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Abstract

Data-driven fault diagnosis plays a key role in reducing main-
taining costs and reducing down time for industrial machines.
Deep learning has shown promising performance in identify-
ing the different fault types. Yet, large amount of data is re-
quired to achieve satisfactory performance. In the real world,
fault data is often rare, thus there is incentive for different
corporations to work together to train a fault detection model.
However, sharing data between different factories may not
be applicable due to the data privacy concerns. Besides, dis-
tribution of data collected from different entities can be non
i.i.d. As a results, a model trained on one machine can fail
to generalise to different machines due to the distribution
shift problem. In this work, we propose DiagNet, a feder-
ated transfer learning framework for machine fault diagnosis
tasks. Specifically, to address the data privacy concerns, we
employ the federated learning approach by jointly training a
global model across multiple clients without sharing their raw
data. However, the global model does not perform the best
for each of the clients due to data distribution variances. To
further tackle this problem, we employ the transfer learning
approach to adapt the global model separately on each client
with his own private machine data. Experimental results un-
der low data regimes show that our DiagNet framework can
significantly improve the fault-diagnosis model training ac-
curacy by up to 28%.

1 Introduction
Data-driven fault diagnosis has witnessed a remarkable suc-
cess in monitoring the health of industrial machines. One
category of conventional machine learning based meth-
ods aim to learn the mapping between manually designed
features (i.e., handcrafted features) and the corresponding
faulty types. However, these methods rely on the domain
knowledge when designing these handcrafted features. Deep
learning with hierarchical multi-layer representation learn-
ing has achieved a great performance on fault diagnostic
tasks. It directly learns features from raw input data with-
out manual feature extraction (Sun et al. 2018; Zhao et al.
2020; Iqbal et al. 2019). However, the success of deep learn-
ing is mainly attributed to the availability of large amount of
data, with existing research focusing primarily on compre-
hensive datasets with i.i.d. data that covers all fault classes
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in all training conditions(Sun et al. 2018; Zhao et al. 2020).
Yet, in real world industry, obtaining large amount of labeled
faulty data can be challenging due to the catastrophic con-
sequences of failure of complex machines. Thus, our paper
will focus on the specific problem of sparse non i.i.d. data
conditions found in real world machine fault diagnosis.

One way to address this issue is to leverage data from dif-
ferent companies which use similar type of machines. This
can have strong potential to show promising fault diagnosis
performance. However, sharing data between different com-
panies can face the following obstacles. First, sharing data
between different factories and entities can be unattainable
due to the data privacy and confidentiality issues. Second,
even if the data can be shared, data from different compa-
nies usually have different distributions (i.e., non i.i.d). As
such, a model trained on data collected from one factory can
fail to generalize well when tested on data from different
factories (Ragab et al. 2020).

To address all these issues, we propose our DiagNet ap-
proach, a federated transfer learning approach for fault diag-
nosis tasks. In particular, DiagNet employs federated learn-
ing to securely aggregate information from several clients
to train a deep learning global model while preserving data
privacy. Then, DiagNet further employs transfer learning to
adapt the global model to the specific requirements and oper-
ating conditions of the machinery for each client. However,
an important observation from us is that, under low data sit-
uations, the complex model can have sub optimal transfer
learning performance due to the over fitting phenomena on
the global model. Therefore, we introduce an adaptive early
stopping approach to regularize the model and improve the
overall performance.

The overall workflow of DiagNet is thus as follows: 1)
The central server shares the initial model with each client.
2) Each client trains the model on their local data and sends
the trained weights back to the central server. 3) The cen-
tral server updates its global model using the weights from
each client. 4) The process repeats until the global model is
trained through Federated Learning, utilizing adaptive early
stopping to halt training before over fitting. 5) The partially
trained global model is then sent to each client. 6) Each
client then conducts Transfer Learning by using the global
model as the initial starting model and training it on their
local dataset only. 7) Finally, each client will have a trained



model tailored specifically to their domain that can be used
for fault diagnosis for incoming data.

