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Abstract
Federated learning algorithms are developed both for effi-
ciency reasons and to ensure the privacy and confidentiality
of personal and business data, respectively. Despite no data
being shared explicitly, recent studies showed that it could
still leak sensitive information. Hence, to prevent attribution
to specific participants secure aggregation is utilized in many
real-world scenarios. In this paper, we focus on the quality of
individual training datasets and show that such information
could be inferred and attributed to specific participants even
when secure aggregation is applied.
More precisely, through a series of image recognition exper-
iments, we infer the relative quality ordering of participants.
Moreover, in two example use cases, we apply the inferred
quality information to stabilize the training performance and
to detect misbehaviours.

Introduction
For Machine Learning tasks, it is widely accepted that more
training data leads to a more accurate model. Unfortunately,
in reality, the data is scattered among multiple different enti-
ties. Thus, data holders could potentially increase the accu-
racy of their local model accuracy by training a joint model
together with others (Pejo, Tang, and Biczok 2019). Sev-
eral collaborative learning approaches were proposed in the
literature, amongst which the least privacy friendly method
is centralized learning, where a server pools the data from
all participants together and trains the desired model. On
the other end of the privacy spectrum, there are crypto-
graphic techniques such as multi-party computation (Gol-
dreich 1998) and homomorphic encryption (Gentry et al.
2009), guaranteeing that only the final model is revealed to
legitimate collaborators and nothing more. Neither of these
extremes admit most of the real-world use-cases: while the
first requires participants to share their datasets directly, the
latter requires too much computational resource to be a prac-
tical solution.

Somewhere between these (in terms of privacy protection)
stands federated learning (FL) which mitigates the commu-
nication bottleneck and provides flexible participation by se-
lecting a random subset of participants per round, who com-
pute and send their model updates to the aggregator server
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(Konečný et al. 2016). FL provides some privacy protection
by design as the actual data never leaves the hardware lo-
cated within the participants’ premises1. Yet, there is an al-
ready rich and growing related literature revealing that from
these updates (i.e., gradients) a handful of characteristics
can be inferred about the underlying training dataset. For
instance, source inference attack could tie the extracted in-
formation to specific participants of FL (Hu et al. 2021).
Parallel to these, several techniques have been developed to
conceal the participants’ updates from the aggregator server,
such as differential privacy (Desfontaines and Pejó 2020)
and secure aggregation (SA) (McMahan et al. 2016). Al-
though the first approach comes with a mathematical pri-
vacy guarantee, it also results in heavy utility loss, which
limits its applicability in many real-world scenarios. On the
other hand, SA does not affect the aggregated final model,
which makes it a suitable candidate for many applications.
Essentially, SA hides the individual model updates without
changing the aggregated model by adding pairwise noise to
the participants’ gradients in a clever way so that they cancel
out during aggregation.

Consequently, SA only protects the participants’ individ-
ual updates, and leaves the aggregated model unprotected.
SA provides a “hiding in the crowd” type of protection, thus,
without specific background knowledge, it is unlikely that an
attacker could link the leaked information to a specific par-
ticipant. In this paper we study the possibility of inferring
the quality of the individual datasets when SA is in place.
Note that quality inference is different from poisoning attack
detection (Bagdasaryan et al. 2020), as that line of research
is only interested in classifying participants as malicious or
benign, while our goal is to enable the fine-grained differen-
tiation of the participants with respect to input quality. To the
best of our knowledge we are the first to study this problem
in a secure aggregation setting.

Contributions. Our method recovers the quality of the ag-
gregated updates2; consequently, the quality of the contribut-

1Or, in case of cloud computing, the compute/storage instance
controlled by the given participant

2Such a quality measure is relative to the particular task and
to the other participants’ datasets. Therefore, we aim to retrieve a
relative quality ordering of the participants (i.e., compared to each
other for the particular task).



ing participants’ datasets. To obtain this quality informa-
tion, our method takes advantage of the inferred information
across the aggregated updates of multiple rounds and the
known per-round subset of participants associated with the
corresponding aggregates. We recover the relative quality or-
dering by evaluating the aggregated updates in each round,
and assigning scores to the contributors based on three sim-
ple rules called The Good, The Bad, and The Ugly (IMDB
1966).

