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Abstract  

Machine learning (ML) has recently emerged as a powerful 
tool to enhance the proactive optical network maintenance 
and thereby improves network reliability and reduces un-
planned downtime and maintenance costs. However, it is 
challenging to develop an accurate and reliable ML model for 
solving predictive maintenance tasks (e.g., anomaly detec-
tion, fault diagnosis, remaining useful prediction etc) mainly 
due to the unavailability of a sufficient amount of training 
data since the device failure does not occur often in optical 
networks. Federated learning (FL) is a promising candidate 
to tackle the aforementioned challenge by enabling the devel-
opment of a global ML model using datasets owned by many 
vendors without revealing their business-confidential data. 
While FL greatly enhances the data privacy, it is vulnerable 
to various model inversion and poisoning attacks. In this pa-
per, we propose a robust collaborative learning framework 
for predictive maintenance in a cross-vendor setting, whereby 
the defensive mechanisms to protect against the aforemen-
tioned attacks are implemented. The multi-party computation 
(MPC)-based secure aggregation is adopted to defend against 
the model inversion attacks whereas a trained autoencoder 
based anomaly detection model is used to recognize the 
model poisoning attacks launched by compromised vendors. 
The proposed framework is applied to the semiconductor la-
ser degradation prediction use case. We conduct experiments 
on semiconductor laser reliability data obtained from differ-
ent laser manufacturers under various attack scenarios to 
evaluate the attack defense and detection capabilities of the 
proposed approach. Our experiments confirm that a global 
ML model can be accurately built with sensitive datasets in 
federated learning even when a subset of vendors is compro-
mised. 

Introduction   

Optical fiber networks compose the core of the telecommu-

nication infrastructure today due to their high capacity of 

data transmission. Optical networks rely on fully functional 

hardware components that run under optimal conditions. In 
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order to reduce the risk of unplanned network interruption 

and service outage, it is important to predict the degradation 

of hardware network components correctly using analyzing 

tools and techniques, by which the maintenance budget and 

resources are allocated efficiently and timely. Due to the 

great benefits in industry, the global predictive maintenance 

market is expected to reach more than 13 billion US dollars 

by 2026 (ReportLinker. (2021)).  

Machine learning (ML) based techniques have emerged as 

efficient tools to improve the accuracy of predictive mainte-

nance in the manufacturing industry and communication 

networks. An ML model is trained by the historical data of 

hardware failure and then the upcoming maintenance is pre-

dicted by real-time data gathered through measurement at 

the edge. ML techniques can be useful, if a sufficiently 

large, diverse, and realistic set of training data exists. Since 

an ML model relies so heavily on good training data, the 

availability of such datasets is a crucial requirement for this 

approach. 

However, it is challenging to develop a high-precision ML 

model for predictive maintenance mainly due to the lack of 

training data. The hardware failures or maintenance events 

do not occur frequently so that it takes time until good and 

meaningful training data are collected through the network. 

Hence, an ML model is often trained using the accelerated 

aging test results (e.g., a life cycle under the extreme tem-

perature or the over-powered condition) that are conducted 

by hardware manufacturers. Since the components of net-

work equipment are usually produced by small and medium-

sized companies, such an ML model is trained based on the 

limited amount of data that are owned by each manufacturer.    

This situation can be relieved, if the training dataset can be 

aggregated from multiple vendors and consolidated in a cen-

tral location. Since collaborative learning allows to train a 

model on larger datasets rather than the dataset available in 

 



 

 

a single vendor, a higher quality and more accurate ML 

model can be built. However, such collaboration is not 

straightforward in reality since vendors are not willing to 

share their training data with external companies. Aging test 

data are often company-confidential and trade secret. More-

over, sharing data with foreign companies may be prohib-

ited by privacy protection regulations in their home coun-

tries. To overcome such data-privacy concerns, federated 

learning (FL) (i.e., collaborative learning) has been pro-

posed by enabling many vendors to collaboratively train a 

global ML model without sharing their local private data 

with others. However, FL is susceptible to various attacks 

such as inversion model attacks aiming to compromise the 

data’s confidentiality and poisoning attacks preventing the 

global model from converging and thereby adversely im-

pacts its performance. 