The major contributions of our paper are summarized as
follows.

• We design and implement DiagNet, a Federated Transfer
learning framework for machine fault diagnosis model
training, and is compatible with most existing neural net-
work models such as CNN, DNN and LSTM.

• We propose the method of adaptive early stopping, which
terminates Federated training of the global model before
reaching optimal accuracy in order to prevent overfitting
and improve the effectiveness of the Transfer Learning
stage.

• We demonstrate the efficiency of DiagNet on fault diag-
nosis sensory data from different operating conditions.
We were able to improve the average accuracy of models
trained by clients under very low local data conditions
(70 to 200 samples per client) by 28%. Even clients with
exceptionally low data samples of only 70, we were able
to achieve local model accuracy in excess of 90%.

The rest of the paper is organized as follows. The next
section introduces related work in the field of machine fault
diagnosis, Federated and Transfer Learning. In the third
section we describe DiagNet, our framework for Federated
Transfer Learning for machine fault diagnosis. Experimen-
tal setup and methodology are discussed in the fourth sec-
tion. In the fifth section, we analyze the experimental results.
Lastly, in section six, we discuss findings of this paper, po-
tential applications of DiagNet, and future research opportu-
nities in this field.

2 Related Work
2.1 Machine Fault Diagnosis Models
Deep learning, with its automatic extraction of salient fea-
tures, has widely acclaimed performance in various appli-
cations including computer vision, natural language pro-
cessing, and speech recognition (Otter, Medina, and Kalita
2021). Recently, a growing body of literature has leveraged
deep learning to automatically extract features from raw vi-
bration signals for fault diagnosis. Chen et al. employed
the convolutional neural network (CNN) with 1-dimensional
kernels to extract transferable features for fault diagnosis
(Chen, Gryllias, and Li 2019). Chuang et al. proposed a deep
sparse autoencoder to tackle overfitting risk of deep models
and improve the performance of fault diagnosis (Sun et al.
2018). Zhao et al. developed a novel deep residual shrinkage
network to learn better feature representation from noisy vi-
bration signals, resulting a better performance for fault diag-
nosis tasks (Zhao et al. 2020).

Nonetheless, most existing deep learning approaches fo-
cus on datasets with large amounts of i.i.d. data. For in-
stance, Zhao used a comprehensive training dataset of 3,600
data samples from a single operating machine distributed
evenly among 9 classes(Zhao et al. 2020). In the case of the
CWRU bearing dataset, Chuang et al. used an i.i.d. dataset
of 196 datasamples split evenly among 4 classes from a sin-
gle operating condition(Sun et al. 2018). This may not re-

flect a realistic data environment in the real world, as ma-
chine fault data is difficult to collect, and varies consider-
ably between operating conditions. This results in a sparse
non i.i.d. dataset, where certain operating conditions may
not have data entries in some fault classes at all.

To address this issue, data across different factories can be
leveraged for larger amounts of data. However, this can raise
data privacy concerns and cannot be applied in real world
scenarios. Thus, we aim to use Federated Transfer Learn-
ing to allow for cooperative model training without requiring
data sharing.

2.2 Federated Learning
Federated Learning (FL) is a machine learning setting that
allows clients to exchange information for model training
while keeping data decentralized, thus preserving data pri-
vacy. Instead, each client computes on their data locally, and
creates an update package which is sent to the central server
for aggregation. (Kairouz et al. 2021)

In 2017, McMahan et al. proposed FedAvg, one of
the most popular federated training frameworks today, and
demonstrated that training via FL can produce effective
models that are superior to models trained only on locally
hosted datasets (McMahan et al. 2017). Considerable re-
search has shown that FL has a growing number of appli-
cations in various fields that have data privacy concerns,
such as retail, banking and healthcare. (Yang et al. 2019).
In the field of machine fault diagnosis, Zhang et al. pro-
posed a Federated Learning method that aggregrates local
client models to tackle the data island problem caused by a
lack of data sharing (Zhang et al. 2021). Geng et al. devel-
oped FA-FedAvg, which improves the accuracy and speed
of fault diagnosis through an optimized weighting strategy
(Geng et al. 2021).