We conduct experiments on two neural network architec-
tures (MLP and CNN) on two datasets (MNIST and CI-
FAR10) with three settings (2 our of 5, 5 out of 25, and 10
out of 100 participants are selected in each round to update
the model). Our experiments show that the three proposed
simple heuristic scoring rules significantly outperform the
baseline in ordering the participants based on their data qual-
ity. Moreover, we find that the accuracy of quality inference
depends on both the complexity of the task and the trained
model architecture.

We also experiment with small adjustments to the pro-
posed rules to fine-tune their hyperparameters. Finally, we
investigate two potential applications of quality inference:
on-the-fly performance boosting and misbehaviour detec-
tion. We find that i) carefully weighting the participants
based on the inferred quality smooths the learning curve as
well as improves the trained model’s accuracy and ii) the
scores can be used to detect both malicious misbehavior and
free-riding. We are not aware of any work tackling any of
the aforementioned issues when SA is enabled.

The Theoretic Model
In this section we introduce the theoretical model of qual-
ity inference and highlight its complexity. We note with n a
participant in FL, while N denotes the number of all partic-
ipants. Similarly, i denotes a round in FL, while I denotes
the number of all rounds. The set Si contains the randomly
selected participants for round i, and b = |Si| captures the
number of selected participants.Dn is participant n’s dataset
consisting of (x, y) ∈ Dn data-label pairs. We assumeDn is
associated with a single scalar un, which measures its qual-
ity. We use θn and vi to capture the quality of the nth partic-
ipant’s gradient and the quality of the aggregated gradient in
the ith round, respectively. A summary of the variables are
listed in Table 1.

Variable Description

n ∈ [N ] Participants
i ∈ [I] Training rounds
Si Set of selected par. for round i
b Number of selected participants

(x, y) ∈ Dn Dataset of participant n
un Quality of Dn

vi Quality of aggr. gradient in round i
θn Quality of participant n’s gradient

Table 1: Notation used in the paper.

Deterministic Case. In this simplified scenario we as-
sume the gradient quality is equal to the dataset quality, i.e.,
θn = un. Consequently, the aggregated gradients represent
the average quality of the participants’ datasets. As a result,
the round-wise quality values of aggregated gradients form a
linear equation system Au = v, where u = [u1, . . . , uN ]T ,
v = [v1, . . . , vI ]

T , and ai,n ∈ AI×N indicates whether par-
ticipant n is selected for round i. Depending on the dimen-
sions of A, the system can be under- or over-determined. In
case of I < N (i.e., no exact solution exists) and if I > N
(i.e., many exact solutions exist), the problem itself and the
approximate solution are shown in Eq. 1 and 2, respectively.

min
u
||v −Au||22 ⇒ u = (ATA)−1AT v (1)

min
u
||u||22 s.t. Au = v ⇒ u = AT (AAT )−1v (2)

Stochastic Case. The above equations do not take into ac-
count any randomness. Given that the training is stochastic,
we can treat the quality of participant n’s gradient as a ran-
dom variable θn sampled from a distribution with parameter
un. Moreover, we can represent θn = un+en where en cor-
responds to a random variable sampled from a distribution
with zero mean. We can further assume that en and en′ are
i.i.d. for n 6= n′. As a result, we can express the aggregated
gradient vi =

∑
n ai,nun +E where E is sampled from the

convolution of the probability density function of e’s.
In this case, due to the Gauss–Markov theorem (Harville

1976), the solution in Eq. 1 is the best linear unbiased esti-
mator, with error ||v − Au||22 = vT (I − A(ATA)−1AT )v
(where I is the identity matrix) with an expected value of
b(I −N). Note, that with more iterations more information
is leaking, which should decrease the error. Yet, this is not
captured by the theorem as it considers every round as a new
constraint.

