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Abstract

Vertical Federated Learning (VFL) is a distributed machine
learning method that combines all features from different col-
laborative train models for Federated Learning (FL) clients
with data involving different feature spaces. Currently, VFL
mainly uses homomorphic encryption (HE) to preserve pri-
vacy. However, HE incurs high computation and communi-
cation costs among FL participants, which increase exponen-
tially with the number of participants. Thus, existing VFL
methods are unsuitable for multi-party scenarios. Moreover,
in VFL scenarios, it is difficult to establish an FL server that
can be trusted by all participants. To solve these problems,
we propose an efficient Multi-participant Vertical Federated
Learning approach based on Secret Sharing (MVFLS). On
the one hand, it uses secret sharing instead of homomor-
phic encryption, which effectively reduces the computational
cost. On the other hand, benefiting from secret sharing, it
enables VFL to be performed in multi-participant scenarios
while eliminating the dependence on having an FL server.
This can further reduce the risk of data leakage on the server
side and effectively protect the security of participants. Ex-
perimental results on real-world and synthetic data sets show
that MVFLS can significantly reduce computational cost and
improve model accuracy compared with stat-of-the-art feder-
ated learning methods.

Introduction
As a type of federated learning (FL), vertical federated learn-
ing (VFL) is principally applicable for data owners who have
a slightly varied user space with different sets of features.
Fundamentally, VFL is the process of aggregating these dif-
ferent features from multiple companies or organizations.
For a specific example (Figure 1), bank A wants to estab-
lish a model to predict customer credit. E-commerce B is in
the same city as A, so their customer bases are similar. A
has the customers’ financial information and B has the on-
line consumption information of the customers. That is, A
and B have different data features of the customers. Then,
B can make use of its information to help A build a VFL
model, which can accurately evaluate the customers’ credit
rating. If A and B jointly establish a VFL model to integrate
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Figure 1: Illustration of Vertical Federated Learning between
a Bank A and an E-commerce B

their feature data of customs without data leakage, so that
the credit rating can be predicted more accurately. During
this process, the model should protect the privacy of partici-
pants’ local information. Then, one of the challenges is data
security, which means the data of any participant cannot be
obtained by others.

Data security is one of the critical properties of vertical
federated learning. The majority of VFL models use the Ho-
momorphic Encryption (HE) methods (Paillier 1999) to en-
crypt transmitted data that contains samples’ features. HE
performs simple calculations (like plus, multiplication) on
the encrypted data of all parties and the decrypted result is
consistent with the result of directly calculating the data. As
a classical VFL model, Hardy (Hardy et al. 2017) introduces
the Paillier homomorphic method (Paillier 1999) in the VFL.
In this model, participants can transmit encrypted interme-
diate results to effectively hide the local data, when they ag-
gregate the features from all parties. However, the weakness
of HE is the high computation cost, and it is difficult to ap-
ply this security method to multiple parties. As the number
of participants in vertical federated learning increases, the
interaction becomes more complex and the communication
and computation costs can be higher. In addition, homomor-
phic encryption only can perform a simple calculation on
encrypted data and other calculations can only be replaced
by approximate formulas, resulting in lower accuracy than
training results of traditional machine learning.

Besides the shortcomings of HE, VFL models also have
the risk of information leakage caused by the server. The ex-
isting VFL models require an authentication server to coor-



dinate and transmit encrypted information, but there is a risk
of information leakage during this process. At the same time,
because the model structure is complex, all participants have
to interact with the coordinator, which can incur high com-
munication costs.

To solve these problems, we propose an efficient Multi-
participant Vertical Federated Learning based on Secret
Sharing (MVFLS). First of all, secret sharing is used to re-
place homomorphic encryption in our improved multi-party
VFL, which greatly improves communication and computa-
tion efficiency. Secondly, the model we proposed can calcu-
late the accurate gradient and loss function formula without
approximation. Thus, compared with the existing VFL, the
accuracy of the model can be improved. Thirdly, our method
relies on one participant with label information to coordinate
the calculations of all parties without a dedicated server, re-
ducing the number of communication rounds and preventing
the third party from maliciously sending wrong information.

The rest of this paper is organized as follows. Next section
introduces previous related works. After the related work,
we describes the details of our model. Then we conduct se-
curity analysis of the proposed method. At last, we report
the experimental results.