However, real world machine fault data is often non-i.i.d.
in nature, as machinery from different clients usually op-
erate under different conditions. This presents a challenge
for Federated Learning models, as non i.i.d. causes global
model divergence and thus reducing model performance, es-
pecially among deep networks (Zhao et al. 2018). Thus, tra-
ditional Federated Learning frameworks may perform sub
optimally when faced with real world data, and an approach
that is better suited to tackling non i.i.d. data is required.

2.3 Transfer Learning
Transfer Learning (TL) aims to transfer knowledge from one
or more source domains to a target domain, in order to im-
prove the performance of a model in the target domain. By
transferring model features between domains, TL has been
shown to be capable of reducing the amount of labeled data
required for deep learning in the target domain, as opposed
to training a model from scratch (Yosinski et al. 2014). TL
has been shown to have a wide range of deep learning ap-
plications, such as Natural Language Processing, Computer
Vision and Robotics. (Yu and Jiang 2016; Zhang et al. 2016;
Rusu et al. 2017) Recent research has also been conducted
for TL in the field of machine fault diagnosis. Wang et
al. demonstrated the feasibility of transferring models from
non-manufacturing settings to manufacturing machine fault



detection, as well as between different machines and differ-
ent operating conditions. (Wang and Gao 2020)

Transfer Learning however requires pre-trained models as
a foundation for adaptation to the target domain. Such suit-
able models many not be available in the real world for many
applications, and alternatives need to be found.

In our approach, we aim to combine Transfer Learning as
a second stage to Federated Learning in DiagNet, by trans-
ferring knowledge from the global model to each individ-
ual’s client domain. This ensures that Transfer Learning has
a suitable source domain to pull from, and reduces diver-
gence caused by non-i.i.d. data for Federated Learning.

3 Diagnet: Federated Learning Network for
Machine Fault Diagnostics

In this section, we introduce our design of the DiagNet
framework, which incorporates Federated Learning to train
a global model before employing Transfer Learning in client
specific transfer learning to adapt the global model’s domain
to suit each individual client.

Figure 1: Fault Diagnosis Model

3.1 Machine Fault Diagnosis Model
The model we use in DiagNet for fault diagnosis is derived
from our previous model in the PrivGD network(Jin, Ragab,
and Aung 2020). It is a CNN based model which is com-
posed of two components, a feature extractor and a classifier.
In particular, the feature extractor is a 5-layer convolutional
neural network with 1-dimensional kernels (1D-CNN). It
aims to find a latent representation of the time-series data
that could be class discriminative. The classifier is composed
of a fully connected layer followed by a Softmax activation
layer. It takes the extracted features from the1D-CNN net-
work as inputs, and outputs the probabilities for the input
sample belonging to each class.

This model was designed to operate with an initial train-
ing dataset of 2000 i.i.d. data entries per client. However this
may not be a realistic reflection of real world conditions, as
data may be less readily available and non-i.i.d. in nature.
Thus in our paper, we will adapt this model to a more real-
istic sparse data environment, with only 70-200 data entries
per client. In addition, we will use random sampling of the
training data. Through this, we will demonstrate that exist-
ing models with ideal data assumptions can be adapted to
work using DiagNet.

Compared to Chuang’s approach, where he used 196 sam-
ples for a single operating condition, split evenly among 4
fault classes (Sun et al. 2018), our dataset presents a signif-
icantly more challenging environment. Instead of focusing
on a single fault size, we opted to include all fault sizes, thus
resulting in a total of 10 classes. As such, we have an aver-
age of 7-20 data samples per class per client, as opposed to a
fixed 49 per class in Chuang’s study. In addition, due to the
random sampling and non i.i.d. nature of our data, there may
not be data entries for all classes in all operating conditions.
This presents a more realistic environment, where there is
uneven distribution of data between clients and classes.

