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Abstract
Federated learning (FL) and split learning (SL) are
the two popular distributed machine learning (ML)
approaches that provide some data privacy protection
mechanisms. In the time-series classification problem,
many researchers typically use 1D convolutional neu-
ral networks (1DCNNs) based on the SL approach with
a single client to reduce the computational overhead at
the client-side while still preserving data privacy. An-
other method, recurrent neural network (RNN), is uti-
lized on sequentially partitioned data where segments of
multiple-segment sequential data are distributed across
various clients. However, to the best of our knowledge,
it is still not much work done in SL with long short-
term memory (LSTM) network, even the LSTM net-
work is practically effective in processing time-series
data. In this work, we propose a new approach, LSTM-
SPLIT, that uses SL architecture with an LSTM net-
work to classify time-series data with multiple clients.
The differential privacy (DP) is applied to solve the data
privacy leakage. The proposed method, LSTMSPLIT,
has achieved better or reasonable accuracy compared to
the Split-1DCNN method using the electrocardiogram
dataset and the human activity recognition dataset. Fur-
thermore, the proposed method, LSTMSPLIT, can also
achieve good accuracy after applying differential pri-
vacy to preserve the user privacy of the cut layer of the
LSTMSPLIT.

Keywords: Federated Learning, Split Learning, LSTM,
Privacy-Preserving, Time-Series Data

1 Introduction
Machine learning algorithms have been applied to solve
many problems during recent years, such as detecting ab-
normal behavior from normal ones, authorizing access via
human facial recognition, enabling robots to learn and do
manual tasks by humans, etc. One of the algorithms is deep
learning, which has been shown successfully in computer
vision, natural language processing, robotics, etc. Tradition-
ally, the data from a single party is used to train and build
a deep learning model. It is possible that the deep learn-
ing algorithm needs a significant amount of data to pre-
pare a good model. It could limit the model performance as
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compared to a model trained by various party data sources.
However, many parties are reluctant to share their data due
to privacy regulations (e.g., GDPA, CCPA and PPDA) and
business-sensitive information, especially in the healthcare
(Vepakomma et al. 2018a) and financial industry (Zheng
et al. 2020; Guodong et al. 2021).

In recent years, federated learning (FL) (Yang et al. 2019)
and split learning (SL) (Vepakomma et al. 2018a; Thapa
et al. 2021) have been proposed to jointly train models us-
ing various data sources from the multi-parties while pre-
serving data privacy. FL enables client sides who have their
private and sensitive data to train the models without dis-
closing their data collaboratively. However, it incurs a high
computational cost at the client-side when each party dataset
is large. In contrast, SL needs a partial network to run by
the client side, and the remaining is run at the server side
with high-performance computational resources. Therefore,
SL allows various clients to collaborate to train the model
with the server. The SL can help amortize the computa-
tional burden to the server with the constrained computa-
tional resources of the clients while still preserving data pri-
vacy. Many solutions use 1D convolutional neural networks
(1DCNNs) to tackle the time series classification problem
(Cui, Chen, and Chen 2016; Abuadbba et al. 2020). Even
in (Abuadbba et al. 2020), authors used split architecture.
However, the recurrent neural network (RNN) (e.g., LSTM)
is practically effective in processing time-series data. To the
best of our knowledge, there is still not much work done
in SL-based LSTM for several reasons. First, the SL-based
LSTM approach is hard to train sequentially partitioned data
where the segments of multiple-segment sequential data are
distributed across various clients. Another reason is that
some existing works (Abuadbba et al. 2020) have proven
that the approach would cause data privacy leakage in the
1D dataset. The above reasons have motivated us to propose
a new direction, LSTMSPLIT, which uses SL with an LSTM
network to solve the issues.