Related Work
The research work related to this study mainly includes three
aspects: federated learning based on homomorphic encryp-
tion, vertical federated learning, and multi-party secure com-
puting. In 1978, Rivest, Adleman, and Dertouzos proposed
the concept of HE ( homomorphic encryption ) (Rivest et al.
1978). Since then, HE has been a key problem in the field of
cryptography research. Homomorphic encryption performs
addition and multiplication operations on the ciphertext and
the decrypted result is equivalent to the consequence of per-
forming operations on the plaintext. Homomorphic encryp-
tion does not reveal the original information during the pro-
cess of calculation. Existing homomorphic encryption al-
gorithms mainly can be divided into two categories: semi-
homomorphic encryption and fully homomorphic encryp-
tion. Semi-homomorphic encryption mainly includes multi-
plicative homomorphic encryption, like RSA algorithm and
ElGamal algorithm (ElGamal 1985), and additive homo-
morphic encryption, like Paillier algorithm (Paillier 1999).
Then, the first fully homomorphic encryption scheme is
proposed by the Gentry (Gentry 2009), and other full ho-
momorphic encryption algorithms mainly include the BGV
scheme (Brakerski, Gentry, and Vaikuntanathan 2014) GSW
scheme(Gentry, Sahai, and Waters 2013), and the CKKS
scheme (Cheon et al. 2017) that supports approximate cal-
culation of floating-point numbers, and so on. Above several
types of homomorphic encryption are introduced into verti-
cal federated learning, which can protect privacy and per-
form various operations on encrypted data.

There are many encrypted methods in VFL, i.e., HE. be-
cause privacy leakage exists in the process of vertical feder-
ated learning. Specifically, participants without label infor-
mation cannot build their machine learning models, which
prevents them from uploading models or gradient parame-
ters. As a result, they have to transmit intermediate results

containing local data, which brings the risk of privacy leak-
age. Therefore, some privacy protection methods have been
needed to ensure data security in vertical federated learning.
(Yu, Vaidya, and Jiang 2006) proposed a privacy-preserving
SVM (Support Vector Machine) classification method based
on vertically partitioned data. (Hardy et al. 2017) focuses
on vertical federated learning for linear and logistic re-
gression models based on additive homomorphism and ap-
plies more machine learning models to the VFL framework.
Then, (Gilad-Bachrach et al. 2016) adopted fully homomor-
phic encryption to protect privacy in neural network train-
ing. (Qiang et al. 2019) reduces the number of interactions
between parties in each round, thus simplifying the train-
ing steps. The communication and calculation costs of this
homomorphic encryption (HE) method are high, and poly-
nomial approximation is required to evaluate the nonlinear
function. These methods may lead to low accuracy in multi-
party scenarios, so they are not suitable for multiple parties.
Thus, (Xu, Yuan, and Xintao 2019) proposes differential pri-
vacy (DP) as a security guarantee, which can extend vertical
federated learning to multi-party participation. However, DP
still requires data to be transmitted to other places, and there
is a certain probability of privacy leakage. At the same time,
it is necessary to weigh the relationship between accuracy
and privacy.

In this paper, secure multi-party computing (SMPC) is in-
troduced into vertical federated learning. This theory mainly
focuses on collaborative computing between participants
and the protection of private information. SMPC protocol al-
lows multiple parties to perform collaborative calculations,
output the calculation results, and ensure that no one party
can get any other information except the encrypted results.
Secure multi-party computation originated from the million-
aire problem raised in the 1980s. Then, SMPC works are
divided into several categories: some of the previous works
are based on garbled circuit (Yao 1986), which are calcu-
lated by simulating complex circuits, but those are suitable
for two parties. Part of the research concentrates on secret
sharing (Shamir 1979), which mainly appropriately splits
the secret, and the secret message can be recovered only if
the split shares are combined. Secret sharing technology is a
commonly used technology in the field of secure multi-party
computing. (Keith et al. 2017) designed a novel secret shar-
ing protocol to safely aggregate data held by a large number
of users in Horizontal Federated learning. This protocol can
be extended to multi-party scenarios and can help the VFL
framework become computationally efficient.

The Proposed Approach
In order to solve the problems existing in the existing verti-
cal federated learning methods, such as the time-consuming
encryption process, and propose a vertical federated learn-
ing method suitable for multi-party participation scenarios,
this section introduces the proposed Multi-participant Verti-
cal Federated Learning based on Secret Share in detail. First,
we introduced the definition of related symbols and the prob-
lem description. Then we introduce a secret sharing strategy
that saves encryption time to replace the traditional homo-
morphic encryption method of vertical federated learning.



