client- or server-
side (unlike knowledge distillation-based PFL);

• R4: resulting in models with practical inference latency
and efficiency, to avoid the need for an additional model
compression procedure at each client.

We now introduce SPIDER that meets the above require-
ments in a unified framework.

4 Methodology: SPIDER
4.1 Overview
The overall framework of SPIDER is illustrated in Figure 1.
Essentially, each client maintains two models in this frame-
work: one architecture-homogeneous global model for col-
laborative training with other clients, and one architecture-
heterogeneous local model that initially shares the same su-
per architecture space as the global model. At a high-level,
SPIDER is formulated as an architecture-personalized
bi-level optimization problem (Section 4.2) and proposes
the solver as the orchestration of SPIDER Trainer (Sec-
tion 4.3) and SPIDER-Searcher (Section 4.4). SPIDER
Trainer is an architecture-personalized training framework
that can collaboratively train heterogeneous neural architec-
tures across clients.

To allow federated training on the expected heteroge-
neous local architectures, it enables regularization between
an arbitrary personalized architecture and the global model
via weight sharing. With this support, SPIDER-Searcher
is designed to dynamically adjust the architecture of each
client’s local model on the way. To search a personalized
architecture for the local data distribution of each client,
SPIDER-Searcher is built on a novel neural architecture
search (NAS) method that searches optimal local Subnet



Figure 1: Illustration of SPIDER framework. SPIDER weaves (searches) a different web (neural architecture) for each client.

progressively using operation-level perturbation on the ac-
curacy value as the criterion. Overall, each client’s local
model goes through three phases (also shown in Figure 1):
pre-training to warm up the initial local model, progressive
neural architecture search, and final training of the searched
architecture-personalized model.

SPIDER can meet the design goals R1-R4 introduced in
Section 3 because 1) each client performs independent archi-
tecture personalization with its own private data (R1), 2) the
search space is not restricted to a portion of the model (R2),
3) no auxiliary data is used to assist the search and train pro-
cess (R3), and 4) progressive operation selection gradually
reduces the number of candidate architectures, leading to a
sparse and efficient model for inference (R4).

4.2 SPIDER Formulation:
Architecture-personalized Bi-level
Optimization

SPIDER aims to personalize (weave) a different neural ar-
chitecture (web) for each client. To generate heterogeneous
architectures across clients, we use two models, a local
model (ak) and a global model (Supernet A), at each client
and formulate SPIDER as an architecture-personalized bi-
level optimization problem for each client k ∈ [K]:

min
vk,ak⊆A

Fk(vk, ak;w
∗,A) (3)

s.t. w∗ ∈ argmin
w

G (F1(w,A), ..., FK(w,A)) ,

(4)

where Fk is the local objective of the client k; w, vk, and ak
are all learnable parameters; w denotes the parameter of the
global model architecture A, vk is the weight parameter of
the local personalized architecture ak of the client k. Here,
ak is a child neural architecture of a Supernet A, denoted
by ak ⊆ A. Note that in Eq.(4), we aim to learn a global
model A in a federated learning setting, which formulates
our outer optimization. However, in the inner optimization

given in Eq.(3), the objective of each client is to optimize its
local model’s architecture ak and its associated parameters
vk while benefiting from the global model w∗.

Definition of Supernet A and Child Neural Architec-
ture ak As a tractable, yet general case study, SPIDER
reuses the DARTS architecture space as Supernet A: there
are 8 cells, and each cell consists of multiple edges; each
edge connects two intermediate representations (node) by
a mixture of multiple operations frequently used in various
modern CNNs (e.g., sep convolution 3x3, sep convolution
5x5, dil convolution 3x3, skip connection, max pool 3x3,
avg pool 3x3); the mixture uses softmax over all possible
operations to relax the categorical discrete candidate to a
continuous search space. More precisely, A contains a set
of edges {e1, ..., eE}, and each edge e has multiple opera-
tions {o1, ..., oO}. Based on this definition, ak maintains the
operation-level granularity: ak’s edge set space is a subset of
A’s edge set space, and the operation set in ak’s each edge
may also be a subset space.