This problem lies within estimation theory (Ludeman
2003), from which we already know that estimating a single
random variable with added noise is already hard; moreso,
factoring in that in our setting, we have multiple variables
forming an equation system. Moreover, these random vari-
ables are different per round; a detail we have omitted thus
far. Nevertheless, each iteration corresponds to a different
expected accuracy improvement level, as with time the iter-
ations improve less-and-less. Consequently, to estimate indi-
vidual dataset quality we have to know the baseline expected
learning curve; in turn, the learning curve depends exactly
on those quality values. Being a chicken-egg problem, we
focus on empirical observations to break this vicious cycle.

Quality Scoring
In this section we devise three intuitive scoring rules that ei-
ther rewards or punishes the participants in the FL rounds.
We summarize our notations in Table 2. Note that in the rest
of the paper we slightly abuse the notation ϕ and q by re-
moving index i where it is not relevant.

Assumptions. We assume a honest-but-curious setting;
the aggregator server (and the participants) can only observe
passively. Further restrictions on the attacker include limited



Variable Description

ωi Model improvement in the ith round
ϕi,n Quality score of par. n after round i
qi,n Inferred quality-wise rank of participant n

after round i
ds Spearman Distance
rs Spearman Coefficient

Table 2: Notation for the scoring rules.

computational power and no background knowledge besides
access to an evaluation oracle. For this reason, we neither
utilize any contribution score based techniques nor existing
inference attacks, as these require either significant compu-
tational resources or user-specific relevant background in-
formation.

Scoring Rules. Based on the round-wise improvements
ωi, we created three simple rules to reward or punish the
participants. We named them The Good, The Bad, and The
Ugly; the first one rewards the participants in the more use-
ful aggregates, the second punishes in the less useful ones,
while the last one punishes when the aggregate does not im-
prove the model at all.

• The Good: each participant contributing in round i which
improves the model more than the previous round (i.e.,
ωi > ωi−1) receives +1.

• The Bad: each participant contributing in round i which
improves the model less than the following round (i.e.,
ωi < ωi+1) receives −1.

• The Ugly: each participant contributing in round i which
does not improve the model at all (i.e., ωi < 0) receives
−1.

It is reasonable to expect that the improvements in consec-
utive rounds are decreasing (i.e., ωi < ωi−1): first the model
improves rapidly, while improvement slows down consider-
ably in later rounds. The first two scoring rules (The Good
and The Bad) capture the deviation from this pattern: we can
postulate that i) high dataset quality increases the improve-
ment more than in the previous round, and ii) low dataset
quality decreases the improvement, which would be com-
pensated in the following round. These phenomena were
also shown in (Kerkouche, Ács, and Castelluccia 2020). Our
last scoring rule (The Ugly) is built on the premise that if
a particular round does not improve the model, there is a
higher chance that some of the corresponding participants
have supplied low quality data.

Independently of the participants’ dataset qualities,
round-wise improvements could deviate from this pattern
owing to the stochastic nature of learning. We postulate that
this affects all participants evenly, independently of their
dataset quality; thus, the relation/ordering among the indi-
vidual scores are not significantly affected by this “noise”.
Participant selection also introduces a similar round-wise
“noise”; however, we assume that participants are selected
uniformly, hence, its effect should also be similar as per par-
ticipant.

