
Server-Side Local Gradient Averaging and Learning Rate Acceleration for
Scalable Split Learning

∗Shraman Pal1, ∗Mansi Uniyal1, Jihong Park 2,4, Praneeth Vepakomma 3,
Ramesh Raskar 3, Mehdi Bennis 5, Moongu Jeon 4, Jinho Choi 2

1IIT Kharagpur, India, 2Deakin University, Australia, 3MIT Media Lab, USA, 4GIST, Korea, 4University of Oulu, Finland
shramanpal@iitkgp.ac.in, mansinumber1@iitkgp.ac.in, jihong.park@{deakin.edu.au, gist.ac.kr}, vepakom@mit.edu,

raskar@mit.edu, mehdi.bennis@oulu.fi, mgjeon@gist.ac.kr, jinho.choi@deakin.edu.au
∗Equal contribution

Abstract

In recent years, there have been great advances in the field
of decentralized learning with private data. Federated learn-
ing (FL) and split learning (SL) are two spearheads possess-
ing their pros and cons, and are suited for many user clients
and large models, respectively. To enjoy both benefits, hy-
brid approaches such as SplitFed have emerged of late, yet
their fundamentals have still been illusive. In this work, we
first identify the fundamental bottlenecks of SL, and thereby
propose a scalable SL framework, coined SGLR. The server
under SGLR broadcasts a common gradient averaged at the
split-layer, emulating FL without any additional communica-
tion across clients as opposed to SplitFed. Meanwhile, SGLR
splits the learning rate into its server-side and client-side
rates, and separately adjusts them to support many clients in
parallel. Simulation results corroborate that SGLR achieves
higher accuracy than other baseline SL methods including
SplitFed, which is even on par with FL consuming higher
energy and communication costs. As a secondary result, we
observe greater reduction in leakage of sensitive information
via mutual information using SLGR over the baselines.

1 Introduction
The recent trend in deep learning has seen exponential
growth in terms of architecture sizes Alom et al. (2018). In
the computer vision domain, the model sizes over the years
have grown larger, as observed in the transition from ResNet
and VGG (He et al. 2015; Simonyan and Zisserman 2015) to
Inception and DenseNet (Szegedy et al. 2015; Huang et al.
2018). In the field of natural language processing the growth
is even more drastic; with introduction of transformer mod-
els like BERT (Devlin et al. 2019) that have crossed the 100
million parameter mark; and finally reaching Open AI’s re-
cent GPT-3 (Brown et al. 2020) standing at staggering 175
billion parameters. The prerequisites for running these large
models are huge training data and computing power, making
them still limited to a select few.

Fortunately for such large models, the current trend in
data volume and computing power keeps exponentially in-
creasing in both. Nonetheless, the majority of these data
and computing power are sourced from mobile edge devices

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

like smartphones, IoT, and e-health wearables, so are inher-
ently dispersed and often privacy-sensitive (Park et al. 2019;
Smith et al. 2018). Towards exploiting the indispensable pri-
vate data and mobile computing power, recent advances in
distributed learning have opened new avenues notably in the
form of federated learning (FL) (McMahan et al. 2016) and
split learning (SL) (Vepakomma et al. 2018).

In FL, edge devices or clients independently train their lo-
cal models, while periodically sharing their local model pa-
rameters through a parameter server (McMahan et al. 2016).
Consequently, keeping data private, FL can leverage the par-
allel computing power and global data of clients. However,
FL right off the bat removes the chance of using large mod-
els, as edge devices cannot store and communicate them due
to the strain on memory, bandwidth, and energy (Park et al.
2021). Alternatively, SL copes with large models by split-
ting the models into a shared upper segment and distributed
lower segments that are respectively stored at the server and
clients, respectively. At the split layer or cut layer, in the for-
ward propagation, each client uploads its final hidden repre-
sentations, so-called smashed data, and downloads its gra-
dient from the server in the backward propagation, thereby
keeping local data private.

Notwithstanding, SL has difficulty in achieving scalabil-
ity, in contrast with FL where the accuracy increases with
the number of clients (Zhang, Wei, and Berry 2021). As
shown by Fig. 1, the original SL algorithm, vanilla SL or
hereafter referred to as sequential SL (SSL), limits the server
to supporting clients one by one after each local training
completes. Therefore, SSL requires tight pipelining across
clients and fails to leverage parallel computing power. By
simply allowing multiple client associations per batch, SSL
can easily be extended to its parallel version, termed par-
allel SL (PSL), which however entails a fundamental issue
on the server-client update imbalance as elaborated in the
following two problems.
1. Server-Side Large Effective Batch Problem: The

server model is updated multiple times per each client
model update, resulting in a larger effective batch size
(i.e., batch size multiplied by the number of clients, when
each client has the same batch size) at the server than that
of each client (i.e., batch size).

2. Backward Client Decoupling Problem: Other clients’
impacts are only reflected in the forward propagation

SGLR

Se
rv
er

Cl
ien

t

client2
Sequential SL Parallel SL

client1 client1 client2 client2
SFL

client1 client2client1

SplitLr

SplitAvg

FedAvg

Figure 1: Schematic illustration of SSL, PSL, SFL, and the proposed SGLR with a split-layer gradient averaging (SplitAvg)
and learning rate splitting (SplitLr), where the shaded area widths represent learning rates. The dotted lines and the solid lines
imply forward and backward propagation flows respectively.

flows when smashed data pass through the server model,
whereas the backward propagation flows across clients
are decoupled with each other as illustrated in Fig. 1.

