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Abstract
Federated learning (FL) allows multiple clients with (pri-
vate) data to collaboratively train a common machine learn-
ing model without sharing their private training data. In-the-
wild deployment of FL faces two major hurdles: robustness
to poisoning attacks and communication efficiency. To ad-
dress these concurrently, we propose Federated Supermask
Learning (FSL). FSL server trains a global subnetwork
within a randomly initialized neural network by aggregat-
ing local subnetworks of all collaborating clients. FSL clients
share local subnetworks in the form of rankings of network
edges; more useful edges have higher ranks. By sharing inte-
ger rankings, instead of float weights, FSL restricts the space
available to craft effective poisoning updates, and by sharing
subnetworks, FSL reduces the communication cost of train-
ing. We show theoretically and empirically that FSL is ro-
bust by design and also significantly communication efficient;
all this without compromising clients’ privacy. Our experi-
ments demonstrate the superiority of FSL in real-world FL
settings; in particular, (1) FSL achieves similar performances
as state-of-the-art FedAvg with significantly lower communi-
cation costs: for CIFAR10, FSL achieves same performance
as Federated Averaging while reducing communication cost
by ∼ 35%. (2) FSL is substantially more robust to poisoning
attacks than state-of-the-art robust aggregation algorithms.

1 Introduction
Federated Learning (FL) is an emerging AI technology,
where mutually untrusted clients (e.g., Android devices) col-
laborate to train a shared model, called the global model,
without explicitly sharing their local training data. FL train-
ing involves a server (e.g., Google server) which collects
model updates from selected FL clients in each round of
training, and uses them to update the global model. FL, al-
though highly promising, faces multiple challenges (Kairouz
et al. 2019; Li et al. 2020b) to its practical deployment, in
particular, communication efficiency and robustness, which
are the focus of our work. Privacy preservation is another
major challenge to FL, but is orthogonal to our work.

We present Federated Supermask Learning (FSL), a
novel approach to perform FL while concurrently achiev-
ing the two goals of robustness and communication effi-
ciency. FSL is built on a novel learning paradigm called su-
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permasks (Zhou et al. 2019; Ramanujan et al. 2020), which
allows it to reduce communication costs while achieving
significantly higher robustness. Specifically, in FSL, clients
collaborate to find a subnetwork within a randomly initial-
ized neural network which we call the supernetwork (this
is in contrast to conventional FL where clients collaborate to
train a neural network). The goal of training in FSL is to col-
laboratively identify a supermask, which is a binary mask of
1’s and 0’s, that is superimposed on the random neural net-
work (the supernetwork) to obtain the final subnetwork. The
subnetwork is then used for downstream tasks, e.g., image
classification, hence it is equivalent to the global model in
conventional FL. Note that in entire FSL training, weights
of the supernetwork do not change.

More specifically, each FSL client computes the impor-
tance of the edges of the supernetwork based on their lo-
cal data. The importance of the edges is represented as a
ranking vector. Each FSL client will use the edge popup al-
gorithm (Ramanujan et al. 2020) and their data to compute
their local rankings (the edge popup algorithm aims at learn-
ing which edges in a supernetwork are more important over
the other edges by minimizing the loss of the subnetwork
on their local data). Each client then will send their local
edge ranking to the server. Finally, the FSL server uses a
novel voting mechanism to aggregate client rankings into
a supermask, which represents which edges of the random
neural network (the supernetwork) will form the global sub-
network.
Intuitions on FSL’s robustness: In traditional FL algo-
rithms, clients send large-dimension model updates ∈ Rd

(real numbers) to the server, providing malicious clients a
significant flexibility in fabricating malicious updates. By
contrast, FSL clients merely share the rankings of the edges
of the supernetwork, i.e., integers∈ [1, d], where d is the size
of the supernetwork. Therefore, as we will show both theo-
retically and empirically, FSL provides robustness by design
and reduces the impact of untargeted poisoning attacks. Fur-
thermore, unlike most existing robust FL frameworks, FSL
does not require any knowledge about the percentages of
malicious clients.
Intuitions on FSL’s communication efficiency: In FSL,
the clients and the server communicate just the rankings
of the edges in the supernetwork, i.e., a permutation of in-
dices in [1, d]. Ranking vectors are generally significantly



smaller than the global model. This, as we will show, signif-
icantly reduces the upload and download communication in
FSL compared to Federated Averaging (FedAvg) (McMahan
et al. 2017), where clients communicate model parameters,
each of 32/64 bits.
Empirical results: We experiment with three datasets in
real-world heterogeneous FL settings and show that: (1)
FSL achieves similar performance (e.g., model accuracy) as
state-of-the-art FedAvg but with significantly reduced com-
munication costs: for CIFAR10, the accuracy and commu-
nication cost per client are 85.4% and 40.2MB for FedAvg,
while 85.3% and 26.2MB for FSL. (2) FSL is highly robust
to poisoning attacks as compared to state-of-the-art robust
aggregation algorithms: from 85.4% in the benign setting,
10% malicious clients reduce the accuracy of FL to 56.3%
and 58.8% with Trimmed-Mean (Xie, Koyejo, and Gupta
2018; Yin et al. 2018) and Multi-Krum (Blanchard et al.
2017), respectively, while FSL’s performance only decreases
to 79.0%.

We also compare FSL with two communication reduction
methods, SignSGD (Bernstein et al. 2019) and TopK (Alis-
tarh et al. 2018a) and show that FSL produces comparable
communication costs and model accuracies. For instance,
on CIFAR10, FSL, SignSGD, and TopK achieve 85.3%,
79.1%, and 82.1% test accuracy, respectively, when the cor-
responding communication costs (download and upload) are
26.2MB, 20.73MB, and 30.79MB. On the other hand, FSL
offers a significantly superior robustness. For instance, on
CIFAR10, 10% (20%) malicious clients reduce the accu-
racy of SignSGD to 39.7% (10.0%), but FSL’s accuracy de-
creases to only 79.0% (69.5%). TopK is incompatible with
existing robust aggregation algorithms, hence uses Average
aggregation and is as vulnerable as FedAvg, especially in the
real-world heterogeneous settings.