The difficulty of jointly optimizing the architecture ak
and related weight parameters vk The key difference of
our formulation from existing bi-level optimization for FL
(e.g., (Li et al. 2021b)) is that in our case, ak is also a learn-
able parameter (Eq.(3)). We assume each client can have an
evolving architecture ak, i.e., Eq.(3) has to optimize the ar-
chitecture ak and its related weight parameters vk jointly,
while using complete Supernet-based global model weights,
w. SPIDER addresses this challenge by the orchestration of
SPIDER-Trainer and SPIDER-Searcher.

4.3 SPIDER Trainer: Federated Training on
Heterogeneous Architectures

In this section, we describe SPIDER trainer, an architecture-
personalized training framework that can collaboratively
train heterogeneous neural architectures across clients.

To clearly show how SPIDER handles the optimization
difficulty of Eq.(3), we first downgrade the objective to the



case that all clients use predefined (fixed) heterogeneous ar-
chitectures (derived from the Supernet A). More specially,
we reduce the aforementioned optimization framework in
Eq.(3) and Eq.(4) to the following:

min
vk

hk(vk, ak;w
∗,A) = Fk(vk) +

λ

2
||vk − w∗

share||2

(5)
s.t. w∗ ∈ argmin

w
G (F1(w,A), ..., FK(w,A)) , (6)

where local model’s weights vk are regularized towards the
global model w∗

share, where w∗
share = w∗⊙ak (i.e., only us-

ing the weight parameters of the operation set space overlap-
ping (sharing) with ak). Also, λ is the regularization hyper-
parameter. Note that, now, only vk needs to be optimized in
Eq.5, while ak is fixed during the optimization.

We then solve Eq.5 and Eq.6 alternately. We summarize
this optimization procedure as SPIDER-Trainer with a de-
tailed pseudo code illustrated in Algorithm 1. In this algo-
rithm, we can note that the global model (line #12) and the
local model (line #14) are updated alternately. The strength
of this algorithm lies in its elaborate design, which provides
the following key benefits:

Algorithm 1: SPIDER Trainer
1: Initialization: initialize K clients with the k-th client has a

global model wk using SupernetA, and a local model vk using
subnet ak (set ak = A at the begining); E is the number of
local epochs; T is the number of rounds; Ts number of rounds
to start search; τ is the recovery periods in the units of rounds.

2: Server executes:
3: for each round t = 0, 1, 2, ..., T − 1 do
4: for each client k in parallel do
5: wt+1

k ← ClientLocalSearch(k,wt, t)
6: end for
7: wt+1 ←

∑K
k=1

Nk
N

wt+1
k

8: end for
9:

10: function ClientLocalSearch(k, wt, t): // Run on client k
11: for e in epoch do
12: for minibatch in training and validation data do
13: at

k = ProgressiveNAS(at
k, Ts, τ, t)

14: Update Global model: wt+1 = wt − ηw∇tr
wk(w

t)
15: wt+1

share = wt+1 ⊙ at
k //weight sharing

16: Update Local Model: vt+1
k = vtk −

ηv
(
∇tr

vk(v
t
k) + γ(vtk − wt+1

share)
)

17: end for
18: end for
19: return w to server

(1) Enabling regularization between an arbitrary per-
sonalized architecture and the global model Most
importantly, SPIDER-Trainer connects each personalized
model with the global model by enabling the regularization
between two different architectures: an arbitrary personal-
ized architecture for the local model ak of client k and the
global model with Supernet A. This is done by weight shar-
ing. More specially, in Eq.6, w∗

share = w∗ ⊙ ak, which
provides us the global model’s weight parameters for the

connections/edges common between the child neural archi-
tecture ak and the global model’s Supernet A. w∗

share is
essentially used to regularize a subnet (ak) model parame-
ters vk towards the global model shared/common parameters
w∗

share, as shown in Eq. 6.

(2) Avoiding heterogeneous aggregation SPIDER-
Trainer avoids the aggregation of heterogeneous model
architectures at the server side. As such, no sophisticated
and unstable aggregation methods are required (e.g., mask-
ing, knowledge distillation (Lin et al. 2020b), etc.), and it is
flexible to use other aggregation methods beyond FedAvg
(e.g., (Karimireddy et al. 2020; Reddi et al. 2021)) to update
the global model.

