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Abstract

Due to the explosion in the size of the training datasets,
distributed learning has received growing interest in recent
years. One of the major bottlenecks is the large communi-
cation cost between the central server and the local work-
ers. While error feedback compression has been proven to
be successful in reducing communication costs with stochas-
tic gradient descent (SGD), there are much fewer attempts
in building communication-efficient adaptive gradient meth-
ods with provable guarantees, which are widely used in train-
ing large-scale machine learning models. In this paper, we
propose a new communication-compressed AMSGrad for
distributed nonconvex optimization problem, which is prov-
ably efficient. Our proposed distributed learning framework
features an effective gradient compression strategy and a
worker-side model update design. We prove that the pro-
posed communication-efficient distributed adaptive gradient
method converges to the first-order stationary point with the
same iteration complexity as uncompressed vanilla AMS-
Grad in the stochastic nonconvex optimization setting. Ex-
periments on various benchmarks back up our theory.

1 Introduction
The recent success of deep learning and large-scale training
made it possible to use machine learning to solve compli-
cated real-world tasks, such as computer vision (He et al.
2016), speech recognition (Hinton et al. 2012), natural lan-
guage processing (Devlin et al. 2018), etc. Due to the ex-
plosion in the size of training datasets in recent years, single
GPU training on such models can easily take up to weeks or
even months to finish. As a consequence, distributed training
algorithms have attracted growing interest over the years. In
standard distributed settings with one central server and n
workers, local workers parallelly compute local gradients,
while the server aggregates the gradients from the work-
ers, updates the model, and sends the new model back to
the workers. However, data transmissions across the ma-
chines can be quite expansive in terms of both communi-
cation costs (especially for cellular networks) and latency.
Therefore, various methods were studied in order to achieve
communication-efficient distributed learning by either re-
ducing communication bits (Stich, Cordonnier, and Jaggi
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2018; Basu et al. 2019; Karimireddy et al. 2019) or saving
the number of communication rounds (Zheng et al. 2017;
Chen et al. 2021b).

One of the principled approaches for effectively reducing
the communication cost is to perform gradient compression
before transmissions. It directly compresses the local fresh
gradient on each worker before uploading the gradient to
the server. However, the compression would slow down the
convergence or even diverge (Beznosikov et al. 2020) due to
the loss of information at each compression step. Later on,
error feedback strategy (Stich, Cordonnier, and Jaggi 2018;
Karimireddy et al. 2019) was proposed to alleviate this prob-
lem and reduce the information loss by proposing a compen-
sating error sequence. Each worker compresses and uploads
the combination of the last step compensating error and the
local fresh gradient instead of compressing the gradient di-
rectly. Recent studies (Seide et al. 2014; Karimireddy et al.
2019; Stich, Cordonnier, and Jaggi 2018) show that error
feedback has been widely used in distributed SGD to com-
municate efficiently and ensure the same convergence rate
as vanilla SGD.

While communication-efficient distributed SGD has been
widely studied, there are much fewer attempts in building
communication-efficient distributed adaptive gradient meth-
ods (Kingma and Ba 2014; Reddi, Kale, and Kumar 2019).
It has been shown that SGD works less efficiently compared
with adaptive gradient methods when training large-scale
models such as BERT (Devlin et al. 2018), GPT-3 (Brown
et al. 2020) and GAN (Goodfellow et al. 2014). One of
the major challenges is that the traditional error feedback
mechanism is not compatible with adaptive gradient meth-
ods since the variance term (i.e., second-order moments of
the historical gradients) in the adapted gradient method can
be unstable due to the accumulated compression error (Tang
et al. 2021). 1-bit Adam (Tang et al. 2021) partially solve
this problem by first using vanilla Adam at the beginning
of training to get an estimate of variance term, then freezing
this variance term and performing distributed Adam with the
fixed variance. While this solution indeed gets rid of the un-
stable variance issue, the adaptivity is no longer changing
and the major part of the algorithm is actually more simi-
lar to SGD with momentum. Due to the same reason, the
convergence guarantee provided in (Tang et al. 2021) is not
related to distributed Adam but is an extension to distributed