A recently proposed SplitFed learning (SFL) algorithm ad-
dresses the client decoupling problem by additionally apply-
ing FL across client models (Thapa et al. 2021). However,
the effectiveness of SFL comes at the cost of large commu-
nication overhead, and what is more the server-side effective
batch size problem remains unsolved.

To fill the aforementioned void, in this article we propose
a novel PSL framework, coined split learning with a gra-
dient averaging and learning rate splitting (SGLR). At its
core, SGLR aims to address the server-side effective batch
size problem, by separating the learning rate into two parts,
and accelerating the server model’s learning rate, i.e., learn-
ing rate splitting (SplitLr), inspired by the techniques for
large batch training (Smith et al. 2018), (Goyal et al. 2018).

Next, for the client decoupling problem, SGLR broad-
casts the common gradient averaged at the cut-layer from
the server to all clients, i.e., split-layer gradient averaging
(SplitAvg), rather than unicasting a unique gradient to each
client. As opposed to SFL, the gradient averaging of Spli-
tAvg is taken at the server, not incurring any additional com-
munication cost. Even compared to PSL that relies on gra-
dient unicasting through orthogonal bandwidth allocations,
SplitAvg leverages broadcasting over the entire bandwidth,
making SGLR more communication efficient and scalable
particularly under limited bandwidth.

Contributions & Organization The major contributions
of this work are outlined as follows.

• Motivated by the server-side large effective batch prob-
lem, we propose SplitLr so as to separately accelerate the
learning rate at the server (see Sec. 3.1).

• Inspired by SFL while identifying its non-negligible
communication overhead and possible information leak-
age incurred by model averaging across clients, we de-
velop SplitAvg in which the server broadcasts (or multi-
casts) averaged gradients to clients without incurring any
additional communication overhead (see Sec. 3.2).

• Combining SplitLr and SplitAvg, we finally propose
SGLR (see Algorithm 1). Simulation results corroborate

the effectiveness of SGLR in terms of accuracy scalabil-
ity, information leakage, and communication efficiency
(see Sec. 4.2, 4.3, and 4.4, respectively).

The rest of this article is organized as follows. In Sec. 2,
details existing works are summarized to identify the server-
client weight imbalance problem. In Sec. 3, the operations of
SGLR are described by elaborating the procedures of Spli-
tAvg and SplitLr algorithms. In Sec. 4, the effectiveness of
SGLR is validated by simulation and comparison with other
baseline frameworks such as centralized learning (CL), FL,
sequential/parallel SL, and SFL. Finally, we conclude this
article by discussing several future research directions in
Sec. 5.

2 Preliminaries: FL, SL, and SFL
Federated learning (McMahan et al. 2016) and Split learn-
ing (Gupta and Raskar 2018), (Vepakomma et al. 2018)
are two new frameworks that allow training a model effec-
tively from various distributed data sources without shar-
ing the raw data. The device that possesses the data is usu-
ally termed as the client while the generally computationally
powerful device is termed as the server which could have
multiple functions based on the framework considered. In
all the frameworks, there exist a set of clients C, where each
i-th client has their data Di and model weights wi stored
locally. D =

⋃
i∈C Di represents the total data.

We represent the model weights of the i-th client as,
wc,i = [wLc

c,i , w
Lc−1
c,i , ..., w1

c,i]
T where Lc is the cut layer.

The shared server model for SL frameworks is denoted by
ws = [wLs , w

L−1
s , ..., wLc+1

s]T where L is the output layer.
In the next subsections, we outline existing frameworks to
highlight the benefits and limitations of each method on dif-
ferent aspects of latency, model performance and communi-
cation efficiency.

2.1 Sequential Split Learning (SSL)
In SSL, also called vanilla SL, (Vepakomma et al. 2018),
(Gupta and Raskar 2018), a lower model segment, not nec-
essarily the same, is present in multiple clients and an upper
model segment is present on a shared server. During train-
ing, clients are sequentially selected. The selected i-th client

selects a mini batch Bi ∈ Di which consists of |Bi| input-
label tuples (xi,j , yi,j) from its local data. The i-th client
produces |Bi| smashed data si,j = f(wc,i, xi,j) by passing
the j-th input data xi,j through it for all j ∈ Bi.

The client uploads the smashed data-label tuples to
the server which produces the final predictions y′i,j =
f(ws, si,j). The loss for the batch is denoted asL(wc,i, ws).
The optimisation objective therefore simply becomes
minwc,i,ws{L(wc,i,ws)}.
Gradients Using the evaluated loss, the server calculates
the gradients and backpropagates(BP) for its model layers:

gSSL
s =

 gLs
gL−1s
...

gLc+1
s

 =

∇wL

s
L(ws,wc,i)
BP(gLs)
...

BP(gLc+2
s)

 . (1)

The server sends the gradient of the cut layer gLc+1
s to the

i-th client. Then the i-th client generates the gradient for its
own model segment:

gSSL
c,i =

gLc
c,i

gLc−1
c,i

...
g1c,i

 =

BP(gLc+1

s)

BP(gLc
c,i)

...
BP(g2c,i)

 . (2)

Weight Updates The weight updates for both the client
and the server thereafter can be written in a compact form
as: [

ws

wc,i

]
←
[
ws

wc,i

]
− η

[
gSSL
s

gSSL
c,i

]
. (3)

After that the lower model segment wc,i is sent to the (i+1)-
th client wc,i+1 ← wc,i where (i+ 1) ∈ C \ {i}. Thereafter
the i+1-th client continues with its local iterations.