In this paper, we propose a secure and robust collaborative 

learning framework incorporating defensive mechanisms to 

defend against above attacks, using cross-vendor datasets 

for predictive maintenance in optical networks. We apply 

our approach to the use case of predicting the degradation of 

semiconductor laser devices deployed in optical networks. 

The experiments are performed using laser reliability data 

from different laser manufacturers under various attack sce-

narios to test the efficiency of our defensive mechanisms in 

protecting against attacks launched by compromised ven-

dors.  

The rest of this paper is structured as follows: Section 2 

gives some background information and related work. Sec-

tion 3 presents the proposed framework as well as the de-

fending mechanisms involved in the framework. Section 4 

describes the validation of the presented framework using 

experimental data. Conclusions are drawn in Section 5. 

 

Background and related work  

Federated Learning  

Federated Learning (FL) is a framework of enabling distrib-

uted parties to work together to train machine learning mod-

els without sharing the underlying data or trusting any of the 

individual participants (Bonawitz, et al., 2017). FL can be 

used to build an ML model from various companies for the 

purpose of predicting the failures, repairs, or maintenance of 

network systems. With the FL technique, the training data is 

not required to be centralized, but can instead remain with 

the data owners. Each vendor trains an ML model on their 

private data and using their own hardware. These models are 

then aggregated by a central server (e.g., a network operator) 

to build a unified global model that has learned from the pri-

vate data of every vendor without ever directly accessing it. 

Hence, confidential training data (e.g., aging test results of 

products) are not visible to a server, nor other competitive 

vendors. An important challenge in FL is to prevent a server 

or other vendors from reconstructing the private data of any 

vendor while collaborating at any circumstances. While a 

secure aggregation protocol in FL addresses the strong pri-

vacy of the data of the vendors, the FL framework creates a 

new attack surface during the model training process. Since 

the vendors have full control over local training processes, 

they may submit arbitrary updates to change the global 

model without being detected. Among the broad range of 

attacks on FL, the following attacks are the most relevant to 

our use case:  

Model inversion attack   

An attacker can intercept the updated local models and ex-

tract the private training data from the models. For example, 

in (Fredrikson, Jha, & Ristenpart, 2015), the authors demon-

strated a model inversion attack that could extract images 

from a face recognition system, which look suspiciously 

similar to images from the underlying training data.  

Local model poisoning attack 

This attack injects poisoned instances into the training data, 

or directly manipulates model updates during the aggrega-

tion protocol. An attacker can compromise some vendors 

and thereby he may upload the poisoned local models, 

which are highly deviating from the global model. As a re-

sult, the attacker can tamper with the weights of the global 

model or inject a backdoor into it, misclassifying specific 

inputs into the target class as intended by the attacker.  

Secure aggregation  

Secure aggregation in FL is a cryptographic protocol that 

enables each vendor to submit a local model securely and a 

server learns nothing but the sum of the local models. A se-

cure aggregation method for mobile networks was presented 

in  (Bonawitz, et al., 2017) and (Bell, Bonawitz, Gascón, 

Lepoint, & Raykova, 2020). This method relies on a pair-

wise secret exchange and Shamir's t-out-of-n secret sharing 

scheme, focusing on the setting of mobile devices where 

communication is extremely expensive, and dropouts are 

common. 

There is a rich literature exploring secure aggregation in 

both the single-server setting (via additive masking 

(Bonawitz K. A., et al., 2016), via threshold homomorphic 

encryption (HE) (Halevi, Lindell, & Pinkas, 2011), and via 

generic secure multi-party computation (MPC) (Burkhart, 

Strasser, Many, & Dimitropoulos, 2010) as well as in the 

multiple non-colluding servers setting (Corrigan-Gibbs & 

Boneh, 2017). For instance, one can perform all computa-

tions using a fully homomorphic encryption scheme result-

ing in low communication but very high computation or us-

ing classical MPC techniques with more communication but 

less computation. Other works use a hybrid of both and thus 

enjoy further improvement in performance (Mishra, 

Lehmkuhl, Srinivasan, Zheng, & Popa, 2020) (Juvekar, 

Vaikuntanathan, & Chandrakasan, 2018). Nevertheless, it is 



 

 

still an open question how to construct a secure and robust 

aggregation protocol that addresses all the challenges. 