SGD with momentum.
In this paper, we develop a new compression method

which is provably efficient, namely Communication-
compressed Distributed Adaptive gradient Method (CD-
Adam). We revisit the unstable variance issue in distributed
AMSGrad (Reddi, Kale, and Kumar 2019) and identify
the need for an improved gradient compression strategy.
Specifically, we adopt the Markov compression sequence
recently proposed by Richtárik, Sokolov, and Fatkhullin
(2021), which ideally could lead to contractive compression
error for gradient descent if the gradient sequence (to be
compressed) is convergent. Note that this is not simply ap-
plying the conclusion of Richtárik, Sokolov, and Fatkhullin
(2021) to the distributed AMSGrad setting, as Richtárik,
Sokolov, and Fatkhullin (2021) only deals with worker-to-
server compression. While extending Richtárik, Sokolov,
and Fatkhullin (2021) to both worker-to-server and server-
to-worker compression may seem straightforward for stan-
dard gradient descent, it is particularly tricky for the adaptive
gradient method (see Section 5 for details). Therefore, it re-
quires carefully designed algorithms and analyses to build a
provably efficient distributed adaptive gradient method.

We summarize our contribution as follows:
• We propose a new communication-compressed dis-

tributed AMSGrad approach which solves the bottleneck
of applying communication compression strategies for
fully-functional1 adaptive gradient methods in the dis-
tributed setting. The proposed method largely reduces the
communication cost by enforcing both worker-to-server
and server-to-worker communication compression with-
out any warm-up stages.

• We theoretically prove the convergence of our proposed
algorithm in the nonconvex stochastic optimization set-
ting. Specifically, we show that our proposed fully com-
pressed CD-Adam can reach its first-order ε-stationary
point within O(1/ε2) iterations, which is the same it-
eration complexity as the uncompressed vanilla AMS-
Grad. This suggests that without applying any variance-
freezing tricks, the fully compressed distributed adap-
tive gradient method can still provably converge to its
ε-stationary point.

• Thorough experiments on various real-world bench-
marks show that our proposed CD-Adam reduces the
communication cost by around 32× over the original
AMSGrad and around 5× over 1-bit Adam.

2 Related Work
2.1 Stochastic gradient descent and adaptive

gradient methods
Stochastic gradient descent (SGD) (Robbins and Monro
1951) is broadly used in training large-scale machine learn-
ing problems. Despite being simple to implement, SGD can
be sensitive to parameters such as learning rate and slow to
converge. Adaptive gradient methods were proposed to fur-
ther improve over SGD. Adam (Kingma and Ba 2014), one

1Here we use “fully-functional” to differentiate with the
variance-freezed Adam used in Tang et al. (2021).

of the most popular adaptive gradient methods, has shown
to be fast convergent and also robust to hyper-parameters
like learning rate. It designs an adaptive learning rate for
each different coordinate using the past gradient. Aside from
Adam, AdaGrad (Duchi, Hazan, and Singer 2011) applied
the second moment of the gradient to adaptive the learn-
ing rate, RMSProp (Tieleman, Hinton et al. 2012) further
used the second moment of the gradient with a decay rate,
AdaDelta (Zeiler 2012) is an extension of AdaGrad with a
non-increasing learning rate. Later on, Reddi, Kale, and Ku-
mar (2019) pointed out a non-convergence issue of Adam,
and proposed a new AMSGrad algorithm for ensuring the
convergence. Zaheer et al. (2018) studied the effect of adap-
tive denominator constant ν and mini-batch size in the con-
vergence of adaptive gradient methods. AdaBound (Luo
et al. 2019) proposed with both upper and lower bound for
the variance term of Adam. AdamW (Loshchilov and Hut-
ter 2019) proposed to fix the weight decay regularization
in Adam by decoupling the weight decay from the gradi-
ent update. Chen et al. (2020) proposed a partially adaptive
gradient method and proved its convergence in nonconvex
settings. Chen et al. (2019); Zhou et al. (2018) showed the
convergence rate of a class of adaptive gradient methods
under the nonconvex stochastic optimization setting. Ala-
caoglu et al. (2020) proposed a new framework to derive
data-dependent regret bounds with a constant momentum
parameter in various settings.

2.2 Distributed SGD and error feedback
compression

For communication-efficient distributed SGD, one of the
most common strategies is to compress the gradients before
uploading. Alistarh et al. (2017) provided a theoretical anal-
ysis of the centralized compressed distributed SGD. Seide
et al. (2014) compressed the coordinates of the gradient into
±1 by its sign. Bernstein et al. (2018) proposed signSGD
and proved its convergence in the nonconvex setting. Vari-
ant works has applied kinds of compression methods such as
sparsification (Stich, Cordonnier, and Jaggi 2018; Basu et al.
2019), quantization (Karimireddy et al. 2019), and sketching
(Ivkin et al. 2019).