Our proposed approach, LSTMSPLIT, consists of the
clients and the server. The clients who hold their respec-
tive data are willing to jointly train a model where each
party only learns its own data but no other party data. The
server can be hosted at the public cloud (e.g., AWS, Azure).
The approach, LSTMSPLIT, is based on a curious but hon-
est model where the clients and server strictly follow the



protocol but could infer information from the output of the
LSTMSPLIT. To solve the issue of data privacy leakage in
SL that uses 1D datasets, our proposed LSTMSPLIT uses
differential privacy (DP) (Cynthia and Aaron 2014) to add
noise to the output of the parties. It helps to preserve data pri-
vacy while still achieving a similar performance of the SL-
based approaches without DP and of the non-privacy cases.
We summarize the contributions of this paper as follows.

• Proposed and implemented the LSTM network with SL
architecture for multiple clients.

• Verified the effectiveness of the proposed architecture us-
ing two datasets.

• Compared performance of LSTMSPLIT with Split-
1DCNN for classification of time series data.

• Implemented and evaluated the LSTMSPLIT with differ-
ential privacy under different levels of privacy.

The following Section 2 discusses the related work of the
SL and federated learning in various applications. The rest
of the paper is organized as follows. Sections 3 and 4 will
discuss the background of the Federating Learning, SL and
differential privacy, and the proposed method, LSTMSPLIT,
respectively. Lastly, the experiment and conclusions and the
future work are given in Sections 5 and 6, respectively.

2 Related Work
FL was proposed by google to train ML models on dis-
tributed smart devices without sharing local data to other
clients (Hard et al. 2019). FedAvg (B. et al. 2017) is one
of the classic methods for FL strategy. The FedAvg scheme
works as follows: Each client gets the same initialized model
from the server. The model is then trained at each distributed
client with their own data in the first round. Once each client
completes its local training, the updated weights are sent
back to the central server. Subsequently, the global model
is updated at the server side by averaging all the weights
received from each client. After that, the server sends the
updated global model to each client again for training in the
next round. This process repeats until the global model reach
its convergence. This method is one of the classic methods
for the federated learning strategy. However, it has the disad-
vantage of requiring high computational resources at client
side when the model becomes complex. For the case where
the computational resources at client side is limited, the con-
ventional FL structure is not suitable.

Unlike FL network, SL can split partial network train-
ing tasks to the server side. The variants of SL network
have been proposed to tackle different dataset types such
as time sequence data processing using 1DCNN in ECG
signal classification (Abuadbba et al. 2020; S, T, and M
2016), image data processing in health care using 2D con-
volutional neural network (2DCNN) models (Yadav 2019),
etc. In (Vepakomma et al. 2018a), a split neural network
is proposed for health entities to collaboratively train deep
learning models without sharing sensitive raw data. Several
configurations of split neural network have been evaluated
and the result shows that the split network can provide a
higher accuracy than that by the conventional FL method