Benefits and Limitations SSL can achieve high accuracy
as the shared server benefits from multiple local datasets
making it robust. Also due to the lower model weight shar-
ing, there is information sharing between the clients directly
as well. The latency, however, increases linearly with the in-
crease in the number of clients which is a huge drawback as
it fails to capture the potential of parallel computing which
motivates the use of PSL.

2.2 Parallel Split Learning (PSL)
In PSL, the server and clients are the same as in SSL but all
clients are connected to the server simultaneously. All the
clients run their forward passes in parallel and upload their
smashed data to the server together. The server generates
a loss L(wc,i,ws) corresponding to each client’s smashed
data in parallel.

Gradients Then the server computes the gradients for its
layers by weighing the individual losses according to the
size of the data of each client. The gradient for each layer
of the server is cast as:

gPSL
s = Σi∈Cδi

gLs,i
gL−1s,i

· · ·
gLc+1
s,i

 = Σi∈Cδi

gLs,i

BP(gLs,i)
· · ·

BP(gLc+2
s,i)

 , (4)

where δi = |Di|
|D| . The local gradients are sent to the corre-

sponding clients with which the clients calculate the gradi-
ents for the layers of its own model. The client-side gradient
is given as:

gPSL
c,i =

gLc
c,i

gLc−1
c,i

...
g1c,i

 =

BP(gLc+1

s,i)

BP(gLc
c,i)

...
BP(g2c,i)

 . (5)

Note that while the feed-forward flows propagate in parallel,
the backward flows propagate sequentially.

Weight Updates (3) The weight update for PSL remains
the same as (3) of SSL, i,e.,[

ws

wc,i

]
←
[
ws

wc,i

]
− η

[
gPSL
s

gPSL
c,i

]
. (6)

It is worth noting that SSL is a special case of PSL where
δi = 0 and the rest are 0. In this case only the i-th client
is given importance for the backward pass and essentially
neglecting the rest.

Benefits and Limitations PSL achieves lower latency
than SSL as the forward pass happens in parallel utilising
the parallel computing of edge devices. However, the per-
formance falls below SSL due to the server-client update
imbalance problem. The client’s local gradient is dependent
only on a single batch of input data while, unlike SSL, the
server’s gradient depends on multiple batches. The multiple
batches at the server also lead to a high effective batch size.
Also as the clients only utilise their local gradient, the clients
get detached during the backward pass, which we term as the
backward client decoupling problem. We elaborate on these
in the later sections.

2.3 Federated Learning (FL)
In FL or specifically FedAvg, every client runs an exact copy
of the entire model on its own local data where each client i
focuses on the local optimization task minwc,i

{L(wc,i). The
server in this framework only acts as an aggregator. It re-
ceives the local model weights from each client and takes
a weighted mean (FedAvg) to get the global weights. These
global weights are downloaded by every client. The clients
resume training using these global weights. This process
continues till convergence. Only FedAvg has been consid-
ered as it is the closest comparison to our work.

Gradients FL does not consider model-split architectures,
and the server does not train any models. Therefore there are
no gradients at the server side. The gradients at the client
side are given as

gFL
c,i =

gLc,i
gL−1c,i

· · ·
g1c,i

 =

∇wL

c,i
L(wc,i)

BP(gLc,i)
· · ·

BP(g2c,i)

 . (7)

Note again that each client under FL stores L layers, i.e.,
an entire model. This is in contrast to the client under SL
storing Lc layers while the server stores the remaining L −
Lc layers.

Weight Updates The weight update using these gradients
can be written in a compact form as:

wc,i ← Σk∈Cδk{wc,k − ηgFL
c,k}. (8)

In other words, once each client has updated its local weights
wc,i, they upload it to the server which averages them. Af-
terwards, the clients download the averaged weights and as-
signs them to their local weights for the next iteration.

Benefits and Limitations FL achieves high accuracy,
comparable to CL while maintaining a low latency due to its
parallel computing clients. With small models, the commu-
nication overhead is low as well. However, with larger mod-
els, not only would we require powerful devices with large
storage capacity but it would also result in large communi-
cation overhead. Such computationally powerful devices are
infeasible when we consider edge devices as clients.

2.4 Split Federated Learning (SFL)
SFL (Thapa et al. 2021) combine FL and SL by averaging
the model weights after updating the weights similar to FL
but only limited to the lower model segments stored on the
clients. Local Model Weight Averaging or LocAvg is used to
solve the backward client decoupling problem. The forward
pass, the loss L(wc,i,ws) computation at the server-side,
and the backward pass remains the same as PSL. The extra
step is to average the client model weights in a layer-wise
fashion.

Gradients Similar to PSL, the server gradient remains the
same gSFL

s = gPSL
s . The client gradients can be written equiv-

alently as a weighted sum of all the gradients instead of a
weighted sum of the weights. Accordingly, the client gradi-
ents are cast as:

gSFL
c,i = Σk∈Cδk

gLc

c,k

gLc−1
c,k

...
g1c,k

 = Σk∈Cδk

BP(gLc+1

s,k)

BP(gLc

c,k)
· · ·

BP(g2c,k)

 . (9)

We emphasize that the actual framework, averages the
weights but as long as the weight averaging happens after
each client weight update, they can be written as a weight
update with averaged gradients.

Weight Updates The weight updates of SFL can be sim-
plified and written in a similar form of (3) as follows:[

ws

wc,i

]
←
[
ws

wc,i

]
− η

[
gSFL
s

gSFL
c,i

]
. (10)

Note here that the averaging comes after completing the
backpropagation across all the layers.