2 Related Works
Supermask Learning: Modern neural networks have a
very large number of parameters. These networks are gen-
erally overparameterized (Dauphin and Bengio 2013; De-
nil et al. 2013), i.e., they have more parameters than they
need to perform a particular task, e.g., classification. The lot-
tery ticket hypothesis (Frankle and Carbin 2019) states that
a fully-trained neural network, i.e., supernetwork, contains
sparse subnetworks, i.e., subsets of all neurons in supernet-
work, which can be trained from scratch (i.e., by training
same initialized weights of the subnetwork) and achieve per-
formances close to the fully trained supernetwork. The lot-
tery ticket hypothesis allows for massive reductions in the
sizes of neural networks. (Ramanujan et al. 2020) offer a
complementary conjecture that an overparameterized neural
network with randomly initialized weights contains subnet-
works which perform as good as the fully trained network.
Poisoning Attacks and Defenses for Federated Learning
(FL): FL involves mutually untrusting clients. Hence, a poi-
soning adversary may own or compromise some of the FL
clients, called malicious clients, with the goal of mounting a
targeted or untargeted poisoning attack. In a targeted attack,
the goal is to reduce the utility of the model on specific test
inputs, while in the untargeted attack, the goal is to reduce

the utility for all (or most) test inputs. It is shown (Blanchard
et al. 2017) that even a single malicious client can mount an
effective untargeted attack on FedAvg.

In order to make FL robust to the presence of such ma-
licious clients, the literature has designed various robust
aggregation rules (AGR) (Blanchard et al. 2017; Mhamdi,
Guerraoui, and Rouault 2018; Yin et al. 2018; Chang et al.
2019), which aim to remove or attenuate the updates that
are more likely to be malicious according to some criterion.
For instance, Multi-krum (Blanchard et al. 2017) repeatedly
removes updates that are far from the geometric median of
all the updates, and Trimmed-mean (Xie, Koyejo, and Gupta
2018; Yin et al. 2018) removes the largest and smallest val-
ues of each update dimension and calculates the mean of
the remaining values. Unfortunately, these robust AGRs are
not very effective in non-convex FL settings and multiple
works have demonstrated strong targeted (Wang et al. 2020;
Bhagoji et al. 2019) and untargeted attacks (Shejwalkar and
Houmansadr 2021; Fang et al. 2020) on them.
Communication Cost of FL: In many real-world applica-
tions of FL, it is essential to minimize the communication
between FL server and clients. Especially in cross-device
FL, the clients (e.g., mobile phones and wearable devices)
have limited resources and communication can be a major
bottleneck. There are two major types of communication re-
duction methods: (1) Qunatization methods reduce the res-
olution of (i.e., number of bits used to represent) each di-
mension of a client update. For instance, SignSGD (Bern-
stein et al. 2019) uses the sign (1 bit) of each dimension of
model updates. (2) Sparsification methods propose to use
only a subset of all the update dimensions. For instance, in
TopK (Aji and Heafield 2017; Alistarh et al. 2018a), only the
largest K% update dimensions are sent to the server in each
FL round. We note that, communication reduction methods
primarily focus on and succeed at reducing upload commu-
nication (client → server), but they use the entire model in
download communication (server→ client).

3 Preliminaries
3.1 Federated Learning
In FL (McMahan et al. 2017; Kairouz et al. 2019; Konečnỳ
et al. 2016), N clients collaborate to train a global model
without directly sharing their data. In round t, the service
provider (server) selects n out of N total clients and sends
them the most recent global model θt. Each client trains a
local model for E local epochs on their data starting from
the θt using stochastic gradient descent (SGD). Then the
client send back the calculated gradients (▽k for kth client)
to the server. The server then aggregates the collected gradi-
ents and updates the global model for the next round. FL can
be either cross-device or cross-silo (Kairouz et al. 2019). In
cross-device FL, N is large (from few thousands to billions)
and only a small fraction of clients is chosen in each FL
training round, i.e., n ≪ N . By contrast, in cross-silo FL,
N is moderate (up to 100) and all clients are chosen in each
round, i.e., n = N . In this work, we evaluate the perfor-
mance of FSL and other FL baselines for cross-device FL
under realistic production FL settings.



Algorithm 1: Edge-popup (EP) algorithm: it finds a subnet-
work of size k% of the entire network θ

1: Input: number of local epochs E, training data D, ini-
tial weights θw and scores θs, subnetwork size k%,
learning rate η

2: for e ∈ [E] do
3: B ← Split D in B batches
4: for batch b ∈ [B] do
5: EP FORWARD (θw, θs, k, b)
6: θs = θs − η∇ℓ(θs; b)
7: end for
8: end for
9: return θs

10: function EP FORWARD(θw, θs, k, b)
11: m← sort(θs)
12: t← int((1− k) ∗ len(m))
13: m[: t] = 0
14: m[t :] = 1
15: θp = θw ⊙m
16: return θp(b)
17: end function

3.2 Edge-popup Algorithm
The edge-popup (EP) algorithm (Ramanujan et al. 2020)
is a novel optimization method to find supermasks within
a large, randomly initialized neural network, i.e., a super-
network, with performances close to the fully trained su-
pernetwork. EP algorithm does not train the weights of the
network, instead only decides the set of edges to keep and
removes the rest of the edges (i.e., pop). Specifically, EP
algorithm assigns a positive score to each of the edges in
the supernetwork. On forward pass, it selects top k% edges
with highest scores, where k is the percentage of the total
number of edges in the supernetwork that will remain in
the final subnetwork. On the backward pass, it updates the
scores with the straight-through gradient estimator (Bengio,
Léonard, and Courville 2013). Algorithm 1 presents EP al-
gorithm; we defer further details to Appendix D.

4 Federated Supermask Learning: Design
In this section, we provide the design of our federated su-
permask learning (FSL) algorithm. FSL clients collaborate
(without sharing their local data) to find a subnetwork within
a randomly initialized, untrained neural network called the
supernetwork. Algorithm 2 describes FSL’s training. Train-
ing a global model in FSL means to first find a unanimous
ranking of supernetwork edges and then use the subnetwork
of the top ranked edges as the final output. We detail a round
of FSL training and depict it in Figure 1, where we use a
supernetwork with six edges ei∈[0,5] to demonstrate a single
FSL round and consider three clients Cj∈[1,3] who aim to
find a subnetwork of size k=50% of the original supernet-
work.

4.1 Server: Initialization Phase (Only for round
t = 1)

In the first round, the FSL server chooses a random seed
SEED to generate initial random weights θw and scores θs

for the global supernetwork θ; note that, θw, θs, and SEED
remain constant during the entire FSL training. Next, the
FSL server shares SEED with FSL clients, who can then lo-
cally reconstruct the initial weights θw and scores θs using
SEED. Figure 1- 1 depicts this step.

Recall that, the goal of FSL training is to find the most
important edges in θw without changing the weights. Unless
specified otherwise, both server and clients use the Singed
Kaiming Constant algorithm (Ramanujan et al. 2020) to
generate random weights and the Kaiming Uniform algo-
rithm (He et al. 2015) to generate random scores. However,
in Appendix C.1, we also explore the impacts of different
initialization algorithms on the performance of FSL. We use
the same seed to initialize weights and scores.