(3) Enabling architecture privacy In this algorithm, only
the global model is transmitted between the client and
the server. This enables architecture privacy because each
client’s architecture is hidden from server and other clients.

(4) Potential robustness to adversarial attacks The
weight sharing-based regularization not only yields the ben-
efit of personalization in FL, but also makes the FL frame-
work more robust to adversarial attacks. Its robustness ad-
vantage comes from its ability to keep the local model pri-
vate and regularizing towards the global model based on
its regularization parameter, as show before by architecture-
homogeneous bi-level optimization (Li et al. 2021b).

4.4 SPIDER-Searcher: Personalizing
Architecture

Although SPIDER trainer is able to collaboratively train het-
erogeneous architectures, manual design of the architecture
for each client is impractical or suboptimal. As such, we
further add a neural architecture search (NAS) component,
SPIDER-Searcher, in Algorithm 1 (line #11) to adapt ak to
its local data distribution in a progressive manner. We now
present the details of SPIDER-Searcher.

Progressive Neural Architecture Search Essentially,
SPIDER-Searcher dynamically changes the architecture of
ak during the entire federated training process. This is fea-
sible because the weight sharing-based regularization can
handle an arbitrary personalized architecture (introduced in
Section 4.3). Due to this characteristic, SPIDER-Searcher
can search ak in a progressive manner (shown in Figure 1):
Phase 1: At the beginning, ak is set equal to Supernet A.
The intention of SPIDER-Searcher in this phase is to warm
up the training of the initial ak so it does not change ak
for a few rounds; Phase 2: After warming up, SPIDER-
Searcher performs edge-by-edge search gradually. In each
edge search, only the operation with the highest impact to
the accuracy is kept. It also uses a few rounds of train-
ing as a recovery time before proceeding the next round of
search. This process continues until all edges finish search-
ing; Phase 3: After all edges finish searching, SPIDER-
Searcher does not change ak. This serves as a final training
of the searched architecture-personalized model. This three-
phase procedure is summarized as Algorithm 2. Now, we
proceed to elaborate how we calculate the impact of an op-
eration on the Supernet.



Algorithm 2: SPIDER-Searcher
1: Search Space: in the architecture at

k ⊆ A, E is the super set
of all edges {e1, ..., eE}, Es is the remaining subset of edges
that have not been searched, and each edge e has multiple op-
erations {o1, ..., oO}.

2: function ProgressiveNAS(ak, Ts, τ , t)
3: if t ≥ Ts and t % τ == 0 and LEN(Es) > 0 then
4: ei = RANDOM (E) // random selection
5: // searching without training
6: for all operation oj on edge ei do
7: evaluate validation accuracy of at

k when oj is
removed(ACC\o)

8: end for
9: in ei, keep only one operation corresponding to the low-

est value of (ACC\o), i.e., highest impact.
10: remove ei from E
11: else
12: return at

k directly
13: end if
14: return updated at

k after selection

Operation-level perturbation-based selection In phase
2, we specify selecting the operation with the highest im-
pact using operation-level perturbation. More specially, in-
stead of optimizing the mixed operation architecture param-
eters α using another bi-level optimization as DARTS (a.k.a.
gradient-based search) to pick optimal operation according
to magnitude of α parameters (magnitude-based selection),
we fix a uniform distribution for α and use the impact of an
operation on the local validation accuracy (perturbation) as
a criterion to search on the edge. This simplified method is
much more efficient given that it only requires evaluation-
based search rather than training-based search (optimizing
α). In addition, it avoids inserting another bi-level optimiza-
tion for NAS inside a bi-level optimization for FL, making
the framework stable and easy to tune. Finally, this method
avoids suboptimal architecture (Wang et al. 2021) lead by
magnitude-based selection in differentiable NAS.

5 Experiments
This section presents the experimental results of the pro-
posed method, SPIDER. All our experiments are based on
a non-IID data distribution among FL clients. We have used
latent Dirichlet Distribution (LDA), which is a common
data distribution used in FL to generate non-IID data across
clients (He et al. 2020), (Yurochkin et al. 2019).