Benefits and Limitations SFL keeps the latency improve-
ment of PSL by running computations in parallel. By em-
ploying the idea of FL, specifically LocAvg, it solves the
backward client decoupling problem by sharing direct in-
formation across the clients. However, this leads to a larger
communication overhead than either PSL or FL. Not to men-
tion that the large effective batch size problem at the server
remains unattended. In the next section, we aim to tackle all
the problems using our proposed novel framework.

3 SGLR: PSL with Split-Layer Gradient
Averaging and Learning Rate Splitting

We utilise ideas from existing learning rate acceleration
work (Goyal et al. 2018), (Krizhevsky 2014), to derive a new
scaling rule that works on the notion of effective batch size
at the server-side and we call it SplitLr. We also derive ideas
from FL to adopt a new method to average gradients only
at the cut layer, called SplitAvg to solve the backward pass
decoupling problem.

The forward pass at the clients is the same as PSL. As the
server concatenates the smashed data along the batch dimen-
sion, it increases the effective batch size at the server which
denotes how many samples pass through the server in one
forward pass. The effective batch size at the server increases
linearly with the number of clients. The concatenated batch
at the server denoted by Bs has an effective batch size of

|Bs| = Σi∈C |Bi|, (11)

where Bi denotes the batch for the i-th client as used before.
Following the forward pass through the server, we obtain

one loss valueL(wc,i,wc,2, ...,wc,|C|,ws) for all the clients
combined unlike PSL which generated a loss value for each
client. The single loss value is used to generate the gradients
of the server layers and the local gradients of the clients.
Next, we sample a subset of clients and term them active
clients whose local gradients are averaged which we term as
SplitAvg. This averaged gradient is substituted for the local
gradient of the active clients and the remaining clients utilise
their corresponding local gradients.

This tackles the backward pass decoupling problem as
the averaged gradient now contains information of multi-
ple clients. This allows information to flow from one client
to another indirectly without requiring the communication
of client model weights. This framework results in a scal-
able system with less communication overhead than any SL
framework. We present the two algorithms SplitLr and Spli-
tAvg in the next two subsections along with detailed gradient
calculation and weight updates.

3.1 SplitLr: Learning Rate Splitting
In the existing literature, there are several learning rate
schemes based on the batch size (Goyal et al. 2018),
(Krizhevsky 2014) which outperform the baseline. They
show that for optimizers like Stochastic Gradient Descent
(SGD) a linear scaling rule η = η0|B〉| is useful whereas
for optimizers like Adam a square root scaling rate η =
η0(|B〉|)0.5 achieves better performance. We do not use dif-
ferent batch sizes at the client side but as shown in (11), the
effective batch size in the server is different. Therefore we
use the learning rate scaling only for the server-side model.

The utilisation of a different learning rate scheme for a
segment of the model is new, which forces us to assume a
generic scaling rule and perform experimental simulations
to identify the optimal scaling rule. The learning rate scaling
rule can be reduced a power-law model:

ηs = η0|Bs|α. (12)

The hyperparameter α is iterated with values ranging from
0.0 to 2.0 with a step size of 0.5. The case of α = 0.0 is the
setting of no SplitLr.

We extend the equation further to include a special case
where each client has the same batch size |Bi| = b which
simplifies |Bs| = b|C| and the learning rate scheme be-
comes:

ηs = η0(b|C|)α = ηc(|C|)α, (13)

where ηc = η0b
α as b is a constant and can be merged into

η0. This equation shows scaling that is proportional to the
number of clients rather than the batch size at the client side.
We utilise this equation for our simulation runs. By combin-
ing PSL with SplitLr, we name the framework as SLR.

The gradient at the server side and client side for SLR is
the same as (4) and (5). Therefore gSLR

s = gPSL
s and gSLR

c,i =

gPSL
c,i . The modification lies in the weight update step where

it becomes: [
ws

wc,i

]
←
[
ws

wc,i

]
−
[
ηsg

SLR
s

ηcg
SLR
c,i

]
. (14)

3.2 SplitAvg: Split Layer Gradient Averaging
Unlike SFL, which averages model weights, we aggregate
the local gradients of a subset of clients and term it Spli-
tAvg. Averaging the gradients decreases the communication
overhead compared to any SL framework. The accuracy also
increases as we present in Tab. 4. The averaging of the local
gradients allows the subset of participating clients to share
some information in the form of gradients throughout the
training which tackles the backward client decoupling prob-
lem. By combining PSL with SplitAvg We name this frame-
work as SGL.

The gradients for the server remain as PSL in (4) and can
be simply stated as gSGL

s = gPSL
s but the gradients of the

client models are different. For the active clients denoted by
Ca = φC where φ denotes the fraction of total clients which
are active, the client-side gradients are given by:

gSGLc,i,a =

gLc
c,i,a

gLc−1
c,i,a

...
g1c,i,a

 =

BP(Σk∈Cag

Lc+1
s,k)

BP(gLc
c,i,a)
...

BP(g2c,i,a)

 , (15)

where subscript a identifies the client activation, and the i-
th client belongs to the set of active clients Ca. For clients
which are not active have the same gradients as in PSL with
(5). Their gradients gSGL

c,i = gPSL
c,i as they are equal.

The weight update for the active clients utilise this av-
eraged gradient while the rest use the corresponding local
gradients: [

ws

wc,i,a

wc,i

]
←

[
ws

wc,i,a

wc,i

]
− η

gSGL
s

gSGL
c,i,a

gSGL
c,i

 . (16)

It is worth noting that in SFL the averaging occurs after the
total backpropagation has taken place while in SGL the gra-
dient is averaged before the backpropagation at the client-
side takes place.