At the beginning, the FSL server finds the global rankings
of the initial random scores (Algorithm 2 line 4), i.e., R1

g =
ARGSORT(θs). We define rankings of a vector as the indices
of elements of vector when the vector is sorted from low to
high, which is computed using ARGSORT function.

Algorithm 2: Federated Supermask Learning (FSL)

1: Input: number of FL rounds T , number of local epochs
E, number of selected users in each round n, seed SEED,
learning rate η, subnetwork size k%

2: Server: Initialization
3: θs, θw ← Initialize random scores and weights of global

model θ using SEED
4: R1

g ← ARGSORT(θs) ▷ Sort the initial scores and
obtain initial rankings

5: for t ∈ [1, T ] do
6: U ← set of n randomly selected clients out of N

total clients
7: for u in U do
8: Clients: Calculating the ranks
9: θs, θw ← Initialize scores and weights using

SEED
10: θs[Rt

g]← SORT(θs) ▷ sort the scores based on
the global ranking

11: S ← Edge-PopUp(E,Dtr
u , θw, θs, k, η)

12: Rt
u ← ARGSORT(S) ▷ Ranking of the client

13: end for
14: Server: Majority Vote
15: Rt+1

g ← VOTE(Rt
u∈U )

16: end for
17: function VOTE(R{u∈U} ):
18: V ← ARGSORT(R{u∈U})
19: A← SUM(V )
20: return ARGSORT(A)
21: end function

4.2 Clients: Calculating the ranks (For each
round t)

In the tth round, FSL server randomly selects n clients
among total N clients, and shares the global rankings Rt

g
with them. Each of the selected n clients locally reconstructs
the weights θw’s and scores θs’s using SEED (Algorithm 2



line 9). Then, each FSL client reorders the random scores
based on the global rankings, Rt

g (Algorithm 2 line 10); we
depict this in Figure 1- 2a .

Next, each of the n clients uses reordered θs and finds a
subnetwork within θw using Algorithm 1; to find a subnet-
work, they use their local data and E local epochs (Algo-
rithm 2 line 11). Note that, each iteration of Algorithm 1 up-
dates the scores θs. Then client u computes their local rank-
ings Rt

u using the final updated scores (S) and ARGSORT(.),
and sends Rt

u to the server. Figure 1- 2a shows how each
of the selected n clients reorders the random scores using
global rankings. For instance, the initial global rankings for
this round are Rt

g = [2, 3, 0, 5, 1, 4], meaning that edge e4
should get the highest score (s4 = 1.2), and edge e2 should
get the lowest score (s2 = 0.2).

Figure 1- 2b shows, for each client, the scores and rank-
ings they obtained after finding their local subnetwork. For
example, rankings of client C1 are Rt

1 = [4, 0, 2, 3, 5, 1], i.e.,
e4 is the least important and e1 is the most important edge
for C1. Considering desired subnetwork size to be 50%, C1

uses edges {3,5,1} in their final subnetwork.

4.3 Server: Majority Vote (For each round t)
The server receives all the local rankings of the selected n
clients, i.e., Rt

{u∈U}. Then, it performs a majority vote over
all the local rankings using VOTE(.) function. Note that, for
client u, the index i represents the importance of the edge
Rt

u[i] for Cu. For instance, in Figure 1- 2b , rankings of C1

are Rt
1 = [4, 0, 2, 3, 5, 1], hence the edge e4 at index=0 is the

least important edge for C1, while the edge e1 at index=5 is
the most important edge. Consequently, VOTE(.) function
assigns reputation=0 to edge e4, reputation=1 to e0, reputa-
tion=2 to e2, and so on. In other words, for rankings Rt

u of
Cu and edge ei, VOTE(.) computes the reputation of ei as
its index in Rt

u. Finally, VOTE(.) computes the total reputa-
tion of ei as the sum of reputations from each of the local
rankings. In Figure 1- 2b , reputations of e0 are 1 in Rt

1, 1
in Rt

2, and 0 in Rt
3, hence, the total reputation of e0 is 2.

We depict this in Figure 1- 3 ; here, the final total reputa-
tions for edges e{i∈[0,5]} are A = [2, 12, 3, 11, 8, 9]. Finally,
the server computes global rankings Rt+1

g to use for round
t + 1 by sorting the final total reputations of all edges, i.e.,
Rt+1

g = ARGSORT(A).
Note that, all FSL operations that involve sorting, re-

ordering, and voting are performed in a layer-wise man-
ner. For instance, the server computes global rankings Rt

g
in round t for each layer separately, and consequently, the
clients selected in round t reorder their local randomly gen-
erated scores θs for each layer separately.

5 Federated Supermask Learning: Salient
Features

In this section, we discuss the two salient features of FSL
that are instrumental for any distributed learning algorithm
to be practical: robustness to poisoning attacks and commu-
nication efficiency.

5.1 Robustness of FSL to Poisoning Attacks
FSL is a distributed learning algorithm with mutually un-
trusting clients. Hence, a poisoning adversary may own or
compromise some of FSL clients, called malicious clients,
and mount a targeted or untargeted poisoning attack. In our
work, we consider the untargeted attacks as they are more se-
vere than targeted attacks and can cause denial-of-service for
all collaborating clients (Shejwalkar et al. 2021) and show
that FSL is secure against such poisoning attacks by design.
Intuition on FSL’s robustness: Existing FL algorithms,
including robust FL algorithms, are shown to be vulnera-
ble to targeted and untargeted poisoning attacks (Shejwalkar
et al. 2021) where malicious clients corrupt the global model
by sharing malicious model updates. One of the key rea-
sons behind the susceptibility of existing algorithms is that
their model updates can have arbitrary values. For instance,
to manipulate vanilla FedAvg, malicious clients send very
large updates (Blanchard et al. 2017), and to manipulate
Multi-krum and Trimmed-mean, (Fang et al. 2020; She-
jwalkar and Houmansadr 2021) propose to perturb a benign
update in a specific malicious direction. On the other hand,
in FSL, clients must send a permutation of indices ∈ [1, nℓ]
for each layer. Hence, FSL significantly reduces the space of
the possible malicious updates that an adversary can craft.
Majority voting in FSL further reduces the chances of suc-
cessful attack. Intuitively, this makes FSL design robust to
poisoning attacks. Below, we make this intuition more con-
crete.
The worst-case untargeted poisoning attack on FSL:
Here, the poisoning adversary aims to reduce the accuracy
of the final global FSL subnetwork on most test inputs. To
achieve this, the adversary should replace the high ranked
edges with low ranked edges in the final subnetwork. For
the worst-case analysis of FSL, we assume a very strong ad-
versary (i.e., threat model): 1) each of the malicious clients
has some data from benign distribution; 2) malicious clients
know the entire FSL algorithm and its parameters; 3) mali-
cious clients can collude. Under this threat model we design
a worst case attack on FSL (Algorithm 3 in Appendix A.1),
which executes as follows: First, all malicious clients com-
pute rankings on their benign data and use VOTE(.) algo-
rithm to compute an aggregate rankings. Finally, each of the
malicious clients uses the reverse of the aggregate rankings
to share with the FSL server in given round. The adversary
should invert the rankings layer-wise as the FSL server will
aggregate the local rankings per layer too, and it is not pos-
sible to mount a model-wise attack.