Definition and Problem Statement
Denoted by D = {(xi, yi|i = 1, ..., N)} N data samples,
where xi ∈ Rd×1 is distributed among M participants
P{pi|i = 1, ...,M}. In our vertical federated learning
setting, participants pM ∈ P holds the label information.
So its dataset is denoted as DpM = {xpM ; y}, and the
data set of participants pa without label information is
represented as Dpa = {xpa}(pa ∈ P ). f(·) denotes the loss
function in different machine learning methods and λ is the
hyper-parameter. Our goal is to use the data of all parties to
establish a joint machine learning model without revealing
privacy and it is formulated as

argmin
θp1 ,...θpM

L =
1

N

∑
pa∈P

f(θpa ;Dpa) +
λ

2

∑
pa∈P

‖θpa‖2 (1)

θpa is the training parameters of kth participants. f(·)in
Linear and Logistic regression respectively are:

f(θpa ;Dpa) = ‖
∑
pa∈P

θpax
pa − y‖2

f(θpa ;Dpa) = log(1 + e−y
∑
θpax

pa
)− y

∑
pa∈P

θpax
pa

(2)
To simplify the equation, we set upa = θpax

pa . The gradi-
ents of Linear and Logistic regression respectively are :

∂L
∂θpa

= 2xpa‖
∑
pa∈P

upa − y‖+ λ
∑
pa∈P

‖θpa‖

∂L
∂θpa

= xpa(y − e
∑
upa

1 + e
∑
upa

)

(3)

Set η is learning rate, each one updates their parameters:

θ
′

pa = θpa − η
∂L
∂θpa

(4)

Through the equation 3 and 4, each participant needs to ob-
tain Y =

∑
upa − y to update its own parameters in the

linear regression model. Similarly, in the logistic regression,
each participant has to obtain G = y − e

∑
upa

1+e
∑

upa to calcu-
late new parameters. In order to obtain the aggregation data
Y or G without data leakage, while ensuring the efficiency
of the algorithm, we need to explore more secure data aggre-
gation strategies. We have adopted some secure aggregation
mechanisms and conducted some explorations.

Secure Aggregation based on Secret Sharing
To ensure that private information is not leaked in data ag-
gregation, this section introduces a novel secure aggrega-
tion method, in which secret sharing means that a secret S
is split into several parts, and a part of shares can be re-
constructed into S. We rely on a secure aggregation method
(Keith et al. 2017), which extends the traditional secret shar-
ing method. This section will describe the details of this ag-
gregation method.

Suppose that the server aggregates inputs from n partici-
pants P , and each participant pa ∈ P holds a private local
data ua and transmits the input value ya to the server. The
goal of this method is to calculate the sum of ua without
disclosing local information ua.

If ua is masked in a specific way and participants transmit
masked values to server, ua can be calculated safely. To be
concrete, we assume that each pair of users (pa, pb) agrees
on one random number Spa,pb or Spb,pa (Spa,pb = Spb,pa ),
as a mask to conceal the actual value uaand ub. When a is
less than b, pa computes input ya = ua+Spa,pb before send-
ing ya to the server and pb subtracts the masked value Spb,pa
from ub. Therefore, if two input values are added, this mask
will be canceled and local data will not be exposed. In this
way, server can compute the aggregation value Y through
computing the sum of all participants’ inputs ya, which is
equal to the sum of ua (equation 5).

ya = ua +
∑

a<b;pb∈P

Sa,b −
∑

a>b;pb∈P

Sa,b

Y =
∑
pa∈P

ya =
∑
pa∈P

ua

(5)

To generate a common numberSpa,pb/pb, pa between two
participants, we adopt Diffie-Hellman key agreement (Diffie
and Hellman 1976). Suppose that server defines a group G
of prime order q, along with a generator g. The next pro-
cess is how to agree on value Spa,pb between pa and pb.
They respectively pick random numbers ska(ska < q) and
skb(skb < q) as private keys. After that, they separately
compute public keys pka = gska and pkb = gskb . Then,
they exchange their public keys. pa can compute agreement
results Spa,pb = pkskab mod q through others’ public key
and own private key. In a similar fashion, pb can calculate
Spb,pa = pkskba mod q. equation 2 proves Spa,pb = Spb,pa