Quantifying Quality Inference. To quantify the inferred
quality ordering of the participants, we need to convert the
relation between the quality scores into a single value. For
this purpose, we use the Spearman correlation coefficient
rs (Zar 2005), which is based on the Spearman distance ds
(Diaconis and Graham 1977). By accumulating the quality
scores of the participant after every iteration we can estab-
lish the current quality-wise ordering. For instance, qi,n = 0
means ϕi,n ≤ ϕi,n′ for all n′ ∈ [0, N ], i.e., participant n
has the lowest score after iteration i. The Spearman distance
measures the absolute difference of this inferred and the ac-
tual position. The Spearman correlation coefficient assesses
monotonic relationships on the scale [−1, 1]; 1 corresponds
to perfect correlation (i.e., perfect quality-wise ordering),
while any positive value signals positive correlation between
the actual and the inferred quality ordering.3 Note, that the
Spearman distance (and consequently the coefficient) han-
dles any misalignment equally irrespective of the position;
these are calculated according to the Eq. 3.

ds(i, n) = |n− qi,n| rs(i) = 1−
6 ·

∑N
n=1 ds(i, n)

2

N · (N2 − 1)
(3)

Experiments for Quality Inference
In this section we describe our experiments in detail, includ-
ing the evaluation and two potential applications of quality
inference.

Simulating Data Quality. Data quality in general is rela-
tive for two reasons: it can only be considered in terms of the
proposed use, and in relation to other examples. Data quality
entails multiple aspects such as accuracy, completeness, re-
dundancy, readability, accessibility, consistency, usefulness,
and trust, with several having their own subcategories (Ba-
tini, Scannapieco et al. 2016). We focus on image recog-
nition tasks as it is a key ML task with standard datasets
available. Still, we have to consider several of these aspects
in relation with image data. Visual perception is a complex
process; to avoid serious pitfalls, we do not manipulate the
images themselves to simulate different qualities. Rather, as
we focus on supervised machine learning, we modify the
label y corresponding to a specific image x. To have a clear
quality-wise ordering between the datasets, we perturbed the
labels of the participants according to Eq. 4, where ψk is
drawn uniformly at random over all available labels. Putting
it differently, the labels of the participants’ datasets are ran-
domized before training with a linearly decreasing probabil-
ity from 1 to 0 based on their IDs.4

Pr(yk = ψk|(xk, yk) ∈ Dn) =
N − n
N − 1

(4)

3E.g., if the rules determine 5-3-2-4-1 as quality ordering while
the actual order is 5-4-3-2-1, then the Spearman distances are 0-
2-1-1-0, and the Spearman correlation is 0.7, suggesting that the
inferred quality order is very close to the original one.

4No bias is introduced as both the initial dataset splitting and
the round-wise participant selection are random.



Algorithm 1: Quality Inference in FL w/ SA
Input: data D; participants N ; rounds I

1: Split(D,N)→ {D1, . . . , DN , DN+1}
2: for n ∈ [1, . . . , N ] do
3: ∀ (xk, yk) ∈ Dn : yk ∼ Eq. 4
4: ϕ = [0, . . . , 0]; M0 ← Rand()
5: for i ∈ [1, . . . , I] do
6: RandSelect([1, . . . , N ], b)→ Si

7: for n ∈ Si do
8: Train(Mi−1, Dn) =M

(n)
i

9: Mi =
1
b

∑
n∈Si

M
(n)
i

10: ωi = Acc(Mi, DN+1)−Acc(Mi−1, DN+1)
11: if i > 1 and ωi > ωi−1 then
12: for n ∈ Si do ϕn ← ϕn + 1
13: for n ∈ Si−1 do ϕn ← ϕn − 1
14: if ωi < 0 then
15: for n ∈ Si do ϕn ← ϕn − 1

We present the pseudo-code of the whole process in Algo-
rithm 1. We split the dataset randomly into N +1 parts (line
1), representing the N datasets of the participants and the
test set DN+1, to determine the quality of the aggregated
updates. The splitting is done in a way that the resulting
sub-datasets are i.i.d.; otherwise, the splitting itself would
introduce some quality difference between the participants.
Next, we artificially create different quality datasets using
Eq. 4 (line 3). This is followed by FL (line 5-9). Round-wise
improvements are captured by ω (declared in line 11 using
the accuracy difference of the current and previous models).
Quality scores (ϕ1, . . . , ϕN ) are updated in the ith round
with ±1 each time one of the three scoring rules is invoked
(line 12, 13, and 15 for The Good, The Bad, and The Ugly,
respectively).