Autoencoder  

An autoencoder (AE) is a type of artificial neural network 

seeking to learn a compressed representation of an input in 

an unsupervised manner (Kramer, 1991). An AE is com-

posed of two sub-models namely the encoder and the de-

coder, whereby the former is used to compress an input 𝒙 

into lower-dimensional latent-space representation 

𝒛 through a non-linear transformation, and the latter maps 

the encoded representation back into the estimated vector 𝒙 

of the original input vector as follows:  

 

    𝒛 = 𝑓( 𝑾𝒙 + 𝒃),              (1) 
             �̂� = 𝑔( 𝑾′𝒛 + 𝒃′),            (2)           

 

where 𝑓 and 𝑔 represent the activation functions of the en-

coder and the decoder respectively. The weight matrix 𝑾 

(resp. 𝑾′) and bias vector 𝒃 (resp. 𝒃′) are the learnable pa-

rameters for the encoder (resp. decoder).  

The training objective of the autoencoder is to minimize the 

reconstruction error between the output 𝒙 and the input 𝒙, 

referred as the loss function ℒ(𝜃), typically the mean square 

error (MSE), expressed as: 

 
ℒ(𝜃) =  ∑‖𝒙 − �̂�‖2          (3) 

 

where 𝜃 =  {𝑾, 𝒃,𝑾′, 𝒃′}  denotes the set of the parameters 

to be optimized.  

AE has been widely used for anomaly detection by adopting 

the reconstruction error as anomaly score. It is trained with 

only normal data representing the normal behavior. After 

training, AE will reconstruct the normal instances very well, 

while it will fail to reproduce the anomalous observations by 

yielding high reconstruction errors. The process of the clas-

sification of an instance as anomalous/normal is shown in 

Alg. 1.  

 

Gated Recurrent Unit  

The Gated Recurrent Unit (GRU) recently proposed by 

(Cho, et al., 2014) to solve the gradient vanishing problem, 

is an improved version of standard recurrent neural net-

works (RNNs), used to process sequential data and to cap-

ture long-term dependencies. The typical structure of GRU 

contains two gates namely reset and update gates, control-

ling the flow of the information. The update gate regulates 

the information that flows into the memory, while the reset 

gate controls the information flowing out the memory.  

The GRU cell is updated at each time step t by applying the 

following equations: 
 

𝒛𝑡 = 𝜎(𝑾𝑧𝑥𝑡 + 𝑾𝑧𝒉𝑡−1  + 𝒃𝑧)                        (4) 

𝒓𝑡 = 𝜎(𝑾𝑟𝑥𝑡 + 𝑾𝑟𝒉𝑡−1  +  𝒃𝑟)                      (5) 

 𝒉�̃� = tanh( 𝑾ℎ𝑥𝑡 + 𝑾ℎ( 𝒓𝑡  ∘  𝒉𝑡−1)  + 𝒃ℎ) (6) 

𝒉𝑡  = 𝒛𝑡   ∘  𝒉𝑡−1 + (1 − 𝒛𝑡)  ∘    𝒉�̃�                   (7) 

 
where 𝒛 denotes the update gate, 𝒓 represents the reset gate, 

𝒙 is the input vector, 𝒉 is the output vector, 𝑾 and 𝒃 repre-

sent the weight matrix and the bias vector respectively. 𝜎 is 

the gate activation function and tanh represents the output 

activation function. The “∘” operator represents the Hada-

mard product. 

Related work  

In (Bonawitz K. , et al., 2017), a practical secure aggregation 

technique in an FL setting was proposed over large mobile 

networks. Such a framework does not fit for our use case 

due to multiple reasons. Firstly, in our use case, a global 

model is not shared with data owners (vendors). Each ven-

dor gets a benefit by receiving an individual maintenance 

result (e.g., the difference between the prediction and the 

real failure) after the global model is deployed and hardware 

degradation is predicted.  Secondly, the scalability is not im-

portant since the number of vendors is not very large and 

dropouts are expected to be rare. On the other hand, secure 

aggregation is critical since the disclosure of the private 

training dataset may give negative impact on the data own-

er's business.  