3.2 Federated Learning Framework
DiagNet’s Federated Learning framework is comprised of
a centralized server and several clients. In particular, the
framework adopts a federated mini-batch stochastic gradient
descent approach. A single batch size, b, is selected globally,
and each client partitions their local dataset into batches of
size b. Due to the non-i.i.d. nature of the data, it is likely that
clients will have different numbers of batches. This will be
accounted for during the the training process.

Figure 2 illustrates how the DiagNet processes. First, the
centralized server sends the global model to each client.
Each client then selects the relevant batch from their dataset
and computes the resulting gradients of the model’s weights
for each sample. If a client has no data for this batch, such
as when they have already exhausted all local data for this
epoch, then the client sets the output gradients to 0. Each
client then sums up all the gradients into a single result, and
sends it back to the central server. The central server then
uses these gradients to update the global model via SGD.
The process repeats until all clients have conducted one full
on their local dataset, which concludes one epoch of train-
ing.



Figure 2: DiagNet Framework

Training of the global model continues until the server
halts the process. Specifically, we used adaptive early stop-
ping while training the global model before it begins over fit-
ting. Each client then finishes the training process by transfer
learning the model exclusively on their own local dataset.

Algorithm 1: DiagNet Server Algorithm

1: EpochsUnderThreshold← 0
2: while EpochsUnderThreshold < n do
3: for P ∈ S do
4: for a ∈ Clients do
5: sendToClient(a, (model, P ))
6: o← receiveFromClient(a)
7: (loss[P ], acc[P ], grad[P ])← o
8: end for
9: SGD(model, avg(grad))

10: end for
11: if avg(loss) < T then
12: EpochsUnderThreshold++
13: else
14: EpochsUnderThreshold← 0
15: end if
16: end while
17: for a ∈ Clients do
18: sendToClient(a,model)
19: end for

3.3 Adaptive Early Stopping
Adaptive early stopping is necessary for our scenario since
the number of epochs needed to train the model varies signif-
icantly. This is due to a combination of the non-i.i.d nature of
our data and the low number of data samples. During initial
experimentation , we found that the Client Specific Trans-
fer Learning stage was ineffective due to overfitting of the
global model during the Federated Learning stage. Due to
the random sampling of the training data, the rate of training
convergence varied considerably between runs, which made
a traditional epoch-based early stopping unsuitable.

Algorithm 2: DiagNet Client Federated Learning Algorithm

1: (model, P )← receiveFromServer()
2: for i ∈ P do
3: entry ← localdata[i]
4: loss[i], acc[i], o← forward(model, entry)
5: grad[i]← backPropagation(model, entry, o)
6: end for
7: sendToServer(avg(loss), avg(acc), avg(grad)

To remedy this issue, we implemented Adaptive Early
stopping to prevent global model overfitting. Adaptive early
stopping is conducted by setting a threshold T for training
loss and threshold n for epoch count. When training the
global model, when the training loss falls under the thresh-
old for n consecutive epochs, the global training process is
halted and client specific transfer learning begins. The loss
threshold ensures that we reach a suitable point in the train-
ing process before transitioning to transfer learning, while
the epoch threshold is necessary as the training loss would
often dip below the loss threshold for 1-2 epochs early on
in the training process. Algorithm 1 demonstrates how the
DiagNet Server conducts Federated Learning with adaptive
early stopping, and Algorithm 2 demonstrates the client side
of the training process.

3.4 Client Specific Transfer Learning
In our scenario, each client is running their machine at a
different operating condition. As such, directly applying the
global model to each client will likely result in reduced accu-
racy. To mitigate this problem, we utilized transfer learning
to adapt the global model to each client’s domain.

