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Abstract
Artificial Intelligence (AI) has been widely applied for Safety
Inspection in a number of industrial domains. However, indi-
vidual company usually could not provide sufficient data to
support well-trained AI models. Federated Learning, as a new
AI paradigm, enables a number of participants to contribute
training data to co-create high-performance models without
compromising data privacy. However, an effective incentive
mechanism is essential to encourage participants to contribute
high-quality data, and the fundamental of the incentive mech-
anism is to evaluate participants’ contribution fairly. Shap-
ley Value (SV) is a well-known approach to evaluate individ-
ual’s marginal contribution in a coalition, but the canonical
SV calculation and its available variants are very costly. In
this paper, we proposed an FL framework to enable a num-
ber of natural gas companies from different cities to jointly
train an object detection computer vision deep learning model
for the purpose of identifying potential hazards, without shar-
ing their confidential inspection photos directly. We improve
state-of-the-art SV calculation algorithms further by propos-
ing weighted truncation (WT) for unnecessary computations,
achieving better trade-off between efficiency and accuracy.
Based on the proposed WT-Shapley participant contribution
evaluation approach, an effective end-to-end incentive mech-
anism is designed by leveraging knowledge of both data sci-
entists and domain experts. According to our experiments, it
could encourage participants to contribute scarce photos with
potential hazards, and thus co-create a high-performance AI
model to identify various hazards accurately for residential
natural gas installation safety inspection.

1 Introduction
Over the past decade, we have witnessed the rapid devel-
opment of Artificial Intelligence (AI) technology in both
academia research and industry deployment. According to
recent report released by iResearch Consulting Group, Com-
puter Vision (CV) takes 57% of the entire AI market in
China in 2020 (iResearch 2020). CV algorithms, e.g., photo
classification, object detection, OCR, face, body and behav-
ior recognition, have been widely applied in various industry
domains, including public safety, finance, healthcare, man-
ufacture and energy. In this paper, we focus on safety in-
spection in energy sector or natural gas supply chain more
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specifically. An object detection AI model could identify po-
tential hazards in photos, to release the burden of manual in-
spection and reduce the operation cost of an energy company
significantly.

However, it is non-trivial to train an effective deep
learning-based AI model, as it has become more and more
complex with millions to billions of parameters, requiring
huge amount of images and videos with high cost man-
ual annotation. Moreover, the photos with potential hazard,
which are essential for model training, is very scarce in real-
world applications. As a result, small and medium enter-
prises usually do not have sufficient resources to train a high
performance AI model.

Traditionally, an AI technology provider with sufficient
centralized GPU computation power, collects photos from
a number of energy companies, trains a super deep learn-
ing model, and then provides Cloud services to them or
deploys the models in their local data center of edge com-
puting devices. As regulations on data privacy, such as the
General Data Protection Regulation (GDPR) in EU (GDPR
2018) and Personal Information Protection Law of the PRC
(PIPL 2021), were put into effect. To meet the regulation
compliance, energy companies are more and more reluc-
tant to directly share their inspection photos to the tech-
nology provider, especially those photos which were taken
at their customers’ workplace and household. Moreover,
energy companies has spent human resources and domain
knowledge to collect photos and label the potential hazards,
but losing control on how the data would be used after up-
loading them to the centralized data center. On the another
hand, the AI technology provider takes advantages of the
data to feed their AI model training, and gets high revenue
by applying the well-trained model in the market without
notifying the energy companies. Therefore, the traditional
solution could not be continued due to more and more strin-
gent regulations and the unfairness in the ecosystem, result-
ing in ‘Data Silos’among energy companies.

In order to break the data silos, Federated Learning (FL),
a new paradigm of AI model training, emerges and has re-
ceived widespread attention in past few years (Yang et al.
2019). FL enables energy companies to train a super AI
model in a collaborative manner, while keeping their pri-
vate data within their own IT infrastructure. The brief steps
of a typical horizontal-FL (with overlapping features among



participants) are: 1. Initialization, 2. Participant Selection, 3.
Local Training, 4. Secure Aggregation, and 5. Reward Dis-
tribution as listed in (Huang et al. 2020).