Spa,pb = pkskab mod q = (gskb)ska mod q

= (gska)skb mod q = pkskba mod q

= Spb,pa

(6)

A pair of participants can safely negotiate a random num-
ber. Furthermore, to reduce communication overhead, we in-
troduce Pseudorandom Generator (PRG). PRG is an algo-
rithm to generate a ”random” string. To be more concrete,
after receiving a fixed-length seed, a PRG generator out-
puts a ”random” number of length [0,l) (l can be defined).
When any algorithms cannot distinguish this number bought
by PRG and the real random number of length [0,l), we
can judge that the PRG model can ensure the seed security.
In our method, Spa,pb represents the seed, and this masked
value is denoted as PRG(Spa,pb). If the generator receives
the same seed, their outputs are same. PRG(Spa,pb) re-
places Spa,pb as the negotiated random value of both parties.

Although the proposed secure aggregation strategy can
ensure the privacy of data and the effectiveness of VFL re-
lying on a central server, there is still a problem about how
to ensure the privacy of data and the efficiency of encrypted
aggregation methods in the serverless VFL method. As an
encryption method, secret sharing can be applied to vertical



federated learning, which can help the server calculate the
data of all parties.

Serverless Vertical Federated Learning
To explore the serverless VFL method, this section takes the
vertical federated learning of three participants as an exam-
ple. In this case, there are three participants pa, pb, pc in-
volved in this VFL model training and pc contains the la-
bel information. The goal of our method is that none of the
three parties upload local data, but participants can estab-
lish a joint model. Thus, the calculation of Y or G is the
key to success. The process of calculation is that pa and pb
adopt secret sharing method to generate their own pair of key
< ska, pka > and they exchange their public key pka, pkb
. Then, they can negotiate a random value PRG(Spa,pb)
through Diffie-Hellman key agreement. pa figures out upa ,
then sends masked value ypa = upa + PRG(Spa,pb) to
pc; pb computes upb and transmits encrypted value ypb =
upb − PRG(Spb,pa). After receiving ypa and ypb , pc com-
putes the sum of them and its own data upC . If it is in a linear
regression model, pc calculates the aggregate Y following
the equation 7. Otherwise, pc calculates the aggregation re-
sult G for logistic regression in a similar fashion. pc sends
Y or G to others;

Y =
∑

pa∈pa,pb

ypk + upc − y

= (upa + PRG(Spa,pb)) + (upb − PRG(Spb,pa))

+ upc − y
= upa + upb + upc − y

(7)

All parties update and calculate new parameters θ
′

pk accord-
ing to the equation 4.

In this case, three parties cooperate to establish a ma-
chine learning model under a vertical federated learning set-
ting. Moreover, the gradients calculated by each party are
the same as the loss they would be received without privacy
protection, so the model is lossless. Then, we have explored
how to expand the scope of use of this model.

Multi-participant Vertical Federated Learning
To extend the VFL model to multiple parties scenarios and
protect the private information in the multi-party model, we
adopt secret sharing as a privacy protection method. Suppose
that there are M participants pa in the multi-party model
training, the party pM holds the label attribute. Calculating
the sum of upa is the key to this module.

Each pair of participants (pa, pb) without label is asked
to negotiate one masking number. Each party without label
computes their own encrypted value ypa (equation 8) and
sends it to pM .

ypa = upa+
∑

pb∈P ;pb 6=pM

(
∑
a<b

PRG(Spa,pb)−
∑
a>b

PRG(Spb,pa))

(8)
pM aggregates ypa through the equation 9, which is equiv-
alent to the sum of upa . In linear regression, pM outputs
Y according to equation 5. In terms of logistic regression,
pM calculates and outputs G in the same way.
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Figure 2: Multi-participant Vertical Federated Learning

Y =
∑

pa∈P ;pa 6=pM

ypa + upM − y =
∑
pa∈P

upa − y (9)

This method can achieve vertical federated learning train-
ing. However, the efficiency of VFL models depends on the
communication and computation cost of privacy methods.
This method requires participants without label information
to interact with the remaining M − 2 participants and they
need to store others’ public key values, so this kind of key
agreement protocol will inevitably waste a lot of storage
space and time.