Once training of the global model has concluded, the cen-
tral server sends the global model to each client. Each client
then uses the global model as the initial state to conduct
training on their local dataset. The number of epochs for the
transfer learning process needs to be carefully selected to
maximize the accuracy of the result. Due to the low amount



of data available in the local dataset, overfitting due to exces-
sive training is highly likely. In the Experiment Evaluation
section, we will show that the fine-tuning process reaches
optimal validation loss after only 15-20 epochs of training,
and begins overfitting afterwards. As such, we limited the
number of epochs of client specific transfer learning to 20
epochs in our model.

Algorithm 3 illustrates the client specific transfer learning
process of DiagNet.

Algorithm 3: DiagNet Client Finetuning Algorithm

1: model← receiveFromServer()
2: for (i = 0; i < FTepochs; i← i+ 1) do
3: for entry ∈ localdata do
4: loss[i], acc[i], o← forward(model, entry)
5: grad[i]← backPropagation(model, entry, o)
6: model← SGD(model, grad[i])
7: end for
8: end for

Table 1: CWRU Bearing Dataset Labels

Class Label Fault Type Fault Size (in)

1 None -

2 IF 0.007

3 IF 0.014

4 IF 0.021

5 OF 0.007

6 OF 0.014

7 OF 0.021

8 BF 0.007

9 BF 0.014

10 BF 0.021

4 Experiments
In this section we will first describe the datasets, implemen-
tation details and our experimental setup.

4.1 The Machine Vibration Sensor Datasets
The datasets used for our scenario are acquired from the
Case Western Reserve University Bearing Data Center’s
website. The CWRU bearing dataset is time-series data
that collected at 12k sampling rate. The dataset has 4 sub-
sets with different loading torques, where the torque val-
ues ranges from 0 to 3. Each subset is assigned to a dif-
ferent client, to simulate different operating conditions of
machines under each client. As such, the data is non-i.i.d.,
with a co-variate shift and concept drift between clients.

In each subset, the data instances fall into 4 different cat-
egories, with one non-faulty and three faulty categories. The

Table 2: Client Data Sample Size

Client Sample Size

1 70

2 100

3 150

4 200

Total 520

three faulty categories are inner-race faults (IF), outer-race
faults (OF), and bearing-race faults (BF). Each faulty cate-
gory could have 3 fault sizes, 0.007 inches, 0.014 inches, and
0.021 inches, for a total of 10 classes (1 non-faulty class, and
9 faulty classes). Table 1 illustrates how the various classes
are labelled.

In addition, to simulate uneven distribution of data in the
real world, each client has a different number of samples
available for training. Table 2 shows the distribution of data
samples sizes available for each client for our experiment.

4.2 DiagNet Experimental Procedure
The federated setting for DiagNet is simulated using four
client datasets, each of a different operating condition. As
our scenario calls for a low dataset environment, we reduced
the samples available for training to each client by taking a
random subset of the original data. This subset is not neces-
sarily a representative sample of the original dataset, as ma-
chine fault data in the real world may not be representative
of real world conditions.

To mitigate experimental error due to our low number of
data samples, we conducted three runs of our experiment
and averaged the results of the runs. The process of a single
run is as follows:
• A random subset from each dataset is selected to repre-

sent the training data of the clients. The size of the train-
ing dataset is shown in Table 2

• A control group is trained without FL, with each client
training their model using only their dataset.

• Using DiagNet, a global model is trained through Fed-
erated Learning utilizing adaptive early stopping with T
= 0.05 and n = 3. These values were chosen due to ex-
perimental results in section 5.3 showing that it was the
optimal threshold.

• A copy of the partially trained model is made for each
client, and Transfer Learning is done by training each
model on the respective client dataset for a further 20
epochs. This value is chosen as experimental results in
section 5.2 showed that any further training resulted in
overfitting.

• We also train a copy of the global model till convergence
to obtain a baseline without TL.

• Lastly, we conducted TL on the converged global model
for a further 20 epochs to obtain another set of results for
FT+TL without adaptive early stopping.