Now we justify why the attack in Algorithm 3 is the worst
case attack on FSL for the strong threat model we consider.
Note that, FSL aggregation, i.e., VOTE(.), computes the rep-
utations using clients’ rankings and sums the reputations of
each network edge. Therefore, the strongest poisoning attack
would want to reduce the reputation of good edges. This can
be achieved following the aforementioned procedure of Al-
gorithm 3 to reverse the rankings computed using benign
data.
Theoretical analysis of robustness of FSL algorithm: In
this section, we prove an upper bound on the failure proba-
bility of robustness of FSL, i.e., the probability that a good



Figure 1: A single FSL round with three clients and network of 6 edges.

edge will be removed from the final subnetwork when mali-
cious clients mount the worst case attack.

Following the work of (Bernstein et al. 2019), we make
two assumptions in order to facilitate a concrete robustness
analysis of FSL: a) each malicious client has access only to
its own data, and b) we consider a simpler VOTE(.) function,
where the FSL server puts an edge ei in the final subnetwork
if more than half of the clients have ei (a good edge) in their
local subnetworks. In other words, the rankings that each
client sends to the server is just a bit mask showing that each
edge should or should not be in the final subnetwork. The
server makes a majority vote on the bit masks, and if an edge
has more than half votes, it will be in the global subnetwork.
Our VOTE(.) mechanism has more strict robustness crite-
rion, as it uses more nuanced reputations of edges instead
of bit masks. Hence, the upper bound on failure probability
in this section also applies to the FSL VOTE(.) function.

The probability that our voting system fails is the proba-
bility that more than half of the votes do not include ei in
their subnetworks. The upper bound on the probability of

failure would be 1/2
√

np(1−p)
(n(p+α(1−2p)−1/2))2 , where n is the

number of clients being processed, p shows the probability
that a benign client puts ei in their top ranks, and α is the
fraction of malicious clients. Due to space limitations, we
defer the detailed proof to Appendix A.2. Figure 2 shows
the upper bound on the failure of VOTE(.) for different val-
ues of α and p. We note that, the higher the probability p,
the higher the robustness of FSL.

5.2 FSL’s Communication Costs
In FL, and especially in the cross-device setting, clients have
limited communication bandwidth. Hence, FL algorithms
must be communication efficient. We discuss here the com-
munication cost of FSL algorithm. In the first round, the FSL
server only sends one seed of 32 bits to all the FSL clients,
so they can construct the random weights (θw) and scores
(θs). In a round t, each of selected FSL clients receives the
global rankings Rt

g and sends back their local rankings Rt
u.

The rankings are a permutation of the indices of the edges in
each layer, i.e., of [0, nℓ−1]∀ℓ ∈ [L] where L is the number
of layers and nℓ is the number of parameters in ℓth layer.

We use the naive approach to communicate layer-wise
rankings, where each FSL client exchanges a total of∑

ℓ∈[L] nℓ× log(nℓ) bits. Because, for the layer ℓ, the client
receives and sends nℓ ranks where each one is encoded
with log(nℓ) bits. On the other hand, a client exchanges∑

ℓ∈[L] nℓ × 32 bits in FedAvg, when 32 bits are used to
represent each of nℓ weights in layer ℓ. In Appendix E, we
compare theoretical communication costs of various FL al-
gorithms.
Sparse-FSL: Here, we propose Sparse-FSL, a simple ex-
tension of FSL to further reduce the communication cost.
In Sparse-FLS, a client sends only the most important ranks
of their local rankings to the server for aggregation. For in-
stance, in Figure 1, client C1 sends Rt

1 = [4, 0, 2, 3, 5, 1]
in case of FSL. But in sparse-FSL, with sparsity set to
50%, client C1 sends just the top 3 rankings, i.e., sends
R′t

1 = [3, 5, 1]. For each client, the sparse-FSL server as-
sumes 0 reputation for all of the edges not included in the
client’s rankings, i.e., in Figure 1, sparse-FSL server will as-
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Figure 2: Upper bound on the failure probability of VOTE(.)
function in FSL.
sign reputation=0 for edges e4, e0, and e2. Then the server
uses VOTE(.) to compute total reputations of all edges and
then sort them to obtain the final aggregate global rankings,
i.e., Rt+1

g , to use for subsequent rounds. We observe in out
experiments, that sparse-FSL performs very close to FSL,
even with sparsity as low as 10%, while also significantly
reducing the communication cost. Due to space limitation,
we defer the communication cost comparison of FSL with
FedAvg, SingSGD, and LotteryFL (Li et al. 2020a) to Ap-
pendix E.

6 Experiments
In this section, we investigate the utility, robustness, and
communication cost of our FSL framework. We use MNIST,
CIFAR10, and FEMNIST data and distribute them in non-iid
fashion (using Dirichlet distribution) among 1000, 1000, and
3400 clients respectively. At the end of the training, we cal-
culate the test accuracy of all the clients on the final global
model, and we report the mean and standard deviation of all
clients’ test accuracies in our experiments. We provide fur-
ther details of experimental setup in Appendix B. In addition
to FSL, we also evaluate Sparse-FSL in different settings.
We use SFSL top x% to denote a Sparse-FSL clients who
sends top x% of ranks in each round.

6.1 Communication Cost Analysis
In FSL, both clients and server communicate just the edge
ranks instead of weight parameters. Thus, FSL reduces both
upload and download communication cost. Table 1 illus-
trates the utility, i.e., the accuracy on test data, and com-
munication cost of FSL and state-of-the-art quantization,
i.e., SignSGD (Bernstein et al. 2019), and sparsification,
i.e., TopK (Alistarh et al. 2018b; Aji and Heafield 2017)
communication-reduction methods.
FSL versus SignSGD: We note that, FSL is significantly
more accurate than SignSGD. For instance, on CIFAR10,
distributed non-iid among 1000 clients, FSL achieves 85.3%
while SignSGD achieves 79.1% , or on FEMNIST, FSL

achieves 84.2% while SignSGD achieves 79.3%. This is
because, FSL clients send more nuanced information via
rankings of their subnetworks compared to SignSGD, where
clients just send the signs of their model updates.