Datasets, ML Models and Experiment Setup. For our
experiments, we used the MNIST (Deng 2012) and the
CIFAR10 (Krizhevsky, Nair, and Hinton 2014) datasets.
MNIST corresponds to the simple task of digit recognition.
It contains 70, 000 hand-written digits in the form of 28×28
gray-scale images. CIFAR10 is more involved, as it consists
of 60, 000 32× 32 colour images of airplanes, automobiles,
birds, cats, deers, dogs, frogs, horses, ships, and trucks. For
MLP, we used a three-layered structure with hidden layer
size 64, while for CNN, we used two convolutional layers
with 10 and 20 kernels of size 5×5, followed by two fully-
connected hidden layers of sizes 120 and 84. For the opti-
mizer we used SGD with learning rate 0.01 and drop out
rate 0.5. The combination of the two datasets and the two
neural network models yield four use-cases. In the rest of
the paper, we will refer to these as MM for MLP-MNIST,
MC for MLP-CIFAR10, CM for CNN-MNIST, and CC for
CNN-CIFAR10.

We ran all the experiments for 100 rounds and with three
different FL settings, corresponding to 5, 25, and 100 par-
ticipants where 2, 5, and 10 of them are selected in each
round, respectively. The three FL settings combined with the
four use-cases result in twelve evaluation scenarios visible in

most of the Figures. We ran every experiment 10-fold, with
randomly selected participants.

Empirical Quality Scores. The round-wise accumulated
quality scores utilizing all three scoring rules in the twelve
FL scenarios are presented in Fig. 2. The lighter shades cor-
respond to participants with higher IDs (i.e., less added noise
according to Eq. 4), while the darker shades mark low ID
participants with lower quality datasets.

It is visible that the more rounds have passed, the better
our scoring rules differentiate the participants; hence, it is
expected that quality inference keeps improving with time.
Note, that even for the participant with the highest dataset
quality (i.e., the lightest curve) the quality score is rather
deceasing. This is an expected characteristic of the scor-
ing rules as there is only one rule increasing the score (The
Good), while two decreasing it (The Bad and The Ugly).
These three heuristic scoring rules combined recover the
original individual dataset quality order quite well.

In Fig. 3 we show the quality scores for each individual
participant. The dot marks the mean, the thick black line cor-
responds to the standard deviation, while the thin gray line
shows the minimum and maximum values across the 10-fold
experiments. In case of few participants, the trend of the
quality scores is more visible: the score increases with the
participant ID, i.e., participant 3 scores higher than partici-
pant 2. This is in line with the ground truth based on Eq. 4;
yet the score differences are not linear as we would expect.

It is hard to evaluate the accuracy of the quality infer-
ence purely based on Fig. 2 and 3. For this reason we uti-
lize the Spearman coefficient introduced in Eq. 3. These rs
values for the 12 studied scenarios are presented in Fig. 1.
Note, that the value of the baseline (i.e., random order) is
zero, and positive values indicate correlation. It is clear that
the inferred quality ordering significantly deteriorates with
more participants. Yet, as coefficients are always positive,
the three simple rules significantly improve the baseline ran-
dom guess, even with a large set of contributors. Moreover,
in this paper we only considered 100 rounds of gradient up-
dates; in many real-world applications this number would be
considered low. In fact, for other realistic use-cases, quality
inference is expected to perform even better, due to the avail-
ability of more information.

Figure 1: Spearman coefficient for the 12 scenarios.



Figure 2: The average round-wise change of the participants’ scores. From left to right: MM, MC, CM, and CC. From top to
bottom: 5, 25, and 100 participants. The lighter the better (the darker the worse) corresponding dataset quality.