In addition, Incentive Mechanism using monetary or non-
monetary schemes could be adopted to encourage energy
companies with different data resources to collaborate in a
fair manner. The fundamental of the incentive mechanism
is to measure participants’ contribution efficiently and accu-
rately. Shapley Value (SV) proposed by Lloyd Shapley who
won the Nobel Prize in Economics in 2012 is a well-known
solution in Cooperative Game Theory (Shapley 1953). It
provides a classic and elegant method for fair distribution
of benefits in the case of multiplayer cooperation and has
been used in FL to measure participants’ contribution to the
global model. Although SV is fair and authoritative, the clas-
sical SV calculation method needs to evaluate the utilities of
all possible coalitions among participants, which is compu-
tationally expensive and impractical in FL.

In this paper, we propose weighted truncation (WT) -
Shapley algorithm to calculate the approximate SV of FL
participants by truncating those coalitions with limited effect
on SV of participants, during the iterative AI model train-
ing. Hence, it could reduce the costly computation for con-
structing the sub-models corresponding to participant coali-
tions and evaluate their accuracy. According to the exper-
imental results on public dataset and real-world applica-
tion evaluation, our proposed WT-Shapley has advantages
over the state-of-the-art algorithms, achieving better trade-
off between accuracy and efficiency. It could obtain lower
error rate with the same computation cost, and vice versa.
Based on WT-Shapley, we propose an end-to-end incentive
mechanism, which could encourage FL participants to con-
tribute scarce safety inspection photos with potential haz-
ards. Since they are beneficial for enhancing the perfor-
mance AI models, our incentive mechanism providing them
higher rewards could form a positive cycle for the devel-
opment of the ecosystem, and thus, boost intelligent hazard
identification accuracy and speed up the AI model adoption
in real-world applications.

The rest of the paper is organized as follows. Section 2
provides literature review on Shapley Value based partici-
pant contribution evaluation approaches and incentive mech-
anism in Federated Learning. Section 3 introduces our Fed-
erated Learning application scenario, i.e, intelligent hazard
identification for safety inspection, and its requirement on
efficient and effective incentive mechanism. The proposed
WT-Shapley and its advantages over state-of-the-art SV al-
gorithm are illustrated in Section 4. The details of our end-
to-end incentive mechanism for encouraging the collabora-
tions among natural gas companies are described in Sec-
tion 5. Experiments and application evaluation results are
reported and analyzed in Section 6. Section 7 concludes the
paper and outline directions of future work.

2 Related Work
The subject of this paper is related to the incentive mecha-
nism in FL, specifically contribution evaluation.

As in FL training, participants are required to provide
computation power and network bandwidth, not to mention

the collection and annotation of local data, rewards are indis-
pensable to inspire more participants and maintain a flourish
ecosystem.

There are several comprehensive surveys on incentive
mechanism in FL. Focused on clients, (Zhan et al. 2021)
presents incentive mechanism designs driven by clients’
data contribution (including data quality and quantity), rep-
utation, and resource allocation. From the perspective of
functional differentiation, (Zeng et al. 2021) summarizes
a framework of IM, including node selection, contribution
evaluation and payment allocation (not only monetary but
also reputation, well-trained model, etc.). Another review
(Ali et al. 2021) compares incentive mechanism in terms of
design principles and techniques, including contract theory,
game theory, auction theory, etc. and highlights the secu-
rity challenges involved. Also in IEEE guide framework of
FL (IEEE 2021), incentive mechanism is regarded as a stan-
dalone module and the constraints that need to be consid-
ered are listed, and fairness is the most essential. A review
of contribution evaluation (Huang et al. 2020) summarizes
three major taxonomy contribution measurement strategies,
they are test/self-reported based, marginal loss based, and
similarity based contribution evaluation. In summary, par-
ticipant contribution evaluation is a fundamental step.

As FL involves multi-party cooperation, Game Theory
naturally becomes a fertile source for reference, and various
approaches have been proposed. The profit-sharing scheme
can be categorized in three: egalitarian, marginal gain and
marginal loss, (Yu et al. 2020).