To test the accuracy of the trained models, we assembled
a validation dataset for each client. Each validation data set
had 2000 entries. We then ran each of the models through
the validation dataset of each client, and collated the results.

4.3 Implementation Details
We carried out the experiments on a server with an Intel
Xeon Platinum 8170CPU @ 3.700GHz with 26 cores, and
188 GB RAM. The operating system is Arch Linux. The
fault diagnosis model training and fine-tuning on data is
done using Pytorch at version 1.8.1.

5 Results and Discussion
5.1 Ablation Study
As seen in Table 3, DiagNet is able to achieve a substantial
improvement in accuracy over local learning for all clients,
regardless of their local sample size, with all clients achiev-
ing an average accuracy of greater than 90%.

Notably, improvement becomes more significant the
smaller the size of the local dataset available to the client.
For instance, the client with largest sample size (i.e., Client
3) experienced an increase in accuracy of 8.3, while the
client with smallest sample size (i.e., Client 1) has witnessed
significant improvement of 40.1% with our DiagNet. In ad-
dition, due to the random sampling of training data for each
client for each run, the variance of model accuracy is very
high for local only training, with 2 out of 4 clients having
standard deviations in excess of 10%. However, DiagNet
was able to reduce the variance to under 2% for each client
when training on the same data. This demonstrates that Di-
agNet can successfully tackle the challenge of low data sam-
ple environments in machine fault diagnosis.

In addition, DiagNet still showed an improvement in ac-
curacy compared to the Federated Learning only approach
for all clients of 0.4 to 1.4%. In addition, as seen in Fig-
ure 3(a), we see that DiagNet offers a substantial improve-
ment in validation loss, from 0.287 to 0.193, a reduction of
32.8%. Thus, we see that the Transfer Learning component
of DiagNet offers a significant benefit over traditional pure
Federated Learning approaches.

Comparatively, without Adaptive Early Stopping, the
FL+TL model achieved an improve in accuracy of only 0.3
to 0.9% over the pure FL model, which is notably smaller
than DiagNet. In addition, we see from Figure 3(a), that the
FL+TL approach without adaptive early stopping achieved
almost no improvement in the validation loss over a purely
FL approach. Thus, it is evident that adaptive early stopping
has a significant positive influence on the effective of Diag-
Net. Further analysis of adaptive early stopping is conducted
in section 5.3.

5.2 Impact of Overfitting during Transfer
Learning

As mentioned previously, overfitting occurs during the trans-
fer learning process due to the low sample sizes available to
each client. To determine the degree of overfitting during the
TL stage, and the ideal stopping point, we set up the follow-
ing experimental procedure.

Table 3: DiagNet Accuracy (%)

Client Local Only FL Only
FL+TL

No Adaptive
Earlystop

FL+TL
w/ Adaptive

Earlystop

1 53.0
±4.87

92.5
±2.10

92.8
±2.04

93.1
±1.80

2 57.3
±11.2

93.6
±2.47

94.5
±2.17

95.0
±1.65

3 69.4
±11.6

96.7
±2.09

97.1
±2.30

97.4
±1.94

4 89.8
±9.76

97.3
±2.19

97.7
±2.12

98.1
±1.88

Avg 67.4
±17.3

95.0
±3.00

95.5
±2.94

95.9
±2.69

• Similar to the overall DiagNet experiment, a random sub-
set from each dataset is selected to represent the clients.

• Using DiagNet, a global model is trained through Fed-
erated Learning. Adaptive early stopping is not used in
order to ensure fair comparisons between runs. The stop-
ping point for the global model is instead set at epochs =
30. We arrived at this value as most adaptive early stop-
ping happens between epochs 20 to 40.

• A copy of the partially trained model is made for each
client, and transfer learning is done by training each
model on the respective client dataset for a further 60
epochs to reach convergence.

We conducted 3 runs of the experiment and averaged the
results. The results can be seen in Figure 3(b).