Taking the fraction φ = 1.0 can lead to the training not
converging as we show in the results section. Therefore we
also use a phased training strategy that utilises the averaged
gradient for a certain phase before switching to the local
gradients completely or vice-versa. SplitAvg also acts as an
inherent regularizer which helps prevent over-fitting. In the
Fig. 4 we can observe that as we increase the fraction of
clients which participate in the local gradient averaging, the
edges or the activation of the image become less sharp i.e
the model becomes more robust capable of classifying un-
seen images better.

3.3 SGLR: PSL with SplitLr & SplitAvg
The two algorithms combined give the final framework
SGLR. The SplitLr method addresses the large effective
batch size problem while the SplitAvg addresses the back-
ward decoupling problem. The final weight update by com-
bining both the methods is given as:[

ws

wc,i,a

wc,i

]
←

[
ws

wc,i,a

wc,i

]
−

ηsgSGL
s

ηcg
SGL
c,i,a

ηcg
SGL
c,i

 . (17)

Here, the i-th client is not active for all iterations.
The crux of our changes has only been in the gradients

of the clients and the learning rates schemes at the server.
The performance improvement of our method over the other
existing works barring FL as shown in Tab. 4, highlights the
problem of backward decoupling existing in SL. It might
be interesting to note that it is quite possible that averaging
only a subset of client model weights in SFL might lead to
higher performance. The detailed algorithm combining both
the methods has been outlined in 1.

The next section presents our experimental results in
terms of accuracy, information leakage, and communication
efficiency.

4 Simulation Results
This section contains the results for the different runs we
perform with our architecture. The section validates that our
architecture and training strategies are scalable while main-
taining a very low computational and memory requirement.

4.1 Experimental Settings
The default setting for all the experiments in this section is
using a Resnet16 architecture where the first 9 layers are
stored on each of the client devices and the last 7 layers
are stored on the server. The division has been done keep-
ing in mind that the later layers have a much larger num-
ber of channels and require larger memory which is suit-
able for the server. We conduct our runs on the Fashion
MNIST dataset (Xiao, Rasul, and Vollgraf 2017) which con-
tains 60000 training images and 10000 test images.

We separate 10000 images for the validation set from the
training set such that it is i.i.d in nature. Each client pos-
sesses 1000 i.i.d samples which are randomized on each run.
We use Adam (Kingma and Ba 2017) with a client learning
rate of 10−3 and default momentum values of β1 = 0.9,
β2 = 0.999 as our optimizer and vary the server learning

Algorithm 1: SGLR: Parallel SL with SplitLr & SplitAvg

1: SplitLr
2: ηc = η0 {Client Lr}
3: ηs = η0C

α {Server Lr}

4: for epoch← (0− E) do
5: /*Runs on clients*/
6: for each client i ∈ C in parallel do
7: si ← f(wc,i,Bi)
8: Upload: (si, Yi) from clienti to server
9: end for

10: /*Runs on server*/
11: s← [s1, s2, · · · , s|C|]
12: Y ← [Y1, Y2, · · · , Y|C|]
13: Yp ← f(ws, s)
14: Calculate loss L(wc,1, · · · ,wc,|C|,ws)

15: Calculate gradient gSGLR
s

16: Weight Update ws ← ws − ηsgSGLR
s

17: SplitAvg
18: Ca ← φC {Sampled active clients}
19: Download average gradient Σk∈Cag

Lc+1
s,k

20: Download local gradient gLc+1
s,k for k ∈ C \ Ca

21: /*Runs on clients*/
22: for each client i ∈ C in parallel do
23: if i ∈ Ca then
24: Calculate gradient gSGLR

c,i,a

25: Weight Update wc,i ← wc,i − ηcgSGLR
c,i,a

26: else
27: Calculate gradient gSGLR

c,i

28: Weight Update wc,i ← wc,i − ηcgSGLR
c,i

29: end if
30: end for
31: end for

rate according to the SplitLr setting. We utilise a batch size
of 8 taking into consideration that edge devices do not pos-
sess much RAM. Having laid down the basic settings of our
experimental runs we move to the actual results.

4.2 Accuracy Scalability
As the number of clients increases, we present the top-1 ac-
curacy across different settings, where the baseline is when
no algorithm, SplitAvg or SplitLr, is used. We look at the
individual impact of SplitLr and SplitAvg before observing
how combining the two algorithms performs.

Impact of SplitLr The SplitLr algorithm aims to utilise
the large effective batch size at the server to its advantage.
The use of SplitLr improves on the results providing higher
accuracy across the board leading to nearly a 1.5% increase
for 20 clients. The results for learning rate splitting have
been shown in Tab. 1. As observed in Tab. 1, large values of
α do well only for the small number of clients while smaller
values perform well for a large number of clients. This is

Figure 2: Accuracy convergence with varied learning rate
power for 6 worker clients.

Figure 3: Convergence Analysis for different settings of
SplitAvg. Final scores are higher than baseline (φ = 0.0)
as well as the score at any given point of training.

quite understandable as (Kingma and Ba 2017) states that
Adam is quite sensitive to learning rate and too large values
often leads to instability. As an example using α close to 2.0,
for 20 clients, the learning rate becomes 400 times larger.
For a client learning rate of 10−3, the server learning rate
becomes 0.4 which is very large for Adam and is not used
in the existing literature. Therefore for large clients, we sug-
gest using smaller values of α while for a smaller number of
clients larger values can be utilised.