and the large batch synchronous stochastic gradient descent
method. In (Abhishek et al. 2019), the analysis results sug-
gest that the SL architect becomes more communication effi-
cient with increasing number of clients and it is highly scal-
able with the number of model parameters. Whereas, the FL
architecture only becomes efficient when the number of data
samples is small (1∼4000 clients) or model size is small
(1M∼6M parameters). In (Gao et al. 2020), authors evalu-
ated the performance over Internet of Things (IoT)-enabled
distributed systems constituted by resource-constrained de-
vices. The results show that FL technique is efficient only
when the communication traffic is the first concern. FL per-
forms better than SL in that case because it has a signif-
icantly lower communication overhead compared with SL
when the number of clients are small. It also demonstrated
that neither FL nor SL can be applied to a heavy model with
more millions of parameters. In (Abuadbba et al. 2020), au-
thors have implemented the vertical SL architecture for clas-
sifying ECG signals using 1DCNN network. It is observed
that the 1DCNN model under SL architecture can achieve
the same accuracy of 98.9% like the non-split model. How-
ever, it shows that SL may fail to protect the raw data privacy
on 1DCNN models. To solve the problem, authors proposed
two methods such as 1) adding more hidden layers to the
client side 2) applying differential privacy to mitigate the
privacy leakage problem. The results show that these two
methods are helpful in reducing privacy leakage but they
can reduce the accuracy significantly. Therefore, SL struc-
ture alone would not be sufficient to maintain the confi-
dentiality of the raw data with 1DCNN models. Instead of
working on horizontally or vertically partitioned data only,
in (Abedi and Khan 2021), authors proposed a Federated SL
(FedSL) architecture using RNN to work for the sequentially
partitioned data where multiple segments of sequential data
are distributed across clients. Based on the result from the
simulation and real-world datasets, it demonstrates that the
proposed method can train models on distributed sequential
data while preserving privacy. It outperforms the centralized
FL approach with higher accuracy and fewer communica-
tion rounds. However, there is no much work on the scenario
where the full time sequence input is hosted at each client
side. LSTM model has been widely applied to time series
data. As an example, in (Yildirim 2018), authors use a bidi-
rectional LSTM model with centralized structure to classify
the ECG signals. Instead of directly puting the ECG signals
into the LSTM network, authors decomposed the ECG sig-
nals into frequency sub-bands at different scales and then
used it as sequences for the input of the LSTM network.
The result shows an high accuracy of 99.39%. However, it
is a normal centralized structure. Even though many works
have been done using 1DCNN or 2DCNN models for clas-
sifying ECG signals and using SL architecture in 1DCNN
for solving problems as mentioned above, to the best of our
knowledge, no much work is found to use LSTM with SL
structure. Since LSTM technique is quite popular and effi-
cient in processing time series data and SL has the advan-
tages of being able to reduce the computational burden from
the client side, it is possible to examine the potential capabil-
ity of the LSTM network with SL architecture. In this paper,



we explore the feasibility and effectiveness of the proposed
LSTMSPLIT scheme by applying it to two datasets: electro-
cardiogram (ECG) and human activity recognition (HAR).
Regarding the privacy leakage, authors in (Vepakomma et al.
2020) proposed a ’Nopeek’ scheme to preserve the data pri-
vacy which is based on reduction of distance correlation be-
tween raw data and learned representations during training
and inference with image datasets. In (Vepakomma et al.
2018b), authors reviewed on the distributed deep learning
models for training or inference without accessing raw data
from clients.

3 Background
3.1 LSTM
LSTM neural network is an improved type of RNN. LSTMs
were developed to deal with the vanishing and explod-
ing gradient problem encountered when training traditional
RNNs (Hochreiter and Schmidhuber 1997). Unlike standard
feedforward neural networks, LSTM has feedback connec-
tions which enable it to not only process the point data with-
out relations to the points in previous time steps, but also se-
quential data by taking into consideration of points in previ-
ous steps. It can selectively remember patterns for a long du-
ration of time. The typical unit structure for RNN and LSTM
are shown in Figure 1 (a) and Figure 1 (b), respectively.
Compared to RNN unit which contains only one “tanh()”
function, LSTM cell consists three more gates, namely an
input gate, an output gate and a forget gate. The cell remem-
bers values over arbitrary time intervals and the three gates
regulate the flow of information into and out of the cell.

Figure 1: Typical internal structure of (a) RNN cell and (b)
LSTM cell.

The LSTM controls the information output flow through the
cell state by three gates: a forget gate, an input gate, and
an output gate. They are composed out of a sigmoid tanh()
neural net layer (σ), and pointwise multiplication operations.
The cell remembers values over arbitrary time intervals. It is
well-known for processing time series data due to its capa-
bility to handle lags of unknown duration between important
events in a time sequence.
The compact formula for LSTM with three gates are given
as follows:

it = σ
(
Wiixt + bii +Whih(t−1) + bhi

)
, (1)

ft = σ
(
Wifxt + bif +Whfh(t−1) + bhf

)
, (2)

C̃t = tanh
(
Wigxt + big +Whgh(t−1) + bhg

)
, (3)

ot = σ
(
Wioxt + bio +Whoh(t−1) + bho

)
, (4)

ct = ft ∗ c(t−1) + it ∗ C̃t, (5)

ht = ot ∗ tanh(ct), (6)
where it is the activation vector of the input gate. ft is the
activation vector of the forget gate. xt is the input vector
to the LSTM cell. C̃t is the activation vector of the input
and hidden state. ot is the activation vector of the output
vector. ct is the cell state vector which is updated by adding
regulated results from the forget gate and the input gate. ht is
the hidden state vector which is also known as output vector
of the LSTM cell. Wii is the weight matrix between the input
neurons and hidden layer. Whi is the weight matrix between
the hidden states in the last step and the hidden neurons in
the input gate. ′∗′ means the pointwise multiplication.