Therefore, this paper proposes two improvements to
this model. To begin with, participants only negotiate
with neighborhood nodes, this is, p1 agrees on parameters
with p2 and pM−1, and pM−1 adopt PRGSp1,pM−1

and
PRG(SpM−2,pM−1

) as masked value to hide upM−1
.The

other pa only interacts with pa−1 and pa+1. Every partic-
ipant without label transmits ypa (equation 10) to pM . In
this way, each participant only needs to calculate one or two
encryption values. Thus, this method can deeply improve ef-
ficiency, and as the number of participants increases, the ad-
vantages of the model become more obvious.

ypa =



up1 + PRG(Sp1,p2)− PRG(Sp1,pM−1)
pa = p1

upM−1 − PRG(SpM−1,pM−2) + PRG(SpM−1,p1)
pa = pM−1

upa − PRG(Spa,pa−1) + PRG(Spa,pa+1)
Otherwise

(10)

Besides, to reduce the communication cost, this model
can reduce the number of samples in each round of train-
ing. At the beginning of each round, a proportion of random
samples are selected, and the participants only calculate the
data of the selected sample. From a general perspective, the



Algorithm 1: MVFLS

Input: Parameter g, Batch Size b
Output: Weight Parameters θp1 , ..., θpM

1: Initialize θp1 , ..., θpM
2: for each iteration i = 1,2... do
3: . run on p1, ..., pM
4: Generate < skpa , pkpa >
5: Exchange their public key pkp1 , ..., pkpM−1

6: Select a mini-batch sample s← b
7: if a = 1 then
8: Compute ypa(upa , pkpM−1

, pkp2 ; s)
9: else if a = M-1 then

10: Compute ypa(upa , pkp1 , pkpM−2
; s)

11: else
12: Compute ypa(upa , pkpa−1

, pkpa+1
; s)

13: end if
14: Sent ypa to pM

. run on pM
15: for each pa ∈ P ∪ pa 6= pM in parallel do
16: Y ← Y + upM
17: end for
18: if Linear regression then
19: Y ← Y − y
20: else
21: Y ← y − eY

1+eY

22: end if
23: Send Y to the others

. run on p1, ..., pM
24: θpk ← θpk − η∇L(Y )
25: end for

model only uses part of the sample data for training in each
round.

The whole training process is shown in Figure 2. At first,
participants without labels generate encryption pairs( Please
see line 4 in Algorithm 1). Then, they broadcast their public
keys and calculate their sample set ( Please see line 5 and 6
in Algorithm 1). After participant computes and submit their
intermediate data ypa , pM calculates the secure aggregation
value Y or G and sends this results back ( Please see line
from 7 to 23 in Algorithm 1). Then, each one updates its
weight parameter ( Please refer to line 24 in Algorithm 1).

Security Analysis
In this section, we prove the security of our model meets in
semi-honest settings and our privacy method meets Indistin-
guishability under chosen-plaintext attack (IND-CPA) secu-
rity. In other words, we should ensure that any participants
cannot infer others’ parameters or information.

Assumption 1 Semi-honest Security: Participants follow
the instructions and requirements of the agreement, but re-
tain the data of interaction with other parties, and try to ex-
ploit these data to infer other people’s private information.

The attacker is likely to infer others’ local data xpa
through a linear function ua = θpaxpa . Therefore, to pre-
vent data leakage, each participant adds two masks to hide

Algorithm 2: Encrypted scheme Π

1: The parameter-generation algorithm Param takes as
input the security parameters 1n and run G(1n) to ob-
tain (G, q, g,Hash). G is a cyclic group of order q with
generator g and Hash is a function:{0, 1}∗ → {0, 1}n.

2: The key-generation algorithm Gen takes as input
(G, q, g). Then choose a uniform x ∈ Zp and compute
h := gx. Each party’s public key is < G, q, g, hi > and
the private key is < G, q, g, xi >

3: The agreement algorithm Agree between participants
pa and pb. pa takes as input (xa, hb). Then, compute
Sa,b := Hash((hb)

xa

mod q)

their data, and transmits encrypted values. then pM can ag-
gregate the others’ encrypted values ypa , which is equal to
the sum of their real data xpa .