Error feedback largely improves the compression error
bound and has been shown to be critical for ensuring fast
convergence of the compression mentioned above. Seide
et al. (2014) showed that with error feedback, even 1-bit
gradient communication under SGD still obtains the conver-
gence rate of vanilla SGD. Karimireddy et al. (2019) applied
error feedback to signSGD (Bernstein et al. 2018) under
nonconvex setting, Stich, Cordonnier, and Jaggi (2018) per-
formed error feedback in sparsity strong convex settings, and
Stich and Karimireddy (2019) proposed a error-feedback
framework also works on nonconvex but single node setting.
There are also more works on the distributed SGD under
nonconvex optimization (Tang et al. 2019; Koloskova et al.
2019; Basu et al. 2019).



2.3 Communication-efficient distributed adaptive
gradient method

There are only fewer attempts in developing
communication-efficient distributed adaptive gradient
methods. 1-bit Adam (Tang et al. 2021) adopted a variance-
freezed Adam by pointing out that the variance term
of Adam becomes stable in later training stages. Com-
bined with error feedback, 1-bit Adam achieves the same
convergence rate as distributed SGD. Chen et al. (2021a) de-
veloped a distributed quantized Adam with error feedback.
However, the proposed algorithm in Chen et al. (2021a) can
only converge to its ε-stationary point with worker-to-server
compression alone but not fully compressed Adam with
both worker-to-server and server-to-worker compression.
Another related work is CADA (Chen et al. 2021b), which
reduced the communication rounds instead of performing
communication compression. CADA adaptively reused the
stale update parameters, and it achieved the same conver-
gence rate as vanilla AMSGrad for nonconvex optimization.
Note that CADA’s strategy of reducing communication
rounds is orthogonal to ours can possibly be combined with
ours for further improvements.

3 Problem Formulation
In this paper, we aim to solve the following distributed opti-
mization problem under nonconvex stochastic optimization
setting:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

Eξ(i)fi(x; ξ(i))︸ ︷︷ ︸
:=fi(x)

, (3.1)

where d denotes the dimension of the model, ξ(i) denotes the
stochastic noise variable, and fi(x) denotes the loss function
on the i-th worker. In the stochastic setting, we cannot obtain
the full gradient of loss function fi(x). Instead, we can only
obtain the unbiased estimators of∇fi(x), i.e., ∇fi(x; ξ(i)).

First, let us revisit the vanilla distributed setting of AMS-
Grad (Reddi, Kale, and Kumar 2019). Consider a distributed
learning system that contains a parameter server and nwork-
ers, with each worker i owns its local data from distri-
bution Di. Let xt denotes the current model at t-th itera-
tion. The server will first broadcast xt to all the workers in
each iteration. Each worker i computes the stochastic gradi-
ent g(i)

t = ∇fi(xt; ξ(i)t ) using the local samples, and then
uploads g

(i)
t to the server. The server then aggregates the

stochastic gradients and obtains gt = 1
n

∑n
i=1 g

(i)
t . The

model uses gt to update parameter via vanilla single node
AMSGrad:

mt = β1mt−1 + (1− β1)gt,vt = β2vt−1 + (1− β2)g2
t ,

v̂t = max(v̂t−1,vt),xt+1 = xt − αtV̂−1/2t mt,

where V̂t = diag(v̂t + ν). This vanilla distributed AMS-
Grad achieves the same convergence rate as its central-
ized version (Reddi, Kale, and Kumar 2019). However, the
worker-to-server and server-to-worker communications in

each iteration can be extremely expansive especially for cel-
lular networks, and the communication latency also makes
the overall system less efficient. Therefore, attempts have
been made to find novel approaches that can further reduce
the communication cost while maintaining a similar conver-
gence rate as its uncompressed counterpart. In the following,
let’s first revisit some traditional communication compres-
sion strategies for distributed SGD.