3.2 Split Learning
A typical SL architecture include the client and server parts
as shown in Figure 2. The input layer and partial network are
processed at the client side, and the rest part of the network
is at the server side. Instead of sharing the entire model and
weights with all entities, the only communication payloads
in the SL are the transformed version of the raw data at the
intermediary deep learning layer (also called Cut Layer).

There are also many other different types of configura-
tions for SL (Vepakomma et al. 2018a), such as the U-
shaped SL without label sharing, SL with vertically parti-
tioned data, extended vanilla SL, SL for multi-task output
with vertically partitioned input, “Tor” like multi-hop SL
(Roger, Nick, and Paul 2004; Vepakomma et al. 2018a). The
effectiveness of all these architectures need to be explored
further. However, this work focuses on the simple vanilla SL
architecture where clients do not share input data with the
server but server has the access to the labels of the dataset.
As the SL architecture limits the calculation at the client
side to first few LSTM layers, it can reduce the computa-
tion burden at the client side comparing to the centralized
learning scheme. The clients do not share its raw input data
with server.

Figure 2: A typical neural network with SL structure.



3.3 Differential Privacy
Differential privacy (Cynthia and Aaron 2014) is one of the
most adopted privacy-preserving technologies. It has been
rigorously proven to protect user data privacy by adding ran-
domized noise to it. The formal definition of the differential
privacy (DP) is given as follows.

definition [Differential Privacy] A randomized algorithm
A :→ R is (ϵ, δ)-differential privacy if for the neighboring
datasets D,D′ differing by one element and for all events S
in the output space of A to meet the following condition:

Pr[A(D) ∈ S] ≤ eϵPr[A(D′) ∈ S] + ϵ. (7)
Obviously, A is ϵ-differential privacy when δ equals 0. An-
other important concept in DP is sensitivity, that measures
the maximum difference between the outputs of a pair of the
neighboring datasets on a given function q by the following
definition.

[ℓ2-Sensitivity] Given a function q : DT → R, the ℓ2-
Sensitivity is measured as follows.

△(q) = max
D,D′

||q(D)− q(D′)||, (8)

where D and D′ are a pair of the neighboring datasets dif-
fering by a single element. From the Equation 8, it indicates
that the larger the sensitivity of the function q, the much eas-
ier for an adversary to get information in the dataset. The is-
sue can be solved by adding sufficient noise to the function
q so as to defend inference and construction attacks from the
adversary. In other words, the user privacy of the dataset is
well protected.

4 LSTMSPLIT: Our Practical and Secure
Collaborative Method

4.1 The LSTMSPLIT Approach
In the SL architecture, partial components are running at the
server or client-side. As shown in Figure 3, the multilayer
LSTM model is split into the client-side and server-side. Af-
ter initializing the weights at both sides of server and client,
whenever there is a new training request, the client then car-
ries out forward propagation with the new dataset and sends
the activation outputs of its hidden states at the cut layer
and labels to the server. Once the server receives the out-
put from the client, it calculates forward propagation. The
forward activation function with the gradient information is
passed between the client and server sides to train a joint
model collaboratively. After obtaining the loss function, the
server runs the backpropagation and sends the gradients of
the loss function w.r.t. the activations of the hidden states
back to the client. When the client receives the gradients of
the cut layer, it back-propagates the gradients received from
the server and updates the weights at its own side.