SignSGD in FL reduces only the upload communica-
tion, but for efficiency reasons, the server sends all of the
weight parameters (each of 32 bits) to the newly selected
clients. Hence, SignSGD has very efficient upload commu-
nication, but very inefficient download communication. For
instance, on CIFAR10, for both upload and download, FSL
achieves 13.1MB each while SignSGD achieves 0.63MB
and 20.1MB, respectively.
FSL versus TopK: We compare FSL with TopK with K ∈
{10, 50}%. FSL is more accurate than Topk for MNIST
and CIFAR10: on CIFAR10, FSL accuracy is 85.3%, while
TopK accuracies are 82.1% and 77.8% with K=50% and
K=10%, respectively. Similar to SignSGD, Topk is more
efficiently reduces upload cost, but has very high down-
load communication cost. Therefore, the combined upload
and download communication cost per client per round is
26.2MB for FSL and 30.79MB for TopK with K=50%, and
TopK still has worse performance.
Communication cost reduction due to Sparse-FSL
(SFSL): We now evaluate SFSL explained in Section 5.2.
In SFSL with top 50% ranks, clients send the top 50% of
their ranks to the server, which reduces the upload band-
width consumption by half. Please note that the download
cost of SFSL is the same as FSL since the FSL server should
send all the global rankings to the selected clients in each
round. We note from Table 1 that, by sending fewer ranks,
SFSL reduces upload communication at a small cost of per-
formance. For instance, on CIFAR10, SFLS with top 50%
reduces the upload communication by 50% at the cost re-
ducing accuracy from 85.4% to 77.6%.

6.2 Security Analysis
We compare FSL with state-of-the-art robust aggrega-
tion rules (AGRs): Mkrum (Blanchard et al. 2017), and
Trimmed-mean (Xie, Koyejo, and Gupta 2018; Yin et al.
2018). Table 2 gives the performances of robust AGRs,
SignSGD, and FSL with different percentages of malicious
clients. Here, we make a rather impractical assumption in
favor of the robust AGRs: we assume that the server knows
the exact % of malicious clients in each FL round. FSL does
not require this knowledge.
FSL achieves higher robustness than state-of-the-art ro-
bust AGRs: We note from Table 2 that, FSL is more ro-
bust to the presence of malicious clients who try to poison
the global model compared to Multi-Krum, Trimmed-mean,
and SignSGD for both 10% and 20% malicious clients rates.
For instance, on CIFAR10, 10% malicious clients can de-
crease the accuracy of FL models to 56.3%, 58.8%, and
39.8% for Trimmed-mean, Multi-Krum, and SignSGD re-
spectively; 20% malicious clients can decrease the accuracy
of the FL models to 20.5%, 25.6%, 10.0% for Trimmed-
mean, Multi-Krum, and SignSGD respectively. On the other
hand, FSL performance decreases to 79.0% and 69.5% for
10% and 20% attacking ratio respectively.



Table 1: Comparing the utility (test accuracy) and communication cost of FedAvg, FSL (in bold), SignSGD and, TopK and
Sparse-FSL (SFSL) with different percentages of sparsity (in bold).

Dataset Algorithm Accuracy (STD) Upload (MB) Download (MB)

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.1) 6.20 6.20
FSL 98.8 (3.2) 4.05 4.05

SFSL Top 50% 98.2 (3.8) 2.03 4.05
SFSL Top 10% 89.5 (9.2) 0.40 4.05

SignSGD 97.2 (4.6) 0.19 6.20
TopK 50% 98.8 (3.2) 3.29 6.20
TopK 10% 98.7 (3.2) 0.81 6.20

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 20.1 20.1
FSL 85.3 (11.3) 13.1 13.1

SFSL Top 50% 77.6 (13.0) 6.5 13.1
SFSL Top 10% 27.5 (14.4) 1.3 13.1

SignSGD 79.1 (13.6) 0.63 20.1
TopK 50% 82.1 (11.8) 10.69 20.1
TopK 10% 77.8 (13.0) 2.64 20.1

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.23 6.23
FSL 84.2 (10.7) 4.06 4.06

SFSL Top 50% 75.2 (12.7) 2.03 4.06
SFSL Top 10% 59.2 (15.0) 0.40 4.06

SignSGD 79.3 (12.4) 0.19 6.23
TopK 50% 85.7 (9.9) 3.31 6.23
TopK 10% 85.5 (10.0) 0.81 6.23

We make similar observations for MNIST and FEMNIST
datasets: for FEMNIST, 10% (20%) malicious clients reduce
accuracy of the global model from 85.8% to 72.7% (56.2%)
for Trimmed-Mean, to 80.9% (23.7%) for Multi-krum, and
76.7% (55.1%) for SignSGD, while FSL accuracy decreases
to 83.0% (65.8%). We omit evaluating TopK, because even
a single malicious client (Blanchard et al. 2017) can jeopar-
dize its accuracy.

6.3 Miscellaneous Discussions
Due to space limitations, we defer a detailed discussion of
ablation studies of FSL to Appendix C and below give their
important takeaways.
Initialization matters in FSL: In FSL, the weight param-
eters are randomly initialized at the start and remain fixed
throughout the training. An appropriate initialization is in-
strumental to the success of FSL, since the clients are trying
to find the most important weight parameters. We study ef-
ficacy of three initializing strategies that use three different
distributions: Glorot Normal, Kaiming Normal, and Singed
Kaiming Constant. Table 4 shows the results. We observe
from Table 4 that, Singed Kaiming Constant initialization
achieves the best results that are closest to FedAvg.
Varying the sparsity of edge-popup algorithm in FSL:

Figure 3 illustrates how the performance of FSL varies with
the sizes of local subnetworks that the clients share with
the server. In other words, when we vary the sparsity k%
of edge popup algorithm during local subnetwork search
k ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90]%. Interestingly we
note that, FSL performs the worst when clients use all
(k=100%) or none (k=0%) of the edges. This is because, it

is difficult to find a subnetwork with small number of edges.
While using all of the edge essentially results in using a ran-
dom neural network. As we can see FSL with k ∈ [40, 70]%,
gives the best performances for all the three datasets. Hence,
we set k=50% by default in our experiments.