C w.o. SplitLr SplitLr
α=2.0 α=1.5 α=1.0 α=0.5

1 82.45 82.45 82.45 82.45 82.45
2 82.04 82.11 82.00 81.68 81.76
4 82.68 82.14 83.42 82.93 82.46
6 82.84 83.56 84.21 84.58 83.30
8 83.49 58.41 83.87 84.52 84.23
10 83.49 34.37 84.21 84.98 84.78
15 84.34 - 84.08 85.79 85.30
20 84.88 - - 86.00 86.25

Table 1: Top-1 accuracy for different SplitLr settings. Lower
values of α perform better as the number of clients increase.

Impact of SplitAvg The SplitAvg algorithm solves the
backward client decoupling problem. We provide results for
a fraction φ of 0.25, 0.50 and 0.75. As observed in the Tab.
2, using SplitAvg outperforms the baseline. For 20 clients,

C Constant learning rate SplitLr α = 0.5 SplitLr α = 1.0

w.o. SplitAvg SplitAvg w.o. SplitAvg SplitAvg w.o. SplitAvg SplitAvg
φ=0.25 φ=0.5 φ=0.75 φ=0.25 φ=0.5 φ=0.75 φ=0.25 φ=0.5 φ=0.75

1 82.45 82.45 82.45 82.45 82.45 82.45 82.45 82.45 82.45 82.45 82.45 82.45
2 82.04 81.91 81.84 81.94 81.76 81.88 81.93 81.92 81.68 81.95 82.10 81.72
4 82.68 82.90 83.16 83.81 82.46 82.78 83.24 84.22 82.93 83.30 83.66 84.45
6 82.84 83.20 84.02 84.08 83.30 83.06 84.89 84.62 84.28 83.70 84.32 84.24
8 83.49 83.73 84.27 85.14 84.23 84.33 85.04 85.29 84.52 84.58 85.41 85.68

10 83.49 84.35 84.74 85.49 84.78 84.65 85.22 85.93 84.98 84.82 85.89 86.11
15 84.34 85.87 85.86 85.86 85.30 85.89 86.71 87.22 85.79 85.19 86.15 86.20
20 84.88 86.33 86.59 86.82 86.25 86.96 87.48 87.47 86.00 86.54 87.11 86.67

Table 2: Top 1 Accuracy on FashionMNIST for different settings of SGLR.

the accuracy increases by nearly 2%. Using φ = 0.75 per-
forms, in general, the best for the setting with no SplitLr. It
is also interesting to note that the increase in the accuracy
is more as the number of clients increases when SplitAvg is
used. This points towards the potential of SplitAvg when the
number of clients is large.

Integrated Impact of SplitLr & SplitAvg Tab. 2 shows
the results by combining the two methods of SplitLr and
SplitAvg. Both algorithms show scalability individually as
well as collectively. For the SplitLr with α = 0.5 SplitAvg
with φ = 0.75 achieves the highest accuracy in nearly all
the experiments. For SplitLr with α = 1.0 the SplitAvg with
φ = 0.75 again nearly achieves highest accuracy for all ex-
periments. It is interesting to note that for the larger num-
ber of clients, φ = 0.50 performs on par with φ = 0.75
which might indicate that as the number of clients increases,
it is better to reduce φ to keep the number of active clients
in a suitable range. The accuracy when combining SplitLr
and SplitAvg is higher than the set with only one algorithm.
This indicates that they can be stacked on top of one another.
To draw a comparison, for 20 clients, without either of the
methods, the accuracy is 84.88%, with SplitAvg(φ = 0.5)
the top-1 accuracy increases to 86.59% which is +1.71%.
Further using SplitLr(α = 0.5) the performance increases
to 87.48% which is +0.89% over the setting of only using
SplitAvg. Therefore there is a total increase of 2.60% by us-
ing both SplitLr and SplitAvg. In the special case, when all
the local gradients are averaged, the training is unstable and
does not converge as seen in Tab. 3. Using the phased train-
ing approach is better but the performance improvement is
still lacking. Future work on improving gradient averaging
to incorporate more clients will be useful in this respect.

C w.o. SplitAvg All SplitAvg
Initial 60% Initial 40% Final 60% Final 40% Full

1 82.45 82.45 82.45 82.45 82.45 82.45
2 81.68 81.99 81.79 82.21 81.47 81.82
4 82.93 83.49 82.96 83.22 82.83 82.07
8 84.52 84.12 84.97 84.48 83.56 83.62

10 84.98 84.76 85.32 84.47 84.31 81.61
15 85.59 85.12 85.20 85.05 85.68 69.45
20 86.00 85.23 86.12 85.62 86.53 60.67

Table 3: SplitAvg with phased training for SplitLr with α =
1.0. SplitAvg increases the performance only with phased
training but fails to converge without it.

Accuracy Comparison with Existing Methods We now
compare our proposed framework, with other existing works
which we had outlined in the Preliminaries section. We
present the top 1 accuracy and comput. energy per client in
Tab. 4 on the Fashion MNIST dataset (Xiao, Rasul, and Voll-
graf 2017) by using AlexNet. The splits of the model are
the same for every SL framework where the client model
only comprises of 1 convolutional layer and 1 max-pooling
layer while the remaining layers are stored in the server.
The number of clients has been set to 5 and other hyper-
parameters have been kept the same for a fair comparison.
Compared to the SL frameworks, as show by Tab. 4, our
method achieves superior accuracy. FL and SGLR are com-
parable in terms of accuracy to CL which is often consid-
ered to be the ceiling. This motivates the question of which
method to use. The answer is guided by the communication
efficiency and training time which is explored in the Com-
munication Efficiency subsection. The comput. energy was
calculated in peta-FLOPS (PFLOPS) as suggested in Ope-
nAI (Dario Amodei 2018). In terms of comput. energy per
client, SL frameworks require nearly 94.7% less energy per
client than FL due to the minimal operations carried out at
the client side. Therefore CL and FL achieve higher perfor-
mance at the cost of higher energy consumption.