Another interesting work on collaborative predictive 

maintenance was presented in (Mohr, Becker, Möller, & 

Richter, 2020), where a combination of blockchain and fed-

erated learning techniques was applied. We apply a multi-

party computation technique for data privacy since it is more 

suitable for our use case. More recently, in (Zheng, et al., 

2021), an end-to-end platform for collaborative learning us-

ing MPC is proposed. Though it is an interesting approach, 

it is unlikely that this platform can be applied to our use case 

since the collaborative learning through the use of release 

policies and auditing is not preferable to the predictive 

maintenance.  

Algorithm 1: Autoencoder based anomaly detection  

Input: Normal dataset 𝒙, anomalous dataset 𝒙𝑖   𝑖 =
1,… , 𝑁,  threshold 𝜃 
Output: reconstruction error ‖𝒙 − 𝒙‖ 
1: train an autoencoder given the normal data 𝒙 
2: for 𝑖 = 1 to 𝑁 do 
3:  𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑖) =  ‖𝒙𝑖 − 𝑔(𝑓(𝒙𝑖))‖ 
4:  if 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑖) >  𝜃 then 
5:   𝒙𝑖 is anomalous  
6:  else 
7:   𝒙𝑖 is normal 
8:  end if 
9: end for 
 



 

 

Proposed Framework  

Figure 1 illustrates the proposed secure collaborative learn-

ing framework for predictive maintenance in optical net-

works. We consider a FL approach that assumes N vendors 

for collaborative training of a global ML model under the 

control of an aggregator server hosted by an optical network 

operator, while keeping every client’s data private. Each 

vendor builds a local model using its own training dataset 

and uploads it to the server. The private dataset remains in 

the vendor's domain and is never exposed to other compa-

nies. The local model updates are sent securely to the server. 

At the server side, an anomaly detection method adopted to 

defend against the local model poisoning attacks is used to 

firstly recognize the abnormal local model updates sent by 

potentially compromised vendors, which are discarded. Af-

terwards, a server builds a global ML model by aggregating 

only normal local ML models iteratively and averaging 

them to form an updated global model proportional to the 

size of dataset. An MPC-based secure aggregation defend-

ing against the model inversion attack is adopted. In our 

framework, a secure aggregation protocol is tolerant to the 

malicious behavior of participants in an honest-majority 

model; that is, a server and majority of vendors are assumed 

to be honest, yet some may be malicious or unreliable. Using 

the global model, the potential risk of hardware failure or 

degradation and corresponding maintenance events are pre-

dicted, and the necessary resources are proactively prepared 

to run optical networks without disruption. Compared to the 

original FL, the local models are not many, and the dropouts 

are very rare in our framework. Furthermore, an updated 

global model is not shared with vendors. The reason is that, 

while a global model is a valuable asset to the network man-

agement, it is not really beneficial to the vendors. Instead, 

each vendor receives the personalized maintenance report 

which contains the discrepancy between its local model and 

the global model, which is useful to improve the quality of 

products in the future.  
 

MPC-based Secure aggregation  

Suppose that the server and vendors (clients) behave hon-

estly, but curiously (semi-honest model). That is, all partic-

ipants follow the protocol exactly as instructed, but also try 

to retrieve the private data of other vendors, if possible. Un-

der this scenario, a simple n-out-of-n additive secret sharing 

scheme can be used to prevent the model inversion attack as 

well as keep the privacy of local models. 

Suppose 𝑁 is the number of clients, and each client has its 

own local model 𝑓𝑖 where 1 ≤ 𝑖 ≤ 𝑁. The client 𝑖 gener-

ates a random linear mask 𝑠𝑖 and sends 𝑓𝑖 + 𝑠𝑖 to the server. 

Also, the client 𝑖 divides 𝑠𝑖 into 𝑁 additive shares  

{𝑝𝑖1,…,𝑝𝑖𝑁} in such a way that 𝑠𝑖 =  ∑ 𝑝𝑖𝑗
𝑁
𝑗=1  . 