7 Conclusions
We designed a novel collaborative learning algorithm, called
Federated Supermask Learning (FSL), to address the issues
of robustness to poisoning and communication efficiency
in existing FL algorithms. We argue that a core reason for
the susceptibility of existing FL algorithms to poisoning is
the use of arbitrary values in their model updates. Hence,
in FSL, we use ranks of edges of a randomly initialized
neural network contributed by collaborating clients to find
a global ranking and then use a subnetwork based only on
the top edges. Use of rankings in a fixed range restricts the
space available to poisoning adversaries to craft malicious
updates, and also allows FSL to use sophisticated communi-
cation reduction methods. We show, both theoretically and
empirically, that ranking based collaborative learning can ef-
fectively mitigate the robustness issue as well as reduce the
communication costs involved.
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A Missing Details of Robustness of FSL
A.1 FSL Worst Case Poisoning Attack Algorithm
Algorithm 3 shows the rankings poisoning attack explained
in Section 5.

Algorithm 3: FSL Poisoning

1: Input: number of malicious clients M , number of ma-
licious local epochs E′, seed SEED, global ranking Rt

g ,
learning rate η, subnetwork size k%

2: function CRAFTMALICIOUSUP-
DATE(M, SEED, Rt

g, E
′, η, k):

3: for mu ∈ [M ] do ▷ For all the malicious clients
4: Malicious Client Executes:
5: θs, θw ← Initialize scores and weights using

SEED
6: θs[Rt

g]← SORT(θs)

7: S ← Edge-PopUp(E′, Dtr
u , θw, θs, k, η)

8: Rt
mu ← ARGSORT(S) ▷ Ranking of the

malicious client
9: end for

10: Aggregation:
11: Rt

m ← VOTE(Rt
mu∈[M ]) ▷ Majority vote

aggregation
12: return REVERSE(Rt

m) ▷ reverse the ranking
13: end function

A.2 Theoretical analysis of robustness of FSL
In this section, we detail the proof of robustness of FSL. In
other words, we prove an upper bound on the failure proba-
bility of robustness of FSL, i.e., the probability that a good
edge will be removed from the final subnetwork when ma-
licious clients mount the worst case attack. Inspired from
SignSGD (Bernstein et al. 2019), for this proof, We assume
a simpler VOTE(.) function where if more than half of the
clients add an edge ei to their subnetworks, then the FSL
server adds it to the final global subnetwork. We also assume
that the malicious clients cannot collude in our proof.

Assume that edge ei is a good edge, i.e., having ei in the
final subnetwork improves the performance of the final sub-
network. Let Z be the random variable that represents the
number of clients who vote for the edge ei to be in the final
subnetwork, i.e., the number of clients whose local subnet-
work of size k% of the entire supernetwork (Algorithm 2
line 11) contains ei. Therefore, Z ∈ [0, n] where n is the
number of clients being processed in a given FSL round.

Let G and B be the random variable that represent the
number of benign and malicious clients that vote for edge
ei, respectively; the malicious clients inadvertently exclude
the good edge ei in their local subnetwork based on their
benign training data.



There are total of αn malicious clients, where α is the
fraction of malicious clients that B of them decides that ei is
a bad edge and should not be removed. Each of the malicious
clients computes the subnetwork on its own benign training
data, so B of them do not conclude that ei is a good edge.
Hence, Z = G+B. We can say that G and B have binomial
distribution , i.e., G ∼ binomial([(1 − α)n, p] and B ∼
binomial([αn, 1−p] where p is the probability that a benign
client has this edge in their local subnetwork and α is the
fraction of malicious clients. Note that the probability that
our voting in simplified FSL fails is P [failure] = P [Z <=
n
2 ], i.e., when more than half of the clients vote against ei,
i.e., they do not include ei in their local subnetworks. We
can find the mean and variance of Z as follows:

E[Z] = (1− α)np+ αn(1− p) (1)

V ar[Z] = (1−α)np(1−p)+αnp(1−p) = np(1−p) (2)

(Cantelli 1929) provides an inequality where for a random
variable X with mean µ and variance σ2 we have P [µ −
X >= λ] <= 1

1+λ2

σ2

. Using this inequality, we can write:

P [Z <=
n

2
] = P [E[Z]− Z >= E[Z]− n/2] (3)

<=
1

1 + (E[z]−n/2)2

var[Z]

because 1 + x2 >= 2x, we have:

P [Z <=
n

2
] <= 1/2

√
V ar[Z]

(E[Z]− n/2)2
(4)

= 1/2

√
np(1− p)

(np− αnp+ αn− αnp− n/2)2

= 1/2

√
np(1− p)

(n(p+ α(1− 2p)− 1/2))2

What this means is that the probability that the simpli-
fied VOTE(.) fails is upper bounded as in (4). We show the
effect of the different values of α and p in Figure 2. We
can see from Figure 2, if the benign clients can train bet-
ter supermasks (better chance that a good edge ended in
their subnetwork), the probability that the attackers succeed
is lower (more robustness). VOTE(.) in FSL (Section 4.3) is
more sophisticated and puts more constraints on the mali-
cious clients, hence the about upper bound also applies to
FSL.

B Missing Details of Experimental Setup
B.1 Datasets and model architectures
MNIST is a 10-class class-balanced classification task with
70,000 gray-scale images, each of size 28 × 28. We exper-
iment with LeNet architecture given in Table 3. For local
training in each FSL/FL round, each client uses 2 epochs.
For training weights (experiments with FedAvg, SignSGD,
TopK), we use SGD optimizer with learning rate of 0.01,

momentum of 0.9, weight decay of 1e-4, and batch size 8.
For training supermasks (experiments with FSL), we use
SGD with learning rate of 0.4, momentum 0.9, weight de-
cay 1e-4, and batch size 8.
CIFAR10 (Krizhevsky and Hinton 2009) is a 10-class clas-
sification task with 60,000 RGB images (50,000 for training
and 10,000 for testing), each of size 32 × 32. We experi-
ment with a VGG-like architecture given in Table 3, which
is identical to what (Ramanujan et al. 2020) used. For local
training in each FSL/FL round, each client uses 5 epochs.
For training weights (experiments with FedAvg, SignSGD,
TopK), we use SGD with learning rate of 0.1, momentum of
0.9, weight decay of 1e-4, and batch size of 8. For training
supermasks (experiments with FSL), we optimize SGD with
learning rate of 0.4, momentum of 0.9, weight decay of 1e-4,
and batch size of 8.
FEMNIST (Caldas et al. 2018; Cohen et al. 2017) is a char-
acter recognition classification task with 3,400 clients, 62
classes (52 for upper and lower case letters and 10 for digits),
and 671,585 gray-scale images. Each client has data of her
own handwritten digits or letters. We use LeNet architecture
given in Table 3. For local training in each FSL/FL round,
each client uses 2 epochs. For training weights (experiments
with FedAvg, SignSGD, TopK), we use SGD with learning
rate of 0.15, momentum of 0.9, weight decay of 1e-4, and
batch size of 10. For training supermasks (experiments with
FSL), we optimize SGD with learning rate of 0.2, momen-
tum of 0.9, weight decay of 1e-4, and batch size of 10.