Method CL FL SGLR SFL PSL

Top 1 Acc. 90.5 89.7 89.3 86.0 84.7

Comput. per Client (PFLOPS) 2.944 0.588 0.031 0.031 0.031

Table 4: Top 1 Accuracy on Fashion MNIST dataset with
AlexNet. FL and SGLR perform the closest to the CL. FL
and CL have large comput. energy cost compared to SL
frameworks.

4.3 Information Leakage
Another aspect that we analyse is privacy or information
leakage. As described in (Geiping et al. 2020), one may ex-
tract sensitive information from the intermediate layers to re-
construct and obtain the original data, breaching the privacy
of the data set. Therefore we assume a honest-but-curious
server which attempts to reconstruct the image from the re-
ceived smashed data after training. We state that SplitAvg
creates models whose smashed data are harder to reconstruct
the original image with thereby increasing the data privacy.

Figure 4: Intermediate Representations of the trained ResNet
model. The different variations of using Local Gradient Av-
eraging for constant server learning rate.

Fraction φ 0.00 0.25 0.50 0.75 1.00

Loss 0.2153 0.2142 0.2166 0.2296 0.2759

Table 5: Value of cross-entropy loss between the recon-
structed image and original image for different values of φ.

To validate our claim, we use mutual information as a
proxy. For two discrete variablesX and Y , whose joint prob-
ability is given by PXY (x, y), the mutual information de-
noted by I(X;Y) can be calculated as

I(X;Y) = Σx,yPX,Y (x, y)log
PX,Y (x, y)

PX(x)PY (y)
(18)

It can also be expressed as the expectation of log PX,Y (x,y)
PX(x)PY (y) .

Similar to (Wang et al. 2021), we utilise the decoder to find
the loss between the original image and the reconstructed
image formed from the smashed data. We utilise the decoder
of a Resnet AutoEncoder which was pretrained on CIFAR-
10 from PyTorch Lightning bolts(Falcon and Cho 2020).

We calculate the loss for different variations of SplitAvg
by changing the value of φ and selecting 1 client in random
out of 6 clients. We can thus infer from the loss values are
tabulated in Tab. 5, that with an increase in the fraction φ
there is, an increase in the loss indicating the increase in
hardness to generate an accurate reconstructed image. This
points towards less information leakage and an increase in
privacy. The initial slow increase can be credited to the small
number of clients as with φ = 0.25, only 1 client is an ac-
tive client which practically has no effect. With φ = 0.5, 3
clients are active leading to a marginal increase in loss. With
φ = 1.0 all 6 clients are active when there is quite a large
jump in the loss indicating less information leakage.

4.4 Communication Efficiency
We now look at the communication efficiency of the dif-
ferent frameworks by making a quantitative analysis of the
different frameworks in terms of Training Time and Com-
munication per Epoch in Tab. 6 where the cut layer output
size (MB) is denoted as S(L), the client model size (MB) in
FL is denoted by S(w) and in SL is denoted by S(wc). T is
the time required for a forward and backward pass and R is
the rate at which the communication occurs.

In SGLR, the number of data samples per client is |D||C|
and the payload size of the smashed data per client per it-
eration is |D|S(L)|C| . On the other hand, the gradient payload

size per iteration is (1 − φ) |D|S(L)|C| for the clients that use

Figure 5: Training Time for SGLR, FL, SL, and SFL for
different datasets sizes including 25000 (Cityscapes), 50000
(MNIST) , 500000 (IMDB-Wiki) and 2000000 (ImageNet).
3 settings varying model sizes and number of clients has
been considered for each framework.

Method Comm. per Client Tot. Comm. Tot. Training Time

FL 2|S(w)| 2|C||S(w)| T + 2 |S(w)|
R

PSL 2|D|S(L)
|C| 2|D|S(L) T + 2 |D|S(L)R +

SFL 2|D|S(L)
|C| + 2|S(wc)| 2|D|S(L) + 2|C||S(wc)| T + 2 |D|S(L)|C|R + 2 |S(wc)|

R

SGLR (2−φ)|D|S(L)+S(L)
|C| (2− φ)|D|S(L) + S(L) T + (2−φ)|D|S(L)+S(L)

|C|R

Table 6: Communication overhead and total training time
analysis of the different training methods of FL, PSL, SFL,
and SGLR.

the non averaged gradients and S(L) for the clients that use
the averaged gradient. The total communicated overhead per
iteration e per client i denoted by γ is

γi,e =
(2− φ)|D|S(L) + S(L)

|C|
(19)

and the communication overhead per epoch for all the client
becomes

γe = Σi∈Cγi,e = (2− φ)|D|S(L) + S(L) (20)

Analyzing the decrease in total communication overhead
of SGLR to SFL for a given setting of 100 clients, φ = 0.5,
|D| = 50000samples and the AlexNet model where S(L) =
0.024MB and S(w) = 200MB and S(wc) = 67MB, the
percentage reduction in communication of SGLR with re-
spect to SFL is 88.6%. Similarly for the case of FL, the per-
centage decrease is 95.499%. There we achieve comparable
performance at higher communication efficiency. It is more
efficient than FL when model sizes are large and local data
are not too big.