Note the size of 𝑠𝑖 is similar to those of shares. These 𝑁 

shares are distributed to other clients in such a way that each 

client receives a unique share out of 𝑁 shares. In result, the 

client 𝑖 receives {𝑝1𝑖 , … , 𝑝𝑁𝑖}. 
Finally, the client 𝑖  sends the sum of the shares ∑ 𝑝𝑖𝑗

𝑁
𝑗=1   

to the server. This process is repeated for all clients. By ag-

gregating one-time padded local models and the sum of the 

shares, the server can calculate the sum of the local models 

as follows: 

∑ (
𝑛𝑖

𝑛
𝑓𝑖 + 𝑁

𝑖=1 𝑠𝑖) − ∑ 𝑝𝑖𝑗
𝑁
𝑖,𝑗=1 = ∑

𝑛𝑖

𝑛
𝑓𝑖 

𝑁
𝑖=1 +

 ∑ (𝑠𝑖 
𝑁
𝑖=1 − ∑ 𝑝𝑖𝑗

𝑁
𝑗=1 ) =  ∑

𝑛𝑖

𝑛
𝑓𝑖 

𝑁
𝑖=1   

where 𝑛𝑖 denotes the size of the data of the client 𝑖. 𝑛 repre-

sents the size of the aggregated data of all the clients (𝑛 =
 ∑ 𝑛𝑖

𝑁
1 ) 

An overview of the secure collaborative learning procedure 

is shown in Fig. 2. 

Autoencoder based anomaly detection  

An autoencoder based anomaly detection method is adopted 

to detect and exclude malicious local models updates from 

the aggregation process. It is used to compute the recon-

struction errors of the local model updates. If the reconstruc-

tion errors are high, the model updates are considered mali-

cious and thereby removed. 

The autoencoder is trained with a dataset 𝐷 =
{𝑤1, 𝑤2 … 𝑤𝑁} incorporating the local model updates (i.e., 
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Fig. 1. ML-based predictive maintenance process in a dishonest 

setting. 

Fig. 2. Secure collaborative learning using Secret Sharing in FL. 



 

 

model weights) sent by trusted clients (i.e., normal weights) 

under no attack setting and stored at the server. The dimen-

sionality of the model weight wk is reduced to produce a 

low-dimensional input in order to reduce the computational 

complexity due to the high dimension of the model weight. 

The generated input is fed then to the autoencoder for train-

ing, whereby the encoder compresses the input into a lower-

dimensional latent vector which is then reconstructed by the 

decoder.  

After the training phase, the autoencoder is able to recognize 

the normal weights and mark any weight that deviates from 

the data seen during the training as an anomaly. The recon-

struction error between the input weight and the recon-

structed weight is used as an anomaly score. If the anomaly 

score exceeds a pre-defined threshold, the weight is recog-

nized as anomalous potentially sent by a malicious client, 

and thereby it is removed and not considered for the update 

of the global model. The threshold is optimized in order to 

improve the detection capability of the autoencoder for dif-

ferent poisoning model attacks.  

 

Validation of the Proposed Framework 

Use case: Optical Transmitter Degradation Prediction 

Semiconductor lasers are considered as one of the most 

commonly used optical transmitters for optical communica-

tion system thanks to their high efficiency, low cost, and 

compactness. They have been rapidly evolved to meet the 

requirements of the next generation optical network in terms 

of speed, power consumption, etc. However, during opera-

tion, the performance of the laser can be adversely impacted 

by several factors such as contamination, crystal defects, 

facet oxidation etc. Such factors are hard to predict, and their 

interaction can lead to complex degradation mechanisms 

which are hard to model. The semiconductor laser degrada-

tion occurs in three different modes: rapid, catastrophic, and 

gradual. Each degradation mode is characterized by its own 

signature depending on the laser’s architecture and compo-

sition. Among the degradation models, a catastrophic mode 

is considered as the most challenging and hazardous ons as 

it appears as a quick and sudden failure after a normal oper-

ation of the device. Therefore, it is hard to predict such deg-

radation leading to the end of the life of the laser, and 

thereby resulting in optical network disruption and high 

maintenance costs. Therefore, it is highly beneficial to pre-

dict the degradation of the semiconductor laser device after 

its deployment in optical communication system in order to 

enhance the system reliability and minimize the downtime 

costs. 

ML techniques could provide a great potential to tackle the 

laser degradation prediction problem (Abdelli, Griesser, & 

Pachnicke, 2020). The development of such prognostic 

methods requires the availability of run-to-failure data sets 

modelling both the normal operation behavior and the deg-

radation process under different operating conditions. How-

ever, such data is often unavailable due the scarcity of the 

failures during the system operation and the long time re-

quired to monitor the device up failing and then generating 

the reliability data. That is why accelerated aging tests are 

often adopted to collect run-to-failure data in shorter time by 

speeding up the device degradation by applying accelerated 

stress conditions resulting in the same degradation process 

leading to failure.   