4 Existing Solutions and Drawbacks
Naive compression for SGD: The simplest strategy to re-
duce communication cost is to directly compress the lo-
cal gradient g(i)

t with a compressor C(·) before sending to
the server. The server aggregates the compressed gradient
ĝ
(i)
t = C(g(i)

t ) and updates model by

xt+1 = xt −
α

n

n∑
i=1

ĝ
(i)
t ,

where α denotes the learning rate. The common choice of
C(·) can be top-k (Basu et al. 2019) or sign operation (leads
to signSGD (Bernstein et al. 2018)). Although this naive
compression method is intuitive, it can diverge in practice,
even in simple quadratic problems (Beznosikov et al. 2020)
or constraint linear problems (Karimireddy et al. 2019). In-
tuitively speaking, one of the major drawbacks of naive com-
pression is that the compression error is accumulating during
the training process. Each step will introduce new errors that
cannot be canceled later, and the accumulation of compres-
sion error leads the divergence.
Error feedback for SGD: Error feedback (EF), or error
compensation (Karimireddy et al. 2019; Stich, Cordonnier,
and Jaggi 2018) is widely used for correcting the bias gen-
erated by compression errors. Distributed SGD with error
feedback effectively reduces the communication bits by in-
troducing a compensating error sequence to cancel the com-
pression error in previous iterations and obtains the same
convergence rate as vanilla SGD. Specifically, error feed-
back introduces a new sequence δ(i)t , which denotes the ac-
cumulated compression error at iteration t. At t-th iteration,
the i-th worker computes the compressed gradient ĝ(i)

t based
on the previous iteration’s error δ(i)t−1 and the current local
gradient g(i)

t , i.e., ĝ(i)
t = C(g(i)

t + δ
(i)
t−1). And the new com-

pensating error is updated by δ(i)t = g
(i)
t + δ

(i)
t−1 − ĝ

(i)
t .

Upon compression, the server collects the compressed gra-
dients ĝ

(i)
t from all workers and update model parameters

via vanilla SGD. Karimireddy et al. (2019) showed that the
compression error of error feedback is bounded by constant
if the following assumption hold for the biased compressor.
Assumption 4.1 (Biased compressor). Consider a biased
operator C : Rd → Rd, there exists a constant 0 < π ≤ 1
such that

E
∥∥C(x)− x

∥∥2
2
≤ (1− π)‖x‖22, ∀x ∈ Rd. (4.1)

Note that π = 1 leads to C(x) = x. Assumption 4.1
is a common assumption for biased compressor (Richtárik,



Sokolov, and Fatkhullin 2021; Karimireddy et al. 2019;
Stich, Cordonnier, and Jaggi 2018). Canonical examples of
the compressor satisfying Assumption 4.1 include top-k or
random-k as well as scaled sign compressor2. With Assump-
tion 4.1, the distributed SGD with error feedback (Karim-
ireddy et al. 2019) in nonconvex setting achieves the same
convergence rate as vanilla SGD.
Drawbacks of error feedback on adaptive gradient meth-
ods: While error feedback guarantees bounded accumu-
lated gradient compression error, in adaptive gradient meth-
ods (Kingma and Ba 2014; Reddi, Kale, and Kumar 2019),
the variance term vt, which is the moving average of the
quadratic of gradient, can be unstable due to accumulating
gradient compression error (Tang et al. 2021). Specifically,
let’s denote gt as the averaged fresh gradient without com-
pression (average of all g(i)

t ), denote ĝt as the averaged com-
pressed gradient (average of all ĝ(i)

t ). The updating rule for
vt+1 follows:

vt+1 = β2vt + (1− β2)ĝ2
t

= β2vt + (1− β2)[ĝt − gt + gt]
2

= β2vt + (1− β2)g2
t + (1− β2)(ĝt − gt)

2︸ ︷︷ ︸
accumulating error term

+ 2(1− β2)〈gt, ĝt − gt〉. (4.2)

Tang et al. (2021) claims that the inner product term in
(4.2) can possibly be canceled out during training, while
the quadratic term will certainly accumulate. Since the tra-
ditional error feedback can only guarantee constant com-
pression error, the accumulation of the quadratic error af-
ter T -steps will make the variance diverge. Therefore, the
communication-efficient adaptive gradient method actually
requires a stronger gradient compression error bound to ob-
tain a stable variance term.