Thus, mask values are the key to protecting data privacy.
If the mask value can be guessed by pM , the information
of participants can be easily calculated. If and only if mask
values PRG(Spa,pb) ”look” like random numbers, data pri-
vacy leakage can be successfully avoided. In practical appli-
cations, hash() replaces PRG() to implement the encryption
mechanism.
Theorem 1 This encryption method meets Indistinguisha-
bility under chosen-plaintext attack (IND-CPA) security.
Proof 1 We construct encrypted scheme Π (Param,
Gen, Agree) (Algorithm2) and truly random encryption
Π̃(P̃ aram, G̃en, Ãgree). There is a negligible function
negl() for PPT adversities:

|Pr
[
PseucpaA,Π = 1

]
− Pr

[
Pseucpa

A,Π̃
= 1

]
| ≤ negl(n)

(11)
We create a distinguisher D, which can differentiate pseudo-
random numbers from a uniformly random string:
• First, in the process of encryption-oracle queries oracle,

D runs A, A queries its encryption oracle() on message
m to obtain responds (R+m) and q(n) is upper bound on
the round of queries.

• Then, the challenge is that whenA outputs a pair of mes-
sage m0,m1, D chooses a random b ∈ {0, 1} and out-
puts (R+mb) to A. Note that A has access to queries
oracle continually.

• Eventually, A outputs a bit b’: D output 1 if b = b’, 0
otherwise.

There are the three parts as follows: the first part proofs that

|Prk←{0,1}n
[
DFk(·) = 1

]
− Prf←Funcn

[
Df(·) = 1

]
|

≤ negl(n)
(12)

There are two possibilities:
(1) If D′s oracle function Fk(·) generates pseudorandom
number, the view of A describes that:

Pr
[
PseucpaA,Π = 1

]
= Prk←{0,1}n

[
DFk(·) = 1

]
(13)



(2) If D′s oracle function f() creates random number ,the
view of A can note that:

Pr
[
Pseucpa

A,Π̃
= 1

]
= Prf←Funcn

[
Df(·) = 1

]
(14)

Through the function (6), we can draw a conclusion that:

|Prk←{0,1}n
[
DFk(·) = 1

]
− Prf←Funcn

[
Df(·) = 1

]
|

≤ negl(n)
(15)

The second part is proof Pr
[
Pseucpa

A,Π̃
= 1

]
= 1

2 +

negl′(n)

• The situation 1: The value is never used through encryp-
tion oracle queries and the probability of D outputting 1
is approximately half(some details in one-time pad case).

• The situation 2: The value is applies in the queries:
q(n)/2n.

Pr
[
Pseucpa

A,Π̃
= 1

]
= Pr

[
Pseucpa

A,Π̃
= 1 ∧ Situation1

]
+ Pr

[
Pseucpa

A,Π̃
= 1 ∧ Situation2

]
≤ Pr

[
Pseucpa

A,Π̃
= 1

]
+ Pr

[
Pseucpa

A,Π̃
= 1 ∧ Situation2

]
=

1

2
+
q(n)

2n

=
1

2
+ negl′(n)

(16)
Concrete security shows that:

Pr
[
PseucpaA,Π = 1

]
≤ 1

2
+ negl()

In this case, it can protect the participant information in the
semi-honest setting and this encryption method meet IND-
CPA secure. We not only analyze the security of our model
theoretically, but also conduct experiments to test the perfor-
mance of the model.

Experimental Results
To verify the effectiveness of the proposed MVFLS, we con-
duct experiments on both Linear and Logistical regression
problems on six real world datasets. The details of these
datasets are described in the following section.

Datasets
We evaluate the performance of our vertical federated learn-
ing over six datasets. Table 1 describes the information
about these datasets. For linear regression, we first evalu-
ate on Boston and California Housing datasets (Dua and
Graff 2017). Boston Housing has 379 records and 14 fea-
tures and California has 15480 samples and 9 features. We
also evaluate on Facebook Metrics dataset (Moro, Rita, and

Table 1: Properties of the Datasets

Dataset #Instances #Attributes

Boston Housing 379 14
Facebook Metrics 500 19

California Housing 15480 9
Iris 150 4

Breast cancer 426 31
Default of Credit card clients 30000 24

Vala 2016) that includes 500 records and 19 features. For lo-
gistic regression, we evaluate on Iris (Dua and Graff 2017),
Breast cancer and Default of Credit card clients (Yeh and
Lien 2009). Breast cancer has 150 samples, and 4 features
and Breast cancer has 426 records and 31 features, and De-
fault of Credit card clients includes 30000 samples and 24
features.