Figure 3: Quality scores of the participants. From left to right: MM, MC, CM, and CC. From top to bottom: 5, 25, and 100
participants with IDs shown on x axis where lower number correspond to lower quality dataset.



Mitigation. Note, that this quality information leakage is
not by design; this is a bug, rather than a feature in FL. The
simplest and most straightforward way to mitigate this risk
is to use a protocol where every participant contributes in
each round (incurring a sizable communication overhead).
Another option is to limit access to these updates, e.g., by
broadcasting the aggregated model only to the selected par-
ticipants for the next round. Yet another approach is to hide
the participants’ IDs (e.g., via mixnets (Danezis 2003) or
MPC (Goldreich 1998)), so no-one knows which participant
contributed in which round except for the participants them-
selves. Finally, the aggregation itself could be done in a dif-
ferentially private manner as well, where a carefully calcu-
lated noise is added to the updates in each round. Client-
level DP (Geyer, Klein, and Nabi 2017) would by default
hide the dataset quality of the participants, although at the
price of requiring large volumes of noise, and therefore, low
utility.5

Fine-tuning. We consider four techniques to improve the
accuracy of quality inference, rs, which fine-tune the pa-
rameters of our mechanism: rule combination, thresholding,
using actual improvement values, and round skipping.

• Rule combination: we apply all possible combination of
scoring rules in order to find which one obtains the high-
est accuracy.

• Thresholding: we consider using a threshold for the scor-
ing rules, i.e., The Ugly only applies when the improve-
ment is below some negative value (instead of < 0),
while The Good/ The Bad applies if the improvement dif-
ference is above/below such a threshold, respectively.

• Actual improvement values: we consider alternative rule
variants where the improvement values are used instead
of ±1 to capture a more fine-grained quality differentia-
tion.

• Round skipping: In the early rounds the model does im-
prove almost independently of the datasets, therefore we
consider discarding the information from the first few
rounds.

In Fig. 4 we visualize the difference between the accu-
racy of the original and the fine-tuned quality inference

5Note that studying the effects of these techniques are out of
scope for this work.

Figure 4: The original Spearman coefficient vs. the fine-
tuned coefficient (marked with ‘o’) for the 4 use-cases with
5, 25, and 100 participants.

mechanism. Fine-tuning was done through a grid search
with the following values: [0, 1, . . . , 10] for round skipping
and [0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56]
for thresholding. We tried these parameters with both the
actual improvement values and ±1 counts as scores for all
rule combinations.

The improvements obtained were minor, meaning that the
original rules were already quite effective. Moreover, such
fine-tuning would require the knowledge of the distributions
of the datasets, hence the attacker cannot utilize it without
relevant background knowledge. Consequently, in the appli-
cations below, we use the original rules without any fine-
tuning.

Misbehaviour and Free-Rider Detection. One possible
application of the inferred dataset quality information is mis-
behaviour detection. Here we consider both i) attackers and
ii) free-riders. Their goal is either i) to decrease the accu-
racy of the aggregated model, or ii) to benefit from the ag-
gregated model without contributing, respectively. We sim-
ulate these cases by computing the additive inverse of the
correct gradients and using zero as the gradient. We select
one such client, and use the original dataset labels without
perturbation (i.e., not applying Eq. 4) for the rest of the par-
ticipants. Our findings are presented in Fig. 5. In most sce-
narios, the position of the attacker/free-rider is in the bottom
part; these preliminary results suggest that quality inference
steadily outperforms the baseline random guess in misbe-
haviour detection.