5.1 Experimental Setup
Implementation and Deployment. We implement the
proposed method for distributed computing with nine nodes,
each equipped with a GPU. We set this as a cross-silo FL set-
ting with one node representing the server and eight nodes
representing the clients. These clients nodes can represent
real-world organizations such as hospitals and clinics that
aim to collaboratively search for personalized architectures
for local benefits in a privacy-preserving FL manner.

Task and Dataset. We perform an image classification
task on the CIFAR10 dataset that consists of 60000 32x32

(a) Label distribution per client

(b) Image distribution per client

Figure 2: CIFAR10: LDA distribution

color images in 10 classes, with 6000 images per class. We
generate non-IID data across clients by exploiting LDA dis-
tribution with parameter (α = 0.2) for the training data
of CIFAR10. The actual data distribution has been shown
in figure 2. Sub-figure 2a represents the label distribution
across clients, where a darker color indicates more images
of that class/label. The other sub-figure 2b represents the
total number of data samples preset at each client. In addi-
tion to CIFAR10, we also present results with CIFAR100
dataset that consists of 60000 32x32 color images in 100
classes, with 600 images per class. For CIFAR100 dataset,
we generate non-IID data across clients by exploiting LDA
distribution with parameter (α = 0.2) for the training data
of CIFAR100.

For personalized architecture experiments with SPIDER,
we split the total training data samples present at each
client into training (50%), validation (30%), and testing sets
(20%). For other personalization schemes used for compar-
ison, we do not need validation data. Therefore, we split
the data samples of each client with training (80%) and test
(20%) for a fair comparison. In addition, we fix the non-IID
dataset distribution in all experiments. We also keep the data
split ratio same for both CIFAR10 and CIFAR100 datasets.

5.2 Results on Average Validation Accuracy
Here, we report the comparison of our proposed method,
SPIDER, with the other state-of-the-art personalized meth-
ods; Ditto, perFedAvg, and Local adaptation for CIFAR10
and CIFAR100 datasets. Since these schemes use a pre-
defined architecture, we use the Reset18 model because of
its comparable model size. For CIFAR10 dataset, we also



Figure 3: Comparison of our proposed SPIDER with other state-of-the-art personalization methods (Ditto, Local Adaptation,
and perFedAvg) for CIFAR10 dataset. The right figure illustrates the architecture search (progressive perturbation of the Super-
net) and derived child model’s architecture train phase of the proposed method.

Table 1: CIFAR10 dataset - Average local validation Accuracy Comparison of SPIDER with other personalization techniques

Method Average Accuracy Parameter Size FLOPs Estimated Model Size
Local Adapation - Supernet 0.950±0.010 1.9M 319M 104MB

SPIDER 0.926±0.020 345K 62M 14MB

Local Adaptation - Resnet18 0.871±0.025 11M 76M 44MB

Ditto - Resnet18 0.898±0.026 11M 76M 44MB

perFedAvg - Resnet18 0.909±0.022 11M 76M 44MB

explore Local adaptation with the complete Supernet. This
exploration will help us investigate how much performance
drop we get if we use a smaller but personalized model as
compared to a locally adapted complete Supernet.

Average Accuracy for CIFAR10 dataset: In Figure 3,
we report average of the validation accuracy calculated on
client’s test dataset using the personalized architectures for
CIFAR10 dataset. The right sub-figure in Fig. 3 illustrates
the comparison of the proposed method with the state-of-art
methods; Ditto, Local adaptation, and perFedAvg. We note
that local adaptation with Supernet provides the highest av-
erage accuracy. We expect it from the Supernet because of
its 8 operations-based mixed operation formulations. This
result helps us investigate the performance reduction with
our proposed method. We observe that our proposed method
shows a performance reduction of 2.5% in average valida-
tion accuracy with the benefit of a reduced average number
of FLOPs and model size. The models we use during train-
ing are much smaller and require less memory as well as
computation.

From empirical results, we observe that the proposed ap-
proach of architecture personalization outperforms the other
state-of-the-art personalization methods; Ditto, perFedAvg,
and Local adaptation with ResNet18 for both CIFAR10 and
CIFAR100 datasets. For CIFAR10, among these personal-
ization schemes, perFedAvg yields the highest performance.