However, the burn-in aging tests are carried out just for few 

devices due to the high costs of performing such tests. 

Hence, the amount of the run-to-failure data that can be de-

rived from such tests, might be small, which can adversely 

affect the performance of ML model (Abdelli, Griesser, & 

Pachnicke, A Hybrid CNN-LSTM Approach for Laser 

Remaining Useful Life Prediction, 2021). Therefore, an FL 

approach is considered as a promising candidate to address 

the aforementioned problem, whereby different semicon-

ductor laser manufacturers (i.e vendors) collaborate with 

their small local dataset, stored at their premise, in order to 

build an accurate and reliable global laser degradation pre-

diction model with good generalization and robustness ca-

pabilities.  

Note that the semiconductor laser manufacturers might have 

different types of laser devices with various characteristics 

leading to different degradation trends, and that the data 

owned by each vendor is derived from aging tests conducted 

under different operating conditions. State that the global 

model is running on a server hosted by an optical network 

operator owning the infrastructure in which the semiconduc-

tor lasers manufactured by the different vendors are de-

ployed.  

We consider an FL system composed of a server and N cli-

ents (i.e., vendors) that collaboratively train a global model 

to predict the semiconductor laser degradation using the Fe-

dAvg algorithm (McMahan, Moore, Ramage, Hampson, & 

Arcas, 2017).  

The clients securely send the local model weight updates to 

the server using MPC. A GRU based model is used as global 

model to solve the task of semiconductor laser degradation 

prediction. A convolutional autoencoder implemented at the 

server is adopted as an anomaly detection method to detect 

the anomalous weights sent by the malicious clients.    

Experimental data 

To evaluate our FL framework, we adopt different datasets 

obtained from semiconductor laser manufacturers. The da-

tasets represent the reliability data of two different types of 

semiconductor lasers namely vertical-cavity surface-emit-

ting laser (VCSEL) and tunable distributed feedback (DFB) 

laser. VCSEL and DFB lasers differ in semiconductor ma-



 

 

terials and resonator structures, and are characterized by dif-

ferent degradation trends. Each dataset is derived from var-

ious accelerated aging tests performed according to 

Telcordia GR-468 CORE requirements for multiple devices 

with various characteristics (e.g., VCSELs with different 

oxide aperture sizes…) operating under several operating 

conditions and carried out under high temperature 𝑇 (50°C 

≤ 𝑇 ≤ 150°C) to strongly increase the laser degradation and 

thereby speed up the device failure. Depending on the oper-

ating conditions, the duration of the aging tests is varied 

(i.e., 2000h, 3000h, 3500h, 15000h). The output power (i.e., 

degradation parameter) is monitored under constant operat-

ing current 𝐼. The failure criterion of the device is defined as 

the decrease of the output power by 1 dB (20%) of its initial 

value. Figure 3 shows examples of aging tests results of 

semiconductor lasers conducted under different operating 

conditions. As depicted in Fig. 3, few VCSELs are degraded 

or failed during the aging tests, whereas more tunable DFB 

lasers exhibit degradation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In total, a dataset of 6,564 samples incorporating 8-length 

sequences composed of monitored output power measure-

ments of length 6 combined with the operating conditions 

namely 𝑇 and 𝐼, is built. We assign to each sample the state 

of the device (normal or degraded). For training and testing 

the ML model to early predict the laser degradation, we con-

sider the samples of early degraded devices (i.e., during the 

first stage of degradation, exhibiting a decrease of output 

power of value between 5% and 10%). The said data is then 

normalized and randomly divided into a training data (com-

prising of 80% of the samples) and a test dataset (the re-

maining 20% for testing). The training data is split then into 

𝑁 = 5 clients with different parts. Note that each client owns 

a data of either different types of lasers than the other clients 

or same type of lasers but manufactured by different laser 

manufacturers (i.e., different materials and structure) and 

tested on different wafers, leading to heterogeneous feder-

ated setting. 