5 Proposed Method
In this section, we formally develop our proposed
Communication-compressed Distributed Adaptive gradient
Method (CD-Adam). Our proposed method consists of
two key components: Markov compression sequence and
worker-side model update design, which jointly provide a
better compression error bound. We first investigate the
definition and property of Markov compression sequence
(Richtárik, Sokolov, and Fatkhullin 2021).
Markov compression sequence: Markov compression se-
quence is firstly introduced in Richtárik, Sokolov, and
Fatkhullin (2021). Given a biased compressor C(·) and
a sequence of vectors {wt}, Markov compression se-
quence {ŵt} can be recursively defined as: ŵ0 =
C(w0), ŵt+1 = ŵt+C(wt+1−ŵt). The main advantage
of Markov compression sequence lies in that the compres-
sion error can be largely reduced if the underlying sequence

2See the supplemental materials for more details about the
above three compressors as well as other compressors satisfying
Assumption 4.1.

{wt} is convergent:∥∥ŵt+1 −wt+1

∥∥2 =
∥∥ŵt + C(wt+1 − ŵt)−wt+1

∥∥2
≤ (1− π)

∥∥wt+1 − ŵt‖2

≤ (1− π)(1 + γ)
∥∥ŵt −wt‖2

+ (1− π)(1 + γ−1)
∥∥wt+1 −wt

∥∥2,
(5.1)

where the last inequality holds due to Young’s inequality.
As can be seen from (5.1), the compression error

∥∥ŵt+1 −
wt+1

∥∥ is directly controlled by ‖wt+1 − wt‖. If the se-
quence of {wt} is convergent, Markov compression error at
t-step will be much smaller than the constant error bound
obtained by plain error feedback. In particular, Richtárik,
Sokolov, and Fatkhullin (2021) showed that if the sequence
of {wt} achieves a linear rate of convergence, the compres-
sion error of the Markov compression can converge to 0 as
t→∞.
Worker-side model update: We emphasize that Richtárik,
Sokolov, and Fatkhullin (2021) only dealt with one-way
compression from workers to the server, while in practice,
the server needs to send back the updated model xt to work-
ers. To further reduce the communication cost of the dis-
tributed method and take advantage of the Markov compres-
sion sequence, we perform a two-way compression strat-
egy and adjust the model update schedule to the worker-side
model update. Specifically, at t-th iteration, each worker lo-
cally updates model xt+1 while the server simply aggregates
the compressed gradients from the workers, performs an-
other compression and sends them back to the workers. This
may sound counter-intuitive as a more common strategy is to
update xt+1 on the server and send the update to all work-
ers. For example, the server may compress the model up-
date parameter V̂−1/2t mt and send it to all workers for up-
dating. While this plan can also efficiently reduce the com-
munication cost, in such case, the Markov compression se-
quence cannot provide us a better compression error bound
for the model update parameter since it is difficult to obtain
the convergence of the underlying sequence V̂

−1/2
t mt. On

the other hand, in our current worker-side model update de-
sign, the compression errors are all about the fresh stochastic
gradients, or aggregated gradients, whose convergences are
much easier to obtain. This adjustment makes it much eas-
ier to establish the theoretical guarantees of our proposed
method.
Algorithm overview: Combining Markov compression se-
quence and worker-side model update design, we pro-
pose a new communication-compressed distributive gradient
method, which is summarized in Algorithm 1. Specifically,
at t-th iteration, each worker first computes the stochas-
tic gradient g(i)

t with a mini-batch size τ , then builds the
Markov compression sequence ĝ

(i)
t with c

(i)
t = C(g(i)

t −
ĝ
(i)
t−1) and ĝ

(i)
t−1. Note that the Markov compression se-

quence ĝ
(i)
t is no longer bits-compressed, therefore, only

c
(i)
t is being uploaded to the server. On the other hand,

the server updates the aggregated compressed gradient by



ĝt = ĝt−1 + 1
n

∑n
i=1 c

(i)
t as the last iterate ĝt−1 has

been stored locally in the server. The server then builds an-
other Markov compression sequence g̃t based on g̃t−1 and
ct = C(ĝt − g̃t−1) and sends ct to all workers. Similarly,
each worker can recover the Markov compression sequence
g̃t upon receiving ct, since the last iterate g̃t−1 has been
locally stored in each worker. Then each worker uses the
double-compressed gradient g̃t for updating model xt+1 by
following standard AMSGrad.