Comparison Baselines
We compare our method with state-of-the-art approaches:

VFLYang (Qiang et al. 2019): This method is applied in
the VFL for a linear regression model, using Paillier homo-
morphic encryption for privacy protection. We set only two
participants in this model.

VFLHardy (Hardy et al. 2017): It is applied in the VFL
for a logistic regression model, adopting Paillier homomor-
phic encryption for privacy protection, and the Taylor ap-
proximation formula is substituted for gradient and Loss
function. There are only two participants in this module.

VFLXu (Xu, Yuan, and Xintao 2019): This applies dif-
ferent privacy to protect the privacy of the participants. Fur-
thermore, the participants add some noisy to hide the local
data during the process of the transmission.

Our model is MVFLS-q, where q means the number
of participants (If not specified, MVFLS has three partici-
pants). In the VFLXu model, ε is the privacy parameter. And
we change the sample batch size, a% means every partic-
ipant only transmits and computes a% data in each round.
We replicate the experiment 20 times and report the averag-
ing results.

Evaluation Metrics
We compare the performance of different VFL models using
the following metrics:
Time: The total running time of the VFL model is used to
evaluate the efficiency of each method.
MSE: MSE (Mean Squared Error) is used to measure the
distances between reconstructed data and original data.
Accuracy: The accuracy indicates the proportion of the
number of samples correctly classified by the model.
AUC: The AUC( Area Under Curve ) on the testing set is
used for performance evaluation, which can distinguish the
performance of the classifier.

Result
This section mainly describes the performance and the eval-
uation of MVFLS. Firstly, we evaluate the utility of linear



Table 2: Comparison of time cost on three benchmark datasets for Linear Regression.

VFLYang MVFLS-3 MVFLS-4 MVFLS-5

Boston Housing 20162.06s ± 578.13s 29.46s ± 3.16s 47.82s ± 1.12s 59.01s ±12.70s
California Housing 93491.53s ± 889.43s 37.85s ± 1.20s 47.50s ± 0.53s 57.92s ± 2.14s
Facebook Metric 43825.58s ± 431.02s 45.50s ± 2.72s 50.23s ± 3.54s 60.43s ± 0.46s

Table 3: Comparison of mean-square error on three benchmark datasets for Linear Regression.

VFLYang VFLXu(ε=0.1) VFLXu(ε=0.5) VFLXu(ε=1) MVFLS-3
Boston Housing 10.089 ± 0.116 54.580 ± 6.354 26.814 ± 5.348 16.672 ± 0.203 10.090 ± 0.431

California Housing 0.250 ± 0.136 0.249 ± 0.271 0.248 ± 0.114 0.246 ± 0.102 0.236 ± 0.228
Facebook Metric 0.627 ± 0.354 9.039 ± 1.175 1.565 ± 0.392 1.306 ± 0.011 0.629 ± 0.048
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Figure 3: Classification accuracy of logistic regression on
Cancer and Iris dataset

regression by training time and MSE (Mean Squared Error)
in Table 2 and 3. Secondly, we compare our model with clas-
sical models for Logistic regression in terms of training time
(Table 4), accuracy, and AUC (Area Under Curve) (Figure
3(a) to 4(b)). Finally, this experiment testes the model with
different samples in every round. The result is shown in from
Figure 5(a) to 5(c).

Experimental Results on Linear Regression Task For
Linear regression, we record the training time on four meth-
ods in Table 2. MVFLS-3 always achieves the fastest train-
ing rate compared to others. MVFLS-4 and MVFLS-5 take
twice or third times as MVFLS-3 to train. With the par-
ticipants involved, the running time is inevitably improved.
All of our three methods are more efficient than the tradi-
tional method. For comparison, the time cost of MVFLS-3
is 101–2470× faster than traditional VFL. Especially when
it runs on larger data set California Housing, Our module
achieves significantly faster than the best performing base-
line by 2470 times.

Table 3 compares the MSE among different methods. In
terms of MSE, our model is almost the same as VFLY-
ang, which means our model maintains the accuracy of the
model. The MSE of VFLXu varies with the change of the
privacy parameter ε. As ε decreases, the added noise value
increases, resulting in lower MSE. Overall, MVFLS has a
higher accuracy rate than VFLXu. It can be seen from the
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Figure 4: AUC of logistic regression on Cancer and Iris
dataset

two tables that the model we designed has a good perfor-
mance in both computational efficiency and MSE.