Global model 

The adopted ML model to predict the degradation of the 

semiconductor laser is a GRU-based model as GRU is good 

at processing sequential data and to capture the relevant fea-

tures underlying the laser degradation trend under different 

operating conditions. The architecture of the GRU model is 

composed of one GRU layer containing 25 cells. The GRU 

model takes as an input the sequence of length 8 including 

the output power measurement values collected till time 𝑡 

combined with 𝑇 and 𝐼, and outputs the state of the device 

(“normal” or “degraded”) at the prediction time 𝑡. The train-

ing of the global model is carried out in an iterative process 

as follows: 

• The server distributes the global model 𝑤𝑡
𝐺  to 𝑁 

clients. 

• Each client k trains the model locally using its local 
data Dk and updates the weight 𝑤𝑡

𝑘 for 𝛼 epochs 
of Adam with mini-batch size of 𝛽 to compute 
𝑤𝑡+1

𝑘. 

• The server securely aggregates each client’s 𝑤𝑡+1
𝑘 

using MPC.  

• An autoencoder-based anomaly detection method 
is used to detect anomalous weights sent by the cli-
ents. 

• The update of the global model 𝑤𝑡+1
𝐺.is computed 

by a weighted averaging of only normal weights.  

 

The above-described process is repeated for multiple com-

munication rounds 𝑁𝑟𝑜𝑢𝑛𝑑 (e.g., number of aggregation) to 

improve the performance of the global model. For our ex-

periments, 𝛼, 𝛽 and 𝑁𝑟𝑜𝑢𝑛𝑑   are set to 8, 10 and 20, respec-

tively.  

Anomalous weight detection Method 

A convolutional autoencoder implemented at the server is 

used to identify the anomalous weights and thereby detects 

the potentially malicious clients. The model contains an en-

coder and a decoder sub-model with 5 layers. The encoder 

takes an input  

(d) (c) 

(b) (a) 

Fig. 3. Experimental aging test data of semiconductor lasers con-

ducted under different operating conditions: (a) aging tests of 

VCSELs with different oxide aperture sizes performed at 85°C, (b) 

aging tests of tunable DFB lasers conducted at 90°C, (c) aging tests 

of VCSELs performed at 50°C, and (d) aging tests of VCSELs con-

ducted at 70° C. 



 

 

takes as an input a vector of length 75. It encodes the input 

into low dimensional features through a series of 2 convolu-

tional layers containing 64 and 32 filters of size 3 x 1 with a 

stride of 1. The decoder is inversely symmetric to the en-

coder part. It consists of 3 transposed convolutional layers 

used to up-sample the feature maps. The last transposed con-

volutional layer with 1 filter of size 3 x 1 selected as an ac-

tivation function for the hidden layers of the model. The loss 

function is set to the MSE, which is adjusted by using the 

Adam optimizer. 

Experimental Results 

Prediction Capability Evaluation 

The performance of the proposed FL framework is com-

pared to two baseline models including a model trained by 

applying a traditional centralized approach and a locally 

trained model without participating in the FL approach (i.e., 

localized model). The centralized approach is trained with 

the data from all the clients, which is collected and stored at 

a single server. The localized model is trained on the client’s 

premises without model sharing during the training proce-

dure. The different approaches are evaluated using as eval-

uation metrics the accuracy, the precision, quantifying the 

relevance of the predictions made by the ML model, the re-

call (i.e sensitivity), providing the total relevant results cor-

rectly classified by the ML model, and the F1 score, the har-

monic mean of precision and recall. The results of the com-

parison shown in Fig. 4 demonstrate that first the FL frame-

work outperforms the localized model by providing 11.4%, 

9.62%, 14.7% and 12.24% improvements in accuracy, pre-

cision, recall and F1 score metrics, respectively, and second 

that the FL approach achieves similar performance as the 

centralized approach while ensuring data privacy.  

 

Figure 5 shows the states of some tested devices predicted 

by the ML model trained using the FL approach by giving it 

as input the output power measurements monitored till 

5,000 h (i.e., time of prediction). As depicted in Fig. 5, the  

ML model accurately and early predicts the degraded de-

vices before reaching the failure criterion, which proves the 

usefulness of the adopted ML model in early predicting the 

degraded/failed devices.  