This SL is hard to apply to the LSTM architecture with
a single layer. Therefore, when using the LSTM network in
the time-series data, the entire length of the input sequence
is usually stored at one client-side. Thus, we split the LSTM
from cth layer (also called a cut layer) instead of splitting the
network based on the input steps. The labels of the datasets
together with the activation functions at the client side are
sent to the server-side.

Figure 3: SL architecture of the LSTM network.

SL with Multiple Clients Figure 4 shows an example of
the split learning architecture for the LSTM network with
multiple clients. The training process starts from Client 1,
which trains the LSTM network with a server in Step 1 and
passes the trained weights to Client 2, as shown in Step 2.
Client 2 then continues to train the network by collaborat-
ing with the server with its own dataset in Step 3. Once it
completes its training, it sends the updated weights to Client
3 in Step 4. When Clients 3 receives the signal, it contin-
ues to train the network with the server in Step 5. This pro-
cess can be triggered whenever there is a new training re-
quest. This configuration is suitable for a multi-modal multi-
institutional collaboration. Clients with data from a specific
domain can collaborate with each other to train a partial
model up to the cut layer. A new client who has a new set of
domain data can join the training process to improve the ac-
curacy of final results. Our proposed method, LSTMSPLIT,
is based on the SL architecture, as shown in Figure 4.

Figure 4: An example of SL training structure with multiple
clients.

The detailed steps for implementing our proposed LSTM-
SPLIT at a client-side and server-side are given in Algorithm
1 and Algorithm 2, respectively.



Algorithm 1: LSTMSPLIT Client

Require: Training data Dci
train of the client ci∈{1,...,k}.

0: Initialize weight W ci ← Ø.
0: for each client ci∈1,...,k do
0: Set W ci+1 ←W ci

0: for each epoch, ej∈1,...,m do
0: Feedforward propagation W ci

ej with Dci
train.

0: Calculate activation function Aci
ej at its cut layer.

0: Send Aci
ej with their labels Y ci to the server s.

0: Receive gradient ds
A

ci
ej

:= ▽l
(
Aci

ej ;W
ci
ej

)
0: Backward propagation with ds

A
ci
ej

.

0: Update the weight W ci
ej+1

= W ci
ej − ηd′s

A
ci
ej

.

0: end for
0: end for=0

LSTMSPLIT Client Suppose that a LSTM network with
N hidden layers is split between cth layer and (c+1)th layer,
as shown in Figure 3. In fact, the proposed LSTMSPLIT
client can use two different configuration modes to update
the weights of the network (Otkrist and Ramesh 2018; Thapa
et al. 2021): a centralized mode or peer-to-peer mode. In the
centralized mode, the client uploads weights to either the
server in the system or a third-party server. When there is a
new request from a client to train the network, it downloads
the weights from the server. In contrast, in the peer-to-peer
mode, the server sends the address of the client last trained
to the current training client. The current client updates its
client-side model by directly connecting to the address of
the last trained client and then downloading the latest trained
weights.

After the information of the last trained client is requested
and received by a client, it updates its own weights with the
weights of the previous client. The client then carries out
feedforward calculation in each epoch and sends the activa-
tion output to the server-side. Subsequently, the client waits
for the gradients to be sent from the server side. Once the
gradients at the cut layer are received from the server-side,
the client continues to back-propagate until all the weights
at the client-side are updated. This process is repeated until
all the training epochs are completed. The updated weights
of the client are then passed into the next client to continue
the same training process.

LSTMSPLIT Server Similar to the client-side, the net-
work structure of the LSTMSPLIT Server is shown in Fig-
ure 4. After obtaining the output data from a client, the
server carries out a feedforward calculation. The loss and
the gradients are then calculated until the cut layer. Subse-
quently, the gradients are sent back to the client. After that,
the train losses of data are accumulated and the current pre-
diction is measured. Finally, the accuracy of training can be
computed in each epoch.

Algorithm 2: LSTMSPLIT Server

Require: The activation function Aci of the cut layer and
the labels Y ci of the client ci.