Also a marginal contribution-based scheme, Shapley
Value (SV) is a classic and elegant solution in Cooperative
Game Theory (Shapley 1953). SV is proved to be the only
solution that satisfies all 4 properties, Efficiency, Symmetry,
Dummy and Additivity, which together can be considered a
definition of a fair contribution evaluation method (Molnar
2019).

However, the time complexity of canonical SV algorithm
isO(2n), when adopting in FL, a huge amount of re-training
and evaluating is introduced, thus the canonical SV is im-
practical. Recently, a collection of works have been devoted
to improving the efficiency of SV calculation. Typical tech-
niques are as follows. 1) Gradient-based approaches use
gradient aggregation instead of sub-model re-training, e.g.,
MR (Song, Tong, and Wei 2019). 2) Sampling-based ap-
proaches apply Monte-Carlo sampling to truncate unneces-
sary sub-models re-construction and evaluation, e.g., (Cas-
tro, G´omez, and Tejada 2008), (Štrumbelj and Kononenko
2014), (Wang, Dang, and Zhou 2019), (Okhrati and Lipani
2020). 3) Truncation-based approaches truncates entire
unnecessary round. And others like Group Testing (Jia et al.
2019) etc. The complete list can be found in (Liu et al. 2021).

In fact, advanced algorithms utilize a combination of the
above techniques, such as TMC (Ghorbani and Zou 2019),
TMR (Wei et al. 2020), and the state-of-the-art approach
GTG-Shapley (Liu et al. 2021).

As noted in survey (Zeng et al. 2021), incentive mecha-
nism for cross-silo FL are neglected in current studies, how-
ever cross-silo is a common setting of FL between enter-
prises. It should be emphasized that the study reported in



this paper focuses on cross-silo FL and has real-world appli-
cation verification.

As far as our knowledge goes, the end-to-end incentive
mechanism framework proposed is the first that can encour-
age FL participants to provide scarce data and form a posi-
tive cycle.

3 Application Description: Intelligent
Hazard Identification for Safety Inspection

In energy sector, safety management has the highest priority
and is the most important service quality KPI for company
management, as an accident may cause damage to people’s
lives and properties, affecting the reputation and revenue of
the involved companies seriously. Take recent accidents re-
lated to residential gas associated to gas pipeline corrosion
leakage as an example, on Jun-2021, a gas explosion hap-
pened in Shiyan, Hubei, causing 12 deaths and 138 injuries
(ChinaDaily 2021). In order to prevent most accidents, en-
ergy companies (or nature gas suppliers) conduct safety in-
spection regularly to identify potential hazards along the en-
tire supply chain, such as gas stations, pipelines, workplaces
and households.

This paper focuses on household inspection on natural gas
pipeline and device installation as shown in Figure 1. Based
on long-term operation experience, domain knowledge and
safety management standards, tens of the potential hazards
should be considered and checked regularly, including ex-
haust gas water heater without chimney flue, stove without
flame-out protection, pipeline corrosion, un-certificated ex-
tension using improper soft tube, and etc.

Figure 1: Residential gas piping diagram

Nowadays, many safety inspectors are regularly sent to
visit household located in every corner of the city to identify
potential hazards in-time, which takes high portion of hu-
man resource and operation cost of city-gas companies. The
inspectors are required to take photos of pipeline connec-
tions and gas devices for auditing and post-event investiga-
tion. In order to guarantee the inspection were done properly,
another group of backstage inspectors are hired to double-
check tons of uploaded photos manually.

A high-performance AI model is desired to assist the in-
spection procedure in multi-fold manners.

• Release the burden of backstage inspectors to identify
potential hazards on the uploaded photos, highlight those
were not detected by household inspectors and then send

out warning to them and the corresponding residential
users.

• Recommend household inspectors the potential hazards
once a photo was taken by their smartphones, to improve
their work efficiency and quality.

• Encourage residential users to take photos by them-
selves and provide AI model results immediately, and
thus achieve high inspection coverage in-time with much
lower operation cost.