 

The length of the input sequence, specifically the length of 

the sequence of the output power measurements, has a sig-

nificant impact on the degradation prediction capability of 

the ML model. As shown in Fig. 6, increasing the length of 

the sequence of the output power measurements helps the 

ML model to capture more information about the degrada-

tion trend and thereby to achieve better degradation predic-

tion capability performance (i.e., yielding better accuracy, 

precision, recall and F1 scores). However, rising the length 

of the sequence too much (higher than 6) can lead to over-

fitting and thus reduces the performance of the ML model. 

Robustness to model poisoning attacks 

The anomalous weight detection model is compared to de-

fense-based methods namely krum (Blanchard, El Mhamdi, 

Guerraoui, & Stainer, 2017), Trimmed Mean (Yin, Chen, 

Kannan, & Bartlett, 2018) and Median. The testing accuracy 

Fig. 4. Comparison of the federated (FL), centralized and local-

ized approaches. 

Fig. 6. Impact of the output power sequence length on the perfor-

mance of the ML model. 

Fig. 5. Assessment of early degradation prediction capability of 

ML model. 



 

 

achieved by the global model for each communication round 

is adopted as evaluation metric. We consider the following 

three adversarial attacks launched by 20% of clients (i.e., 

one compromised or malicious vendor) for each communi-

cation round 𝑁𝑟𝑜𝑢𝑛𝑑: 

• Additive noise attack: the compromised vendor 

𝑘 adds a Gaussian noise to the local model update 

and set it as 𝑤𝑘 = �̅�𝑘 +  𝜀, where �̅�𝑘 denotes the 

original local model update or weight. 𝜀 is a vector 

derived from a gaussian distribution of mean 0 and 

standard deviation of 2 (i.e., standard deviation of 

the normal weights).  

• Sign flipping attack: the malicious vendor 𝑘 flips 

the sign of the local model weight as 𝑤𝑘 = 𝛿 �̅�𝑘, 

where 𝛿 is a constant selected randomly from a 

range from 1 to 5.  

• Same value attack: the compromised vendor 𝑘 

sets its local model weight as 𝑤𝑘= 𝛽 1⃗ , where 𝛽 is 

a constant set to 2 and 1⃗  denotes all-one vector.  

 

The results shown in Fig. 7 demonstrate that the proposed 

method significantly outperforms the defense-based ap-

proaches for the considered attack scenarios. It can be seen 

that the proposed method converges faster under all the set-

tings and achieves similar performance as the FedAvg algo-

rithm without attack, which proves the effectiveness of the 

anomaly detection model in detecting the anomalous 

weights and in mitigating the impact of launched attacks. As 

depicted in Fig. 7, the considered baselines are more robust 

to the additive noise attack and not effective against same 

value attack. The performances of the defense-based meth-

ods are worse as they are not effective in defending against 

attacks for not identically and independently distributed 

(iid) settings, and the fraction of the malicious clients which 

is required by Krum and Trimmed Mean cannot be known a 

priori in FL.  

Let 𝐴 denote the testing accuracy achieved by the global 

model trained under no attack setting for all the communi-

cation rounds, and �̅� present the testing accuracy obtained 

by the global model trained under an attack launched each 

communication round. The impact of an attack (∆) is de-

fined as the reduction of the accuracy of the global model 

due to the attack. It is expressed as ∆ (%) = 𝐴 − �̅�.  

Figure 8 illustrates that the proposed method is most robust  

to the different attacks by achieving the smallest attack im-

pacts under all the considered attacks.  

 

 

(b) 

(a) 

Fig. 7. Testing accuracy under different attack scenarios: (a) ad-

ditive noise attack, (b) sign-flipping attack, and (c) same value at-

tack. 

Fig. 8. Attack impacts of different model poisoning attacks on FL 

system with defense-based methods. 

(a) 

(b) 

(c) 



 

 

Conclusion  

Optical networks require a high level of reliability and sus-

tainability. Machine learning techniques are expected to im-

prove maintaining such networks efficiently. We showed 

that an accurate and reliable ML model could be developed 

in collaborative learning without the disclosure of the cli-

ents' sensitive datasets even in a malicious setting. Our ex-

periments confirm that (i) the presented FL approach 

achieves a good prediction capability similar to the one 

yielded by the centralized approach, and (ii) the proposed 

autoencoder based anomaly detection model is efficient in 

recognizing the anomalous weights potentially sent by ma-

licious clients and outperforms the defense-based methods. 
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