Boosting Training Accuracy. Another potential use case
for the inferred dataset quality information is accuracy
boosting: based on data quality, it is expected that both
training speed and the accuracy obtained could be improved
when putting more emphasis on high-quality inputs. Hence,
we consider weighting the updates of participants based on
their quality scores. We adopt a multiplicative weight up-
date approach (Arora, Hazan, and Kale 2012), which mul-
tiplies the weights with a fixed rate κ. Similarly to Algo-
rithm 1, each time one of the three scoring rules is in-
voked the weights (initialized as [1, . . . , 1]) are updated in
the ith round with ×(1 ± κ), and then these weights are

Figure 5: Position of attackers (left) and free-riders (right)
for the twelve use-cases after hundred training rounds. The
higher/lower results correspond to higher/lower inferred
quality-wise ranks.



Figure 6: The round-wise accuracy of the trained models with various weights. From left to right: 5, 25, and 100 participants.
From top to bottom: MM, MC, CM, and CC.

used during aggregation. For our experiments, we set κ =
{0.00, 0.05, 0.10, 0.20}, where the first value corresponds to
the baseline without participant weighting. We present our
results in Fig. 6. It is conclusive that using weights based
on our scoring rules i) mitigates the effect of low quality
datasets as the training curves are smoother and ii) improves
the original accuracy.

Related Work
In this section we briefly present related research efforts, in-
cluding but not limited to simple scoring mechanisms, well
known privacy attacks against machine learning, and data
quality. The theoretical analysis of quality inference does
relate to (Dinur and Nissim 2003) as attempting to recon-
struct the dataset quality order is similar to reconstructing
the entire dataset based on query outputs.

Participant Scoring. Simple but effective scoring rules
are prevalent in the field of complex ICT-based systems, es-
pecially characterizing quality. For instance binary or count-
ing signals can be utilized i) to steer peer-to-peer systems
measuring the trustworthiness of peers (Kamvar, Schlosser,
and Garcia-Molina 2003), ii) to assess and promote con-
tent in social media (Van Mieghem 2011), iii) to ensure
the proper natural selection of products on online market-
places (Lim et al. 2010), and iv) to select trustworthy clients
via simple credit scoring mechanisms (Thomas, Crook, and
Edelman 2017).

A free-rider detection mechanism for collaborative learn-
ing are presented in (Lin, Du, and Liu 2019; Fraboni, Vidal,

and Lorenzi 2021). In contrast, (Liu et al. 2021) proposes
an online evaluation method that also defines each partici-
pant’s impact based on the current and the previous rounds.
Although their goal is similar to ours, we consider SA being
utilized, while neither of the above mechanisms are appli-
cable in such a case. (So et al. 2021) considers the recon-
struction of the participation matrix by simulating the same
round several times with different participants. Instead, we
assume such participation information is available, and we
emulate the training rounds by properly updating the model.
Similarly to out first application (Chen et al. 2020) weights
the participants based on their data quality using the cross-
entropy of the local model predictions. Their experiments
consider only five participants and two quality classes (fully
correct or incorrect), while we study more informative, fine-
grained quality levels with both smaller and larger sets of
participants.

Privacy Attacks. There are several indirect threats against
FL models. These could be categorized into model inference
(Fredrikson, Jha, and Ristenpart 2015), membership infer-
ence (Shokri et al. 2017), parameter inference (Tramèr et al.
2016), and property inference (Ganju et al. 2018; Melis et al.
2019). Our quality inference could be considered as an in-
stance of the last. Another property inference instance is the
quantity composition attack (Wang et al. 2019a), which aims
to infer the proportion of training labels among the partici-
pants in FL. This attack is successful even with SA protocols
or under the protection of differential privacy; in contrast
to our work they focus on inferring the different distribu-



tions of the datasets, while we aim to recover the relative
quality information on i.i.d. datasets. Finally, (Wang et al.
2019b) also attempts to explore user-level privacy leakage
within FL. Similarly to our work, the attack defines client-
dependent properties, which then can be used to distinguish
the clients from one another. They assume a malicious server
utilizing a computationally heavy GAN for the attack, which
is the exact opposite of our honest-but-curious setup with
limited computational power.