Algorithm 1 is indeed communication-efficient for dis-
tributed learning. For both server-to-worker and worker-to-
server communications, each worker and the server main-
tain the previous step compressed gradients; only the com-
pressed vectors are transferred instead of full precision vec-
tors. Specifically, for the scaled sign compressor, CD-Adam
only takes 1-bit3 instead of 32-bits per dimension in each
communication round. This greatly reduces the communica-
tion costs for distributed implementation of adaptive meth-
ods. Note that compared with 1-bit Adam (Tang et al. 2021),
which performs a few epochs of uncompressed Adam at
the beginning of training, our proposed CD-Adam method
is much more communication-efficient (see Figure 1) as we
start the compression from the very first iteration.

Algorithm 1: Communication-Compressed Distributed
Adaptive Gradient Method (CD-Adam)

Input: initial point x1, step size {αt}Tt=1, β1, β2, ν, batch
size τ . Sacled sign compressor C(x) = ‖x‖1 · sign(x)/d.

1: g
(i)
0 ← 0,m0 ← 0, v0 ← 0, ĝ

(i)
0 = C(g(i)

0 ), g̃0 =

C( 1
n

∑n
i=1 ĝ

(i)
0 )

2: for t = 1 to T do
3: (On i-th worker)
4: Compute local stochastic gradient with batch size τ :

g
(i)
t = 1

τ

∑τ
j=1∇fi(xt; ξ

(i,j)
t )

5: Compress c
(i)
t = C(g(i)

t − ĝ
(i)
t−1)

6: Send c
(i)
t to the server and update local state ĝ

(i)
t =

ĝ
(i)
t−1 + c

(i)
t

7: (On Server)
8: Update ĝt = ĝt−1 + 1

n

∑n
i=1 c

(i)
t

9: Compress ct = C(ĝt − g̃t−1)
10: Send ct to all the workers and update local state g̃t :

g̃t = g̃t−1 + ct
11: (On i-th worker)
12: Update g̃t = g̃t−1 + ct
13: mt = β1mt−1 + (1− β1)g̃t
14: vt = β2vt−1 + (1− β2)g̃2

t
15: v̂t = max(v̂t−1,vt)

16: Update xt+1 = xt − αtV̂
−1/2
t mt with V̂t =

diag(v̂t + ν)
17: end for

3Rigorously, the scaling number will also take 32-bits for com-
munication, so the overall cost for compressing a d-dimensional
vector should be 32 + d bits.
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Figure 1: Comparison of training loss and testing accu-
racy against communication bits of training ResNet-18 on
CIFAR-10. Our proposed method achieves around 32×
communication cost improvement over the original AMS-
Grad and around 5× over 1-bit Adam.

6 Convergence Analysis
In this section, we present the convergence results of our
proposed Communication-Compressed Distributed Adap-
tive Gradient Method (CD-Adam) in Algorithm 1. Before
we jump into the main theorem, let us first introduce more
assumptions needed for the proof.

Assumption 6.1 (Smoothness). Each component loss func-
tion on the i-th worker fi(x) = E[f(x; ξ(i))] is L-smooth,
i.e., ∀x,y ∈ Rd,∣∣fi(x)− fi(y)− 〈∇fi(y),x− y〉

∣∣ ≤ L

2
‖x− y‖22.

Assumption 6.1 is a standard assumption for noncon-
vex stochastic optimization, which has been also adopted in
(Koloskova et al. 2019; Basu et al. 2019; Richtárik, Sokolov,
and Fatkhullin 2021). Note that the L-smoothness assump-
tion on each worker’s loss fi(·) implies the L-smoothness
condition on f(·). Assumption 6.1 also implies the L-
gradient Lipschitz condition, i.e., ‖∇fi(x) − ∇fi(y)‖2 ≤
L‖x− y‖2.

Assumption 6.2 (Bounded gradient). Each component loss
function on the i-th worker fi(x) has G-bounded stochastic
gradient on `2 and has G∞-bounded stochastic gradient on
`∞, i.e., for all ξ,

‖∇fi(x; ξ)‖2 ≤ G, ‖∇fi(x; ξ)‖∞ ≤ G∞.

Assumption 6.2 also implies the bounded gradient for
f(x), i.e., ‖∇f(x; ξ)‖2 ≤ G, ‖∇f(x; ξ)‖∞ ≤ G∞. The
bounded gradient assumption has also been used in Kingma
and Ba (2014); Chen et al. (2019); Zhou et al. (2018); Chen
et al. (2018).

Assumption 6.3 (Bounded variance). Each stochastic gra-
dient on the i-th worker g(i,j) = fi(x, ξ

(i,j)) has a bounded
variance, i.e., for all x and all i, j,

Eξ(i,j)∼Di

∥∥∇fi(x, ξ(i,j))−∇fi(x)
∥∥2 ≤ σ2.