B.2 Non-iid Data Distribution
Considering the heterogeneous data in the real-word cross-
device FL, we distribute MNIST and CIFAR10 among
1,000 clients in a non-iid fashion using Dirichlet distribu-
tion (Minka 2000) with parameter α = 1. Note that increas-
ing α results in more iid datasets. Next, we split datasets of
each client into training (80%) and test (20%). At the end of
the FL rounds, we calculate the test accuracy of each client
for its test data, and we report the average of test accuracies
of all the clients. We run all the experiments for 2000 global
rounds of FSL and FL and select 25 clients in each round.

B.3 Baseline FL Algorithms
Federated averaging In non-adversarial FL settings, i.e.,
without any malicious clients, the dimension-wise Average
(FedAvg) (Konečnỳ et al. 2016; McMahan et al. 2017) is an
effective AGR. In fact, due to its efficiency, Average is the
only AGR implemented by FL applications in practice (Lud-
wig et al. 2020; Paulik, Seigel, and and 2021).
SignSGD is a quantization method used in distributed learn-
ing to compress each dimension of updates into 1 bit instead
of 32 or 64 bits. To achieve this, in SignSGD (Bernstein et al.
2019) the clients only send the sign of the gradient updates
to the server, and the server runs a majority vote on them.
SignSGD is designed for distributed learning where all the
clients participate in each round, so all the clients are aware
of the most updated weight parameters of the global model.
However, using SignSGD in FL just provides benefit in up-
load bandwidth, but to achieve good overall performance of



Table 3: Model architectures. We use identical architecture to those (Ramanujan et al. 2020; Wortsman et al. 2020) used.

Architecture Layer Name Number of parameters

LeNet + MNIST
(Wortsman et al. 2020)

Convolution(32) + Relu 288
Convolution(64) + Relu 18432

MaxPool(2x2) -
FC(128) + Relu 1605632

FC(10) 1280

Conv8 + CIFAR10
(Ramanujan et al. 2020)

Convolution(64) + Relu 1728
Convolution(64) + Relu 36864

MaxPool(2x2) -
Convolution(128) + Relu 73728
Convolution(128) + Relu 147456

MaxPool(2x2) -
Convolution(256) + Relu 294912
Convolution(256) + Relu 589824

MaxPool(2x2) -
Convolution(512) + Relu 1179648
Convolution(512) + Relu 2359296

MaxPool(2x2) -
FC(256) + Relu 524288
FC(256) + Relu 65536

FC(10) 2560

LeNet + FEMNIST
(Wortsman et al. 2020)

Convolution(32) + Relu 288
Convolution(64) + Relu 18432

MaxPool(2x2) -
FC(128) + Relu 1605632

FC(62) 7936

the global model, the server should send all the weight pa-
rameters (each of 32 bits) to the newly selected clients in
each round. This makes SignSGD very efficient in upload
cost, but it is as inefficient as FedAvg in download.
TopK is a Sparsification method used in distributed learn-
ing that transmits only a few elements in each model update
to the server. In TopK (Aji and Heafield 2017; Alistarh et al.
2018a), the clients first sort the absolute values of their lo-
cal gradient updates, and send the Top K% largest gradients
update dimensions to the server for aggregation. TopK suf-
fers from the same problem as SignSGD: for performance
reasons, the server should send the entire updated model
weights to the new selected clients.

B.4 Model Poisoning Attack for Robustness
Evalutions

To evaluate robustness of various FL algorithms, we use
state-of-the-art model poisoning attack proposed by (She-
jwalkar and Houmansadr 2021) in our robustness experi-
ments. The attack proposes a general FL poisoning frame-
work and then tailors it to specific FL settings. It first com-
putes an average ∇b of the available benign updates and
perturbs it in a dynamic, data-dependent malicious direc-
tion ω to compute the final poisoned update∇′ = ∇b + γω.
DYN-OPT finds the largest γ that successfully circumvents
the target AGR. DYN-OPT is much stronger, because unlike
STAT-OPT, it finds the largest γ and uses a dataset tailored

ω.



C Missing Experiments
C.1 FSL: Initialization Matters

Table 4: Comparing the performance of FSL with differ-
ent random weight initialization algorithms with the per-
formance of vanilla FedAvg for cross-device setting. Using
Singed Kaiming Constant as weight initialization gives the
best performance for all the datasets.

Dataset Metric Algorithm
FedAvg FSL

Winit ∼ - XN NK UK

MNIST
LeNet
N=1000

Mean 98.8 96.6 98.7 98.8
STD 3.1 5.2 3.2 3.1
Min 75.0 57.1 75.0 75.0
Max 100 100 100 100

CIFAR10
Conv
N=1000

Mean 85.4 63.6 82.0 85.3
STD 11.2 15.6 11.9 11.3
Min 33.3 0 0 33.3
Max 100 100 100 100

FEMNIST
LeNet
N=3400

Mean 85.8 69.2 82.9 84.2
STD 10.2 14.2 11.1 10.7
Min 10.0 0 14.3 7.1
Max 100 100 100 100

In FSL, the weight parameters are fixed throughout the FSL
protocol and they are initialized randomly at the beginning
of the protocol. It is very important to appropriately initial-
ize the weights since the clients will find the subnetworks
within these weights. We use three different distribution for
initializing the weight parameters as follows:
Glorot Normal (Glorot and Bengio 2010) where we denote
byXN . Previous work (Zhou et al. 2019) used this initializa-
tion to demonstrate that subnetworks of randomly weighted
neural networks can achieve impressive performance.
Kaiming Normal (He et al. 2015) where we denote by Nk

defined asNK = N
(
0,
√
2/nℓ−1

)
whereN shows normal

distribution. nℓ shows the number of parameters in the ℓth
layer.
Singed Kaiming Constant (Ramanujan et al. 2020) where
all the wights are a constant σ but they are assigned {+,−}
randomly. This constant, σ, is the standard deviation of
Kaiming Normal. We show this initialization with UK as we
are sampling from {−σ,+σ} where σ =

(√
2/nℓ−1

)
.

Table 4 shows the results of running FSL for three datasets
under the three aforementioned initialization algorithms. We
compare FSL with FedAvg and report the mean, standard
deviation, minimum, and maximum of the accuracies for
the clients’ local subnetwork (for FSL) and local models
(for FedAvg) at the end of FSL/FedAvg training. As we can
see under three different random initialization, using Signed
Kaiming Normal (UK) results in better performance. We
note from Table 4 that FSL with Signed Kaiming Normal
(UK) initialization achieves performance very close to the
performance of FedAVg.