Privacy Defenses. Quality inference can be considered as
a property inference attack, hence, naturally it can be “miti-
gated” via client-level differential privacy (Geyer, Klein, and
Nabi 2017). Moreover, as we simulate different dataset qual-
ities with the amount of added noise, what we want to pre-
vent is the leakage of the added noise volume. Consequently,
this problem also relates to private privacy parameter selec-
tion, as label perturbation (Papernot et al. 2016) (which we
use to mimic different dataset quality levels) is one tech-
nique for achieving differential privacy (Desfontaines and
Pejó 2020). Although some works set the privacy parame-
ter using economic incentives (Hsu et al. 2014; Pejo, Tang,
and Biczok 2019), we are not aware of any research which
considers defining the privacy parameter itself also privately.

Data Quality. In this work we naively assume that data
quality is in a direct relation with noise present in the data.
Naturally, this is a simplification: there is an entire computer
science discipline devoted to data quality; for a comprehen-
sive view on the subject we refer the reader to (Batini, Scan-
napieco et al. 2016).

A complementary notion is the Shapley value (Shapley
1953) which was designed to allocate goods to players pro-
portionally to their contributions (which can be interpreted
as input data quality in FL). The main drawback of this
payment distribution scheme is that it is computationally
not feasible in most scenarios. Several approximation meth-
ods were proposed in the literature using sampling (Cas-
tro, Gómez, and Tejada 2009), gradients (Ghorbani and Zou
2019; Kwon and Zou 2021; Nagalapatti and Narayanam
2021) or influence functions (Koh and Liang 2017; Xue et al.
2020; Xu, van der Maaten, and Hannun 2020). Although
some are promising, all previous methods assume explicit
access to the datasets or the corresponding gradients. Con-
sequently, these methods are not applicable when SA is en-
abled during FL. Our quality inference rules can be con-
sidered as a first step towards a contribution score when no
information on individual datasets is available.

Conclusion
Federated learning is the most popular collaborative learn-
ing framework, wherein each round only a subset of partici-
pants updates a joint machine learning model. Fortified with
secure aggregation only aggregated information is learned
both by the participants and the server. Yet, in this paper
we devised few simple quality scoring rules that were able
to successfully recover the relative ordering of the partici-
pant’s dataset qualities; even when secure aggregation is in
use. Our method neither requires any computational power

(such as shadow models), nor any background information
besides a small representative dataset (or access to an evalu-
ation oracle) in order to be able to evaluate the improvement
of model accuracy after each round.

Through a series of image recognition experiments we
showed that it is possible to restore the relative quality-
wise ordering with reasonably high accuracy. Our experi-
ments also revealed a connection between the accuracy of
the quality inference and the complexity of the task and the
used architecture. What is more, we done an ablation study
which suggest the basic rules are almost ideal. Lastly, we
demonstrated how quality inference could i) boost training
efficiency by weighting the participants and ii) detect mis-
behaving participants based on their quality score.

Limitations and Future Work. This paper has barely
scratched the surface of quality inference in federated learn-
ing using only the aggregated updates. We foresee multi-
ple avenues towards improving and extending this work,
e.g., using machine learning techniques to replace our naive
rules or by relaxing attacker constraints concerning compu-
tational power and background knowledge. For the sake of
clarity, we have restricted our experiments to visual recog-
nition tasks, so it is an open question whether our rules does
generalize to other domains as well.

Another interesting direction is to use quality inference
for computing contribution scores for the participants, and
approximate their Shapley value (Shapley 1953). We are not
aware of any scheme capable of doing this when secure ag-
gregation is enabled besides the conceptual idea in (Pejó,
Biczók, and Ács 2021). Finally, the personal data protection
implications of the information leakage caused by quality in-
ference is also of interest: could such quality information be
considered private (and consequently should be protected)?
This issue might have practical relevance to federated learn-
ing platforms already available.
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