0: Set weight W s = W ′s.
0: for each epoch, ej∈1,...,m do
0: Feedforward propagation W s with Aci .
0: Calculate loss with labels Y ci and predictions ˜Y ci .
0: Backpropagration.
0: W s

ej+1 ←W s
ej − η▽ l

(
As

ej ,W
s
ej

)
.

0: Send ds
A

ci
ej

= ▽l
(
As

ej ,W
s
ej

)
to client ci.

0: end for
0: Update weight W ′s = W ′s +W s. =0

5 Experiment
In this section, we evaluate the performance of the proposed
method, LSTMSPLIT, with two datasets. We first discuss the
two datasets and the settings for our experiment. Then, we
show the experiment results and discuss its performances.
Finally, we further discuss how to protect the privacy leak-
age at the cut layer of the proposed method, LSTMSPLIT,
using differential privacy.

5.1 Dataset
ECG Data ECG dataset is extracted from the MIT-BIH ar-
rhythmia dataset (Moody and Mark 2001). Similar to (Yunan
et al. 2018; Abuadbba et al. 2020), we collected 26,490 sam-
ples in total which contains five different heartbeat types,
namely N (normal beat), L (left bundle branch block), R
(right bundle branch block), A (atrial premature contrac-
tion), and V (ventricular premature contraction). The filtered
samples as in (Abuadbba et al. 2020) are used to feed into
the Split-1DCNN and LSTMSPLIT. The details of the ECG
dataset are shown in Table 1.

HAR Data HAR dataset contains six types of human
activities, walking (W ), walking upstairs (WU ), walking
downstairs (WD), sitting (S), standing (SD), and laying
(L). The human activities of 30 volunteers who wore a
smartphone on the waist were collected (Davide et al. 2013).
With the accelerometer and gyroscope embedded, 3-axial
linear acceleration and 3-axial angular velocity data at a con-
stant rate of 50Hz were captured. The original signals are
pre-processed and the time and frequency domain features
were calculated to form a 561-dimensional vector as an input
to the Split-1DCNN and LSTMSPLIT networks. The details
of the HAR datasets are shown in Table 2.

5.2 Experiment Setting
As 1DCNN is one of the popular deep learning methods
for processing time-series data, we implement split learn-
ing based on 1DCNN, namely Split-1DCNN, to compare
our proposed method, LSTMSPLIT. Both Split-1DCNN and
LSTMSPLIT use multiple clients (5, 10, 15, 20, 25, and 30
clients) with the two datasets as discussed before in the ex-
periment. The server trains the network with one client and



Table 1: The specification of the ECG dataset.

Dataset size Normal beat
(N)

Left bundle
branch block
(L)

Right bundle
branch block
(R)

Atrial premature
contraction
(A)

Ventricular
premature
contraction
(V)

Total

Total 6000 6000 6000 2490 6000 26490

Table 2: The specification of the HAR dataset.

Dataset size Walking(W)
Walking
Upstairs
(WU)

Walking
Downstairs
(WD)

Sitting(S) Standing(SD) Laying(L) Total

Total 1722 1544 1406 1777 1905 1944 10298

moves to another in sequence until all the clients complete
their training processes. We can add a scheme of choosing
a group of clients to participate in each round. It can be ei-
ther based on the training performance of previous rounds or
randomly select the clients (Thapa et al. 2021).

Each dataset is shuffled and 20% of the dataset is sepa-
rated as the testing data for all the clients. All the clients
use the same testing data to measure classification accuracy,
while the rest 80% of the dataset is divided and assigned to
each individual client.

Both Split-1DCNN and LSTMSPLIT are implemented
in Python 3.8 with Pytorch 1.7. The experiments were
run in the machine with following specifications: NVIDIA
GeForce RTX 2080Ti 11GB CUDA GPU, 64GB RAM, x64-
based processor 8-core Intel(R) CPU @ 3.60GHz.

For a fair comparison, the general training parameters of
Split-1DCNN and LSTMSPLIT are the same. The settings
of the LSTM and 1DCNN network architecture and its train-
ing parameters are summarized in Table 3 and Table 4, re-
spectively.