Assumption 6.3 implies that the variance of stochastic
gradients is bounded on each worker. The assumption of
bounded variance for stochastic gradient has also been used
in (Basu et al. 2019; Koloskova et al. 2019; Tang et al. 2021).

Now we are ready to present our main theorem.



Theorem 6.4. Under Assumptions 6.1, 6.2 and 6.3, suppose
β1 < β

1/2
2 , then Algorithm 1 achieves an ε-stationary point

of (3.1), i.e., mint∈[T ] E
[
‖∇f(xt)‖22

]
≤ ε, with

αt = α =
ε

3M3
, τ =

⌈
max

{
1,

(
3M4σ

ε

)2}⌉
,

T =

⌈
9M1M3

ε2
+

3M2

ε

⌉
,

where

M1 = (G̃2
∞ + ν)1/2∆f,

M2 =
1

1− β1
(G̃2
∞ + ν)1/2GG̃ν−1/2,

M3 =
L(G̃2

∞ + ν)1/2G̃∞d

ν1/2(1− β2)1/2(1− β1/β1/2
2 )

(
1 +

3β2
1

2(1− β1)

)
+

2θL(G̃2
∞ + ν)1/2GG̃ν−1

√
d

(1− θ)2
,

M4 =
4θ

(1− θ)2
(G̃2
∞ + ν)1/2Gν−1/2,

G̃∞ =
2− π + 2

√
1− π

2− π − 2
√

1− π
G∞, θ =

√
1− π

∆f = f(x1)− inf
x
f(x).

Remark 6.5. Theorem 6.4 suggests that Algorithm 1
reaches the ε-stationary point of (3.1) with O(1/ε2) it-
erations, which matches the iteration complexity of un-
compressed vanilla AMSGrad. This suggests that our pro-
posed communication-compressed distributed AMSGrad al-
gorithm is indeed provably efficient, and the fully com-
pressed distributed adaptive gradient method can reach ε-
stationary point with the same iteration complexity as the
uncompressed counterpart without applying any variance-
freezing tricks.

7 Experiments
In this section, we present empirical results of our pro-
posed communication-compressed distributed adaptive gra-
dient method and compare it with other communication-
compressed distributed baselines. Specifically, we first
present the experimental results on a nonconvex logistic
regression problem as an illustrative case study. Then we
present the deep learning experiments of image classifica-
tion on standard benchmarks.

7.1 Illustrative case study: nonconvex logistic
regression

We consider minimizing the following logistic regression
problem with a nonconvex regularizer similar to Richtárik,
Sokolov, and Fatkhullin (2021),

f(x) =
1

n

n∑
i=1

log
(

1 + exp
(
− yia>i x

))
+ λ

d∑
j=1

x2j
1 + x2j

,

(7.1)

where ai ∈ Rd, yi are training data with value ±1, and λ is
the regularizer parameter. We set λ = 0.1 in the following
nonconvex logistic regression experiments.

We use datasets phishing, mushrooms, a9a and w8a
from LibSVM (Chang and Lin 2011). We equally separate
each dataset to n = 20 parts and each worker keeps the
corresponding subset. For each method, we choose the best
stepsize starting from 0.001 and increase it by adding 0.002
till achieving 0.01.

Let’s first study the effect of using different compres-
sion strategies on AMSGrad, though the other strategies
do not enjoy any theoretical guarantees. Figure 2 com-
pares the gradient norm convergence of our proposed CD-
Adam with AMSGrad using error feedback, naive compres-
sion and without compression at all. For all compressed
methods, we use the scaled sign as a canonical exam-
ple of biased compressor4 C(·). We observe that our pro-
posed CD-Adam achieves the best performances on all
four datasets against the other three compression strate-
gies. Specifically, if we compare the communication cost,
CD-Adam achieves much better communication efficiency
against uncompressed AMSGrad. Compared with the er-
ror feedback and the naive compression, CD-Adam still
achieves a much smaller gradient norm under the same com-
munication budgets. If we compare the performance of dif-
ferent compression strategies under the same iteration com-
plexity, our proposed algorithm achieves roughly the same
final gradient norm as the uncompressed AMSGrad across
all four datasets. In fact, it achieves a much better conver-
gence result comparing with the error feedback and the naive
compression strategies, whose gradient norm stops decreas-
ing at the early stages.