Note that, since the FSL clients update scores in each
round, unlike initialization of weights, initialization of
scores does not have significant impact on the final global
subnetwork search. Therefore, we do not explore different
randomized initialization algorithms for scores and simply
use Kaiming Uniform initialization for scores.

(Ramanujan et al. 2020) also considered these three ini-
tialization to find the best subnetwork in centralized machine
learning setting. They also showed that using Singed Kaim-
ing Normal gives the best supermasks. Our results align with
their conclusions, hence we use Singed Kaiming Normal to
initialize the weights and Kaiming Uniform to initialize the
scores of global supernetwork.

C.2 Performances of FSL with Varying Sizes of
Subnetworks

In FSL, each client uses Edge-Pop Algorithm (Ramanujan
et al. 2020) and their local data to find a local subnetwork
within a randomly initialized global network, which we call
supernetwork. Edge-Pop algorithm use parameter k which
represents the % of all the edges in a supernetwork which
will remain in the final subnetwork. For instance, k = 50%
denotes that each client finds a subnetwork within a super-
network that has half the number of edges as in the super-
network.

Figure 3 illustrates how the performance of the global
subnetwork in FSL varies with the size of subnetwork;
note that, all of the clients collaborate to find the
global subnetwork. We train nine FSL models with k ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90}% and a FedAvg model
(shown using a horizontal line); FedAvg model updates all
the weights, hence it is a supermask with k = 100%.

D Missing Details of Edge-Popup Algorithm
Suppose in a fully connected neural network, there are L
layers and layer ℓ ∈ [1, L] has nℓ neurons, denoted by
V ℓ = {V ℓ

1 , ..., V
ℓ
nℓ
}. If Iv and Zv denote the input and out-

put for neuron v respectively, then the input of the node
v is the weighted sum of all nodes in previous layer, i.e.,
Iv =

∑
u∈V ℓ−1 WuvZu. Here, Wuv is the weight of the

edge connecting u to v. Edge-popup algorithm tries to find
subnetwork E, so the input for neuron v would be: Iv =∑

(u,v)∈E WuvZu.
Updating scores. Consider an edge Euv that connects two
neurons u and v, Wuv be the weight of Euv , and suv be the
score assigned to the edge Euv by Edge-popup algorithm.
Then the edge-popup algorithm removes edge Euv from the
supermask if its score suv is not high enough. Each itera-
tion of supermask training updates the scores of all edges
such that, if having an edge Euv in subnetwork reduces loss
(e.g., cross-entropy loss) over training data, the score suv
increases.

The algorithm selects top k% edges (i.e., finds a sub-
network with sparsity of k%) with highest scores, so Iv
reduces to Iv =

∑
u∈V ℓ−1 WuvZuh(suv) where h(.) re-

turns 1 if the edge exists in top-k% highest score edges
and 0 otherwise. Because of existence of h(.), which is
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Figure 3: Comparing performance of FSL for different subnetwork sizes. k (x-axis) shows the % of weights that each client is
including in its subnetwork, test accuracy (y-axis) shows the mean of accuracies for all the clients on their test data. The chosen
clients in each round send all the ranks to the server. FSL with subnetworks of ∈ [40%, 70%] result in better performances.
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Figure 4: Communication cost Analysis
not differentiable, it is impossible to compute the gradi-
ent of loss with respect to suv . Recall that, the edge-popup
algorithm use straight-through gradient estimator (Bengio,
Léonard, and Courville 2013) to compute gradients. In this
approach, h(.) will be treated as the identity in the back-
ward pass meaning that the upstream gradient (i.e., ∂L

∂Iv
)

goes straight-through h(). Now using chain rule, we can
derive ∂L

∂Iv
∂Iv
∂suv

= ∂L
∂Iv

WuvZuwhere L is the loss to mini-
mize. Then we can SGD with step size η to update scores as
suv ←− suv − η ∂L

∂Iv
ZuWuv .

E Missing Details About Communication
Cost Comparison

One of the features of the FSL training is its communication
efficiency. In Section 5.2, we show that if the FSL clients
send and receive rankings, the communication cost will be∑

ℓ∈[L] nℓ × log(nℓ) bits per client. In this section, we are
providing a lower bound on the FSL communication cost,
and then compare it with FedAvg and SignSGD.
Lowerbound of communication cost of FSL: Since the
FSL clients send and receive layer-wise rankings of in-
dices, i.e., integers ∈ [0, nℓ − 1], for layer ℓ, there are
nℓ! possible permutations for layer ℓ ∈ [L]. If we use

the best possible compression method in FSL, an FSL
client needs to send and receive

∑
ℓ∈[L] log(nℓ!) bits. There-

fore, the download and upload bandwidth for each FSL
client would be

∑
ℓin[L] log (nℓ ∗ (nℓ − 1) ∗ ... ∗ 2 ∗ 1) =∑

ℓ∈[L]

∑nℓ

i=1 log(i) bits. Please note that in our experi-
ment, FSL clients send and receive the rankings without any
further compression, and

∑
ℓ∈[L]

∑nℓ

i=1 log(i) just shows a
lower-bound of communication cost of FSL. In Section 6.1,
we measure the performance and communication cost of
FSL with other existing FL compressors signSGD (Bern-
stein et al. 2019) and TopK (Aji and Heafield 2017; Alistarh
et al. 2018a). In Figure 4, we compare the communication
cost of one client per FL round for FedAvg, SignSGD, and
different variant of FSL for different number of parameters.

Similar work in this domain is LotteryFL (Li et al. 2020a),
a personalization framework that each FL client learns a lot-
tery ticket network (LTN) by pruning the base model us-
ing Lottery Ticket hypothesis (Frankle and Carbin 2019).
In LotteryFL, each client sends and receives the update for
its subnetwork, and at the end, they have an extra step for
personalization. FSL is different from LotteryFL as the FSL
clients find subnetworks within a random and fixed network
and send the ranks of their subnetwork edges instead of
what LotteryFL clients do that train their weights and find
a subnetwork by freezing some weights and send their ac-
tual model update. LotteryFL is based on FedAvg that the
clients can send any update to the server, which is vulnera-
ble to the same attacks that existed for FedAVG. In terms of
communication cost, FSL is very close to LotteryFL as they
report 1.81x improvement over CIFAR10 which is close to
FSL and SFSL(50%) which provide 1.53x, 3.09x improve-
ment respectively over CIFAR10.
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