Table 3: Parameter settings for the multilayer LSTM net-
work in SL structure with multiple clients.

Parameters ECG dataset HAR dataset
Input series length 128 561
Number of LSTM
layers 2

Number of neurons
in hidden layer 1 200

Number of neurons
in hidden layer 2 200

Batch size 32
Epoch 200
Learning rate 0.0001

5.3 Performance Metrics
The target of both Split-1DCNN and LSTMSPLIT is to cor-
rectly predict the category of each sample in both the ECG
and HAR datasets. The prediction accuracy is measured by:

Accuracy =
nc

ne
× 100%, (9)

Table 4: Parameter settings for the 1DCNN network in SL
structure multiple clients.

Parameters ECG dataset HAR dataset
Input series length 128 561
Number of ‘Conv’
layers (convolu-
tional layers +
LeakyReLU() +
MaxPool1d)

2

Fully connected
layer (linear() +
LeakyRelu())

2

Number of neurons
in the second hid-
den layer of fully
connected layer

128

Batch size 32
Epoch 200
Learning rate 0.0001

where nc is the number of classes classified correctly and ne

is the size of the testing dataset.
Time complexity (training time) of Split-1DCNN and

LSTMSPLIT is measured by:

TC = K × E ×B × tb, (10)

where K is the total number of clients, E is the total number
of the epochs, B is the total number of data batches set for
each client during the training process and tb is the training
time required for each batch of data. Lastly, the communi-
cation complexity is the total amount of time the clients and
server send and respond from each other.

5.4 Discussion
Classification for ECG Data Table 5 shows the per-
formance of the Split-1DCNN and LSTMSPLIT on ECG
dataset. From Table 5, we can see that the LSTMSPLIT out-
performs Split-1DCNN in classifying ECG dataset. The pro-
posed LSTMSPLIT network can give a higher classification
accuracy compared to Split-1DCNN for different client set-
tings. For example, for the case of five clients, LSTMSPLIT



Table 5: The performance of LSTMSPLIT and Split-1DCNN network on ECG dataset.

Clients Time Complexity (ks) Comm Complexity (ks) Test Accuracy (%)

Split-1DCNN + ECG

5 1.1885 0.0517 90.13
10 1.1403 0.0528 89.94
15 1.1088 0.0514 89.91
20 1.0822 0.0500 90.21
25 1.0420 0.0460 91.12
30 1.0551 0.0488 89.94

LSTMSPLIT + ECG

5 6.8101 0.7869 98.50
10 5.2806 0.9368 91.82
15 6.2908 0.9205 96.69
20 5.4010 0.9359 96.44
25 6.7603 0.7959 96.08
30 6.1590 0.8807 94.56

Table 6: The performance of LSTMSPLIT and Split-1DCNN network on HAR dataset.

Clients Time Complexity (ks) Comm Complexity (ks) Test Accuracy (%)

Split-1DCNN + HAR

5 0.8712 0.0229 97.85
10 0.4471 0.0248 97.80
15 0.4258 0.0249 97.46
20 0.7914 0.0205 97.61
25 0.3991 0.0214 97.41
30 0.3584 0.0192 97.66

LSTMSPLIT + HAR

5 6.5529 1.0983 93.36
10 7.0486 1.2057 89.16
15 7.0326 1.4648 89.65
20 6.4677 1.2286 89.01
25 7.7693 1.8821 88.72
30 6.1622 1.0921 88.53

Figure 5: Losses and accuracy during training and testing process of LSTMSPLIT network with ECG dataset.



Figure 6: Losses and accuracy during training and testing process of LSTMSPLIT network with HAR dataset.

can give 98.50% in accuracy, whereas the Split-1DCNN can
only give 90.13% under the similar setting of the training
parameters. The third column of the Table 5 shows the time
complexity of LSTMSPLIT with different clients. We can
see that the time complexity for different clients with the
same dataset is similar. The reason is that the total number of
the training dataset for each case with different numbers of
clients are the same. Data are equally divided and assigned
to each client. The time complexity of Split-1DCNN with
varying clients is also similar as the reason stated above.