7.2 Deep learning experiments on image
classification

We compare CD-Adam with several state-of-the-art
communication-compressed distributed learning algorithms
that are provably efficient, including: (1) EF21 (Richtárik,
Sokolov, and Fatkhullin 2021) (2) 1-bit Adam (Tang
et al. 2021). Note that the original EF21 paper (Richtárik,
Sokolov, and Fatkhullin 2021) adopts the top-K compressor
as the base compressor C(·) with only worker-to-server
compression applied. For a fair comparison, we further
extend EF21 to allow both worker-to-server and server-to-
worker compression and choose K= 0.016d such that the
communication compression ratio keeps roughly the same
as the scaled-sign based compressor.

We train CIFAR10 (Krizhevsky, Hinton et al. 2009)
using three popular models: ResNet-18 (He et al.
2016), VGG-16 (Simonyan and Zisserman 2014) and
WideResNet-16-4 (Zagoruyko and Komodakis 2016).
The image classification dataset CIFAR10 includes a train-
ing set of 50000 images and a test set of 10000 images,
where each image is assigned one of the 10 labels. The
dataset is split into n = 8 equal parts, which are distributed
to 8 workers. The mini-batch size for each worker is set to

4Additional experiments based on the Top-k biased compressor
can be found in the supplemental materials.
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Figure 2: Gradient norm comparison of different compressing strategies on nonconvex logistic regression trained by AMSGrad
with scaled sign compressor. The upper row shows the norm convergence with respect to the communication cost, and the lower
row is with respect to the training iteration.
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Figure 3: Comparison on gradient norm, training loss and testing accuracy among our proposed method and the baselines when
training ResNet-18 model on CIFAR-10.

be 128. We set the learning rate as 1×10−1 for SGD, which
is used in EF21, and 1 × 10−4 for 1-bit Adam and our pro-
posed CD-Adam. We also set β1 = 0.9 and β2 = 0.99 for
1-bit Adam and our CD-Adam. For 1-bit Adam, its warm-
up epochs are set as 13 according to its original paper (Tang
et al. 2021). The normalized weight decay is set to 5× 10−4

for all methods. We test all methods for 100 epochs and
decay the learning rate by 0.1 at the 50th and 75th epoch.
Due to the space limit, we leave the experimental results on
VGG-16 and WideResNet-16-4 models in the supple-
mental materials.

We show that our proposed algorithm enjoys a fast con-
vergence speed with high accuracy and less communication
cost comparing with EF21 and 1-bit Adam. The first and sec-
ond plots in Figure 3 demonstrate the training gradient norm
in terms of epochs and communication bits respectively. We
can observe that our proposed CD-Adam obtains a smaller
gradient norm than EF21 and 1-bit Adam under the same
epoch or communication budget. Note that since 1-bit Adam
will need to run uncompressed Adam for a few epochs as a
warm-up, its per communication bits performance is actu-
ally much worse (has been shown in Figure 1). The third

plot in Figure 3 shows the training loss against communi-
cation bits on CIFAR-10 dataset. At the early stage of the
training process, CD-Adam and EF21 obtain a similar speed
of reducing the training loss, while 1-bit Adam is much
slower due to the warm-up process. At later stages, CD-
Adam shows a clear advantage compared with EF21. The
last plot in Figure 3 shows the test accuracy against com-
munication bits. Similar phenomenon can be observed that
CD-Adam achieves the overall best test accuracy compared
with EF21 and 1-bit Adam, under the same communication
budget. These results suggest that our proposed CD-Adam
is indeed much more communication-efficient while main-
taining a high accuracy compared with other communication
compression baselines.

8 Conclusion
In this paper, we propose a communication-compressed dis-
tributed adaptive gradient method which solves the bot-
tleneck of applying communication compression strategies
for adaptive gradient methods in distributed settings. We
provide theoretical convergence analysis in the noncon-



vex stochastic optimization setting and show that our pro-
posed algorithm converges to an ε-stationary point with
the same iteration complexity as the uncompressed vanilla
AMSGrad. Furthermore, compared with prior work which
adopts variance-freezed Adam, our proposed algorithm is
fully adaptive during the entire training process. It does not
require any warm-up procedure with uncompressed commu-
nication, leading to better empirical results in terms of both
performance and communication cost.
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