The training of the global model stops at the 30 epoch
mark, before transitioning to client specific transfer learn-
ing. The client models converge rapidly once TL begins,
reaching their minimum between the 35 and 50 epoch mark.
As training continues beyond the 50 epoch mark, we can
see the validation loss steadily increasing once more due to
overfitting. As such, we determined that 20 epochs of trans-
fer learning is sufficient for transfer learning for our client
models.

5.3 Effect of Adaptive Early Stopping
DiagNet’s Adaptive Early Stopping algorithm relies on a
training loss threshold to determine the point of early stop-
ping during the training process. In order to determine the
ideal threshold for the algorithm for this dataset, we ran the
following experiment.
• Similar to the DiagNet experiment, a random subset from

each dataset is selected to represent the clients.
• Using DiagNet, a global model is trained through Feder-

ated Learning. The thresholds for the different early stop-
ping points are T = 0.2, 0.05, 0.01

• When the global model reaches a threshold, the current
global model is branched, and each client does 20 epochs
of transfer learning on that iteration of the global model.



(a) Average DiagNet Validation Loss of all Clients over Epochs
Trained

(b) Average Validation Loss over epochs for Client Specific
Transfer Learning

(c) Average Validation Accuracy with different Adaptive Thresh-
olds

(d) Average Validation Loss with different Adaptive Thresholds

Figure 3: Experimental Results

Once the transfer learning is done, the results are stored,
and the network continues training the global model.

• Lastly, a global model is trained for 80 epochs (i.e. con-
vergence), and 20 epochs of client specific transfer learn-
ing is conducted to create a control group.

We conducted 3 runs of the experiment and averaged the
results. Our findings are as follows.

As seen from Table 4 and Figure 3(d), all instances of
Adaptive Early Stopping thresholds performed better no
Adaptive Early Stopping in terms of validation loss. No-
tably, the global model suffered from overfitting from epoch
37 onwards, as seen by the steady increase in validation loss.
Both T=0.2 and T=0.05 stopped global model training be-
fore epoch 37, and achieved a comparatively low validation
loss rate. T=0.2 performed the best in terms of validation
loss with 0.358, with T=0.05 shortly after at 0.380. T=0.01
stopped the training after overfitting of the global model had
already begun, and thus achieved a substantially worse vali-
dation loss of 0.448.

Table 4: Adaptive Threshold Loss

Client T=0.2 T=0.05 T=0.01 Convergence

1 0.512 0.583 0.670 0.791

2 0.476 0.493 0.555 0.647

3 0.229 0.240 0.328 0.390

4 0.216 0.201 0.238 0.278

Avg 0.358 0.380 0.448 0.526

In terms of accuracy, Figure 3(c) shows that despite the
low validation loss, T=0.2 achieved only an accuracy of
92.1%, nearly identical to the control group’s 92.2%. T=0.01
similarly also achieved an accuracy of 92.1%. Only T=0.05
performed substantially better, at 92.9%. This experiment
further demonstrates the effectiveness of adaptive early stop-



ping, as well as the importance of selecting an appropriate
threshold. We can see that a balance must be struck in or-
der to achieve optimal results, with the threshold ideally as
close to the global model’s minimum as possible, but before
overfitting begins.

Thus, we chose T=0.05 for our program’s threshold for
adaptive early stopping, as it stopped the global model train-
ing closest to the global loss minimum and led to the best
model accuracy after transfer learning.

6 Conclusion
In this paper, we constructed the DiagNet framework, a Fed-
erated Learning combined with transfer learning framework
for machine fault diagnosis, and demonstrated its effective-
ness in a sparse non-i.i.d. dataset which simulates real world
conditions. Our future investigations will focus on applying
DiagNet to other machine fault datasets and real world sit-
uations, as well as exploring the possibility of utilizing Di-
agNet in other domains that have similar issues with data
collection, such as for medical diagnosis.
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