From Table 5, we can also see that a longer training time
is required for LSTMSPLIT than the Split-1DCNN on the
same number of epochs. This is due to the more complex
network architecture in LSTMSPLIT, which has been set
with many (200) hidden neurons for each LSTM layer. Less
hidden neurons set in LSTM cells can significantly reduce
the training time but it may degrade the performance of the
proposed LSTMSPLIT. However, users can make the trade-
off between the complexity and the accuracy according to
their own requirements.

The loss and accuracy the LSTMSPLIT during training
for ECG dataset on different clients (5,10, . . . , 30) are shown
in Figure 5. Each client is trained with 200 epochs. The
global training continues until all the clients complete their
training process. The results show that Split-1DCNN has
a faster convergence speed than the LSTMSPLIT with a
smoother decrease in the loss values (The change of the loss
and accuracy curves for Split-1DCNN are not shown due
to the page limit). However, our proposed LSTMSPLIT can
reach a higher accuracy even hits high fluctuations during
the training process.

The trade-off between the time complexity and accuracy
of the LSTMSPLIT is based on different requirements as
fewer hidden neurons may affect the prediction accuracy.
Typically, the accuracy can also be improved by increasing
the number of training epochs. Again, we set 200 epochs
in this experiment only to perform training time for cater-
ing to different testing scenarios. Since optimizing the train-
ing parameters is not the focus of this work, the proposed
LSTMSPLIT can be further tuned to improve the prediction
accuracy.

Classification for HAR Data Table 6 shows the perfor-
mance of the LSTMSPLIT and Split-1DCNN on the HAR
dataset. From Table 6, we can see that both LSTMSPLIT
and Split-1DCNN can reach reasonable and good accuracy.
However, in the HAR dataset, LSTMSPLIT does not out-
perform the Split-1DCNN. Therefore, Split-1DCNN is more
suitable in classifying human activity as the network perfor-
mance also depends on the characteristics of the data. In this
paper, we aim to provide a workable solution of Split Learn-
ing based on LSTM to handle sequential time-series data for
the classification problem. The proposed LSTMSPLIT can
be further tuned with different hyperparameter settings to get
higher accuracy. The losses and accuracy during the train-
ing and testing process for LSTMSPLIT on HAR dataset is
shown in Figure 6. Again, Split-1DCNN shows a smoother
decrease in the loss values during training and testing pro-
cess compared to LSTMSPLIT.

LSTMSPLIT with DP To verify the effectiveness of the
proposed LSTMSPLIT in further preserving data privacy of
the cut-layer with the strategy of DP, we add noise to the



cut layers output by varying epsilon-delta values of the DP.
Due to the page limitation, the discussion of the results of
LSTMSPLIT with DP is skipped in this paper.

6 Conclusion and Future Work
A Split Learning (SL) architecture based on the LSTM
called LSTMSPLIT is proposed. In the LSTMSPLIT struc-
ture, multiple layers of the LSTM network are applied. Par-
tial LSTM layers are trained at the client side, and the rest
layers are trained at the server-side. Multiple clients can
jointly train in sequence using the proposed LSTMSPLIT.
To further improve the data privacy protection of the cut
layer in LSTMSPLIT, differential privacy (DP) is used by
adding noise to the output of the cut-layer of each client
and the server. This protection strategy helps preserve data
privacy while still achieving a similar performance of the
LSTMSPLIT without DP. The effectiveness of the proposed
LSTMSPLIT has been proven with the experiment using the
two datasets. The proposed LSTMSPLIT is practically ef-
fective in processing sequential time-series data. It can han-
dle time-series data in the split architecture to reduce the
computational burden on the client-side while still achieving
good performance with user privacy protection. We will in-
vestigate how to apply our LSTMSPLIT with different par-
titioned data types and on non-IID time-series data in future
work.
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