Experimental Results on Logistic Regression Task Ta-
ble 4 records the running time of MVFLS and VFLHardy for
logistic regression. The results are similar to that of time cost
for linear regression. The time cost of the VFLHardy model
is much higher than that of the other models. For compari-
son, the time cost of VFLHardy is 391–3059× as MVFLS-3.
For MVFLS with different participants, the training time of
the model will be longer with participants’ increase, but they
are far less than VFLHardy. It can be concluded that com-
pared with VFLHardy, MVFLS model can improve compu-
tation efficiency and show better model performance.

In the figures 3(a) and 3(b), experiments compare our
model with VFLHardy and VFLXu through the accuracy
metric on Iris and breast cancer datasets. On the cancer
data set (as shown in Figure 3(a)), when the accuracy of
our model finally reached 95% and this result was slightly
higher than that of VFLXu, the accuracy of VFLHardy was
only 63%. Therefore, MVFLS has certain advantages in the
cancer data set. In the figure 3(b) , the accuracy of this model
reached about 90%, while VFLHardy can only reach about
70% on Iris data set. And, when privacy parameter ε is equal
to 1, the accuracy of VFLXu finally reaches 86%. As ε de-
creases, the accuracy rate decreases and fluctuates sharply.



Table 4: Comparison of time cost on three banchmark datasets for Logistic Regression

VFLHardy MVFLS-3 MVFLS-4 MVFLS-5

Iris 3912.35s ± 282.04s 10.89s ± 2.05s 43.78s ± 7.97s
Breast Cancer 22414.47s ± 869.70s 20.19s ± 1.50s 45.54s ± 2.01s 58.87s ± 1.19s

Default of Credit card clients 183554.60s ± 551.72s 59.99s ± 2.80s 104.73s ± 13.76s 258.84s ± 72.1s
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Figure 5: Sensitivity study results on batch size

In terms of Figure 4(a) and 4(b), we compare the perfor-
mance of different models according to the AUC metric. On
the breast cancer data set, the growth trend of the AUC in
our model is similar to that of VFLXu, both of which are
higher than that of VFLHardy. On the Iris data set, AUC
in our model has the fastest and most stable growth. The
AUC trend of VFLHardy is slightly slower than our model,
and that of VFLXu with ε = 1 is similar to MVFLS model.
When the ε becomes smaller, AUC goes up more slowly with
more sharply fluctuation.

Sensitivity Study on batch size To further reduce the
communication cost, this experiment reduces the size of
transmitted data. Generally speaking, participants in each
round randomly select a certain percentage of samples to
participate in every round during vertical federal learning
training, and we test our model with 20% 50% 70% 80% of
random samples in one round. The experimental results are
shown from Figure 5(a) to Figure 5(c).

On the Boston Housing dataset, each participant transmits
information about 20/50/70/80/ percentage of samples in
one round. It can be seen from the figure 5(a) that when only
20% of the samples are trained in one round, the loss func-
tion value is slightly larger than the full data set training and
the results of others are similar to the full data set sample
training results. The experiment 5(b) compares the changes
in the different sizes of transmitted random samples on the
Breast cancer data set. When 80% of the data is involved
in the training, the result is similar to the full data set train-
ing. In Figure 5(c), the result of 80% of the samples in one
round training is closest to the result of the lossless data set.
The model trained with 20% of the samples has the lowest
accuracy and the worst performance. As the size of train-
ing samples decreases, the accuracy grows slowly and model

performance will continue to decline.
If each participant appropriately reduces the amount of

transmitted sample data, it can deeply reduce communica-
tion costs.

Conclusion
This paper proposed a Multi-participant Vertical Federated
Learning based on Secret Sharing model (MVFLS). This
method uses secret sharing to solve the problem of privacy
protection in VFL settings, which has lower communica-
tion and higher calculation efficiency of the privacy protec-
tion compared to existing vertical federated learning meth-
ods based on HE. In addition, to simplify the model and re-
duce the amount of communication, we introduced a method
without a third-party server, which further improves the per-
formance of the model under VFL. Experiments on Linear
and logistical regression problems demonstrate the superior-
ity of MVFLS over other state-of-the-art methods. Though
MVFLS has shown promising results for vertical federated
learning problems, our privacy method has lower security
than HE. In our future work, we will focus on this direction.
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Konečnỳ, J.; McMahan, H. B.; Ramage, D.; and Richtárik,
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