Another important aspect is the training time. Fig. 5
demonstrates the training time by varying environment pa-
rameters. We assumed S(L), and the size of client model
to be the same as with the analysis of communication effi-
ciency. With large model sizes, SGLR is more efficient than
FL while having comparable accuracy but FL wins when
size of the data grows large (ImageNet) though it can be
offset when the number of clients is large as well which is
usually the case in practical cases when edge devices are
considered.

5 Conclusion
In this work, we developed novel learning rate splitting
(SplitLr) and split-layer gradient averaging (SplitAvg) al-
gorithms to resolve the two-fold fundamental problem of
parallel SL. In the forward propagation, a parallel SL ar-
chitecture serves multiple clients using a common server
model at which the effective batch size increases proportion-
ally with the number of clients, making the server’s learning
rate slower than desired. In the backward propagation, each
client model update is decoupled with other client models,
yielding fewer gains from the federation as compared with
other scalable distributed learning frameworks such as FL.
Motivated by this, we proposed a scalable SL framework
SGLR laid by SplitLr and SplitAvg that address such server-
side large batch problems and the backward client decou-
pling problem, respectively. Simulation results corroborated
that SGLR yields less information leakage and higher com-
munication efficiency than the standard parallel SL. This ad-
vantage comes mainly from SplitAvg allowing to multicast
averaged gradients to multiple clients in common. Combin-
ing SplitAvg with SplitLr, SGLR outshines the standard par-
allel SL in terms of accuracy and scalability for different
numbers of clients. The accuracy of SGLR is even on par
with FL that may incur larger communication costs and huge
information leakage into model-inversion attackers. Extend-
ing SplitLr, it is worth developing a learning rate splitting
method for cyclic learning rates. Convergence and differen-
tial privacy analysis on SplitAvg could also be interesting
topics for future work.

Acknowledgement
This research was supported in part by the Australian Government
through the Australian Research Council’s Discovery Projects
funding scheme (DP200100391), in part by Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2014-3-00077,
AI National Strategy Project), and in part by EU-CHISTERA
project LeadingEdge, CONNECT, and 6G Flagship (6GENESIS).

References
Alom, M. Z.; Taha, T. M.; Yakopcic, C.; Westberg, S.;
Sidike, P.; Nasrin, M. S.; Esesn, B. C. V.; Awwal, A. A. S.;
and Asari, V. K. 2018. The History Began from AlexNet:
A Comprehensive Survey on Deep Learning Approaches.
arXiv:1803.01164.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. arXiv:2005.14165.
Dario Amodei, D. H. 2018. AI and Compute. https://openai.
com/blog/ai-and-compute/. Accessed: 2021-11-30.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv:1810.04805.

Falcon, W.; and Cho, K. 2020. A Framework For Contrastive
Self-Supervised Learning And Designing A New Approach.
arXiv preprint arXiv:2009.00104.
Geiping, J.; Bauermeister, H.; Dröge, H.; and Moeller, M.
2020. Inverting Gradients – How easy is it to break privacy
in federated learning? arXiv:2003.14053.
Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He, K.
2018. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. arXiv:1706.02677.
Gupta, O.; and Raskar, R. 2018. Distributed learning of deep
neural network over multiple agents. arXiv:1810.06060.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep Residual
Learning for Image Recognition. arXiv:1512.03385.
Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger,
K. Q. 2018. Densely Connected Convolutional Networks.
arXiv:1608.06993.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.
Krizhevsky, A. 2014. One weird trick for parallelizing con-
volutional neural networks. arXiv:1404.5997.
McMahan, H. B.; Moore, E.; Ramage, D.; and y Arcas, B. A.
2016. Federated Learning of Deep Networks using Model
Averaging. ArXiv, abs/1602.05629.
Park, J.; Samarakoon, S.; Bennis, M.; and Debbah, M. 2019.
Wireless Network Intelligence at the Edge. Proceedings of
the IEEE, 107(11): 2204–2239.
Park, J.; Samarakoon, S.; Elgabli, A.; Kim, J.; Bennis, M.;
Kim, S.; and Debbah, M. 2021. Communication-Efficient
and Distributed Learning Over Wireless Networks: Princi-
ples and Applications. Proceedings of the IEEE, 109(5):
796–819.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Con-
volutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556.
Smith, S. L.; Kindermans, P.-J.; Ying, C.; and Le, Q. V.
2018. Don’t Decay the Learning Rate, Increase the Batch
Size. arXiv:1711.00489.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2015. Rethinking the Inception Architecture for Com-
puter Vision. arXiv:1512.00567.
Thapa, C.; Chamikara, M. A. P.; Camtepe, S.; and Sun,
L. 2021. SplitFed: When Federated Learning Meets Split
Learning. arXiv:2004.12088.
Vepakomma, P.; Gupta, O.; Swedish, T.; and Raskar, R.
2018. Split learning for health: Distributed deep learning
without sharing raw patient data. arXiv:1812.00564.
Wang, Y.; Ni, Z.; Song, S.; Yang, L.; and Huang, G. 2021.
Revisiting Locally Supervised Learning: an Alternative to
End-to-end Training. In International Conference on Learn-
ing Representations.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv:1708.07747.
Zhang, M.; Wei, E.; and Berry, R. 2021. Faithful Edge Fed-
erated Learning: Scalability and Privacy. arXiv:2106.15905.