Although in Figure 3 the performance curve is lower, it gains
90.9% accuracy around 1500 rounds. Compared with perFe-
dAvg, we obtain 1.7% higher average accuracy. Moreover,
Ditto and Local adaptation yield 89.8% and 87% average
accuracy, respectively. For personalization, the standard de-
viation (std) is considered an important metric, as average
accuracy alone may not represent fairly how well a model is
performing across clients. Therefore, we also report the stan-
dard deviation for each method in Table 1. Besides the Local
Adaptation with Supernet that yields 0.01 standard devia-
tion, lowest among all, our methods yields 0.02 std and out-
performs PerFedAvg (0.022), Ditto (0.026) and Local Adap-
tation (0.025).

Average Accuracy for CIFAR100 dataset: For CI-
FAR100 dataset, we note that our method outperforms all
three methods by yielding higher accuracy around 67% as
shown in Figure 4 and Table 2. Similar to our observa-
tion with the CIFAR10 dataset, perFedAvg yields the sec-
ond highest accuracy, 64%. We also observe that contrary
to CIFAR10 results, Ditto provided the lowest performance
among the three personalization methods. From personaliza-
tion perspective, we observe that our method achieves the
same standard deviation, 0.032, as perFedAvg. However, we
achieve this standard deviation with a 3.5% higher mean val-
idation accuracy value. The local adaptation and Ditto yield
higher standard deviation, which translates to a lower per-



Table 2: CIFAR100 dataset - Average local validation Accuracy Comparison of SPIDER with other personalization techniques

Method Average Accuracy Parameter Size FLOPs Estimated Model Size
SPIDER 0.6740±0.032 392K 64M 16MB

Local Adaptation - ResNet18 0.6115±0.033 11M 76M 44MB

Ditto - ResNet18 0.5700±0.033 11M 76M 44MB

perFedAvg - ResNet18 0.6390±0.032 11M 76M 44MB

sonalization (fairness) across clients.

Figure 4: This figure shows the average validation accuracy
comparison between our proposed method SPIDER and the
other state-of-the-art methods; perFedAvg, Ditto, and local
Adaptation with CIFAR100 dataset.

5.3 Results on Efficiency
Average FLOPs In figure 3, we report average flops
to gauge the architecture search and train phase. Follow-
ing Algorithm 1, Phase 1 continues for 60 rounds, Phase
2 for another 260 rounds, Phase 3 for next 680 rounds.
We used recovery time of around 20 rounds. In centralized
perturbation-based NAS (Wang et al. 2021), it was empir-
ically found that 5 epochs are sufficient for fine-tuning the
Supernet. However, from empirical results in FL, we found
20-30 communication rounds to be a reasonable number
of rounds for recovery. The Average FLOPs vs. number of
rounds figure illustrates the reduction in the size of com-
putations as search proceeds. The reduction in the average
size of computations has been from 319M to 62M and 64M
for CIFAR10 and CIFAR100, respectively. However, for the
local adaptation with Supernet, the average FLOPs remain
the same. Likewise, the average parameter size drops from
1.9M to 345K and 392 with CIFAR10 and CIFAR100, re-
spectively.

Model Size Estimated model size includes the memory
size of a forward pass and parameter size of that model.
It essentially corresponds to how much memory a trained
model with trained weights would occupy to obtain infer-
ence. Supernet takes the highest amount of space, 104MB,
ResNet18 takes 44MB, and the average model size from our

proposed method occupies 14MB and 16MB space for CI-
FAR10 and CIFAR100, respectively. The reason we report
this number is that even if Supernet has less parameter size,
1.9M (due to many non-parameterized operations, i.e., skip
connection, max pool, avg pool), it requires a vast number
of FLOPs to compute mixed operations on the feature maps
of all the operations used in DARTs search space. There-
fore, the estimated model size can better represent the actual
memory/compute of these models. In nutshell, the proposed
search yields architectures that are smaller in size and in-
ference efficient, which can be beneficial for many business
models.

6 Conclusion
We proposed SPIDER, an algorithmic framework that can
search personalized neural architecture for FL. SPIDER spe-
cializes a weight-sharing-based global regularization to per-
form progressive neural architecture search. Experimental
results demonstrate that SPIDER outperforms other state-of-
the-art personalization methods, and the searched personal-
ized architectures are more inference efficient.
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