The success of an intelligent hazard identification model
relies on large amount photos with professional annotation,
especially those with potential hazards which are scarce
within a small and medium city-gas company. FL enables
a number of gas companies to train a high-quality model co-
operatively, without compromising data privacy. An incen-
tive mechanism is required to ensure the fairness of the col-
laboration among companies with different data and com-
putational resources by measuring their contributions and
returning monetary rewards accordingly. As mentioned in
Section 2, contribution evaluation is fundamental that needs
to be well addressed first, and we propose an efficient and
accurate algorithm WT-Shapley. Then, the end-to-end incen-
tive mechanism will be presented in Section 5.

4 WT-Shapley: Efficient and Accurate
Participant Contribution Evaluation

In this section, we illustrate Weighted Truncation (WT)-
Shapley algorithm for efficient participant contribution eval-
uation in FL.

Suppose there are N = {1, . . . , n} participants, each
has its private local dataset Di,∀i ∈ N , and participated
in T rounds of FL training process. For each round ∀t ∈
{1, . . . , T}, participant i downloads the initial global model
M (t−1), and trains several local epochs with its own dataset
Di, gets a local model M (t)

i . Then, all participants upload
their gradient updates {∆(t)

i = M
(t)
i −M (t−1)},∀i ∈ N to

the coordinator server. The coordinator server executes an
aggregation algorithm to generate a new global modelM (t),
it will also be the initial model for the next round. The ag-
gregation algorithm Agg(·) may vary, such as FedAvg(·)
(McMahan et al. 2017):

M (t) = M (t−1) +

n∑
i=1

|Di|∑n
i=1 |Di|

∆
(t)
i . (1)

As mentioned in Section 2, SV is fair and authoritative. In
FL of coalition N , a participant i’s SV is defined as:



φi(N,V ) =

1

|N |!
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!(V (S ∪ {i})− V (S))

=
∑

S⊆N\{i}

1

|N | ∗
(|N |−1
|S|

) ∗ (V (S ∪ {i})− V (S))

=
∑

S⊆N\{i}

w|S| ∗ ∆vi,

(2)

where V (·) is the utility function. w|S| denotes the weight
of the sub-coalition S and can be considered as its proba-
bility of occurrence, which is only related to the cardinality
of S. ∆vi is the marginal utility when i joins S. Usually
the utility function V (·) in FL is obtained by measuring the
sub-model’s performance on the standard validation dataset:

V (S) = V (MS) = V (Agg(M (0), {∆i})),∀i ∈ S. (3)

The state-of-the-art GTG-Shapley has achieved a good
balance between computation efficiency and accuracy (Liu
et al. 2021). The key steps are summarized as follows. 1)
between-round truncation, if one round’s marginal gain is
significantly tiny, the entire round can be omitted. 2) within-
round truncation, as the larger the size of sub-coalition,
the less significant the marginal gain of new entrant i, there-
fore a considerable number of the sub-coalition’s evaluation
can be omitted. 3) guided Monte-Carlo sampling policy,
which emphasizes the importance of the head permutations
and improves convergence.

However, we found a flaw in the within-round truncation
criteria, which leads to the proposed WT-Shapley.

An alternative definition of SV is the average of marginal
utility of participant i in all possible order of joining the
coalition N . Let π(N) be the set of all permutations of
coalition N , the cardinality of π(N) is |N |!. Given a per-
mutation O = {O[1], . . . , O[n]} ∈ π(N), let Prei(O) =
{O[1], . . . , O[j − 1]} be the set of predecessors of partici-
pant i, if i = O[j]. Thus, the Eq.2 can be re-written by the
following way (Castro, G´omez, and Tejada 2008):

φi(N,V ) =
∑

O∈π(N)

1

|N |!
[V (Prei(O)∪{i})−V (Prei(O))].

(4)
Obviously, given a participant i and a sub-combination

S ⊆ N\{i}, the following equations holds.

∆vi = V (S ∪ {i})− V (S)

= V (Prei(O) ∪ {i})− V (Prei(O)),

∀O ∈ πS,i(N),

(5)

w|S| ∗∆vi =∑
O∈πS,i(N)

1

|N |!
[V (Prei(O) ∪ {i})− V (Prei(O))], (6)

Algorithm Sub-model
reconstruc-
tion

Between-
round
truncation

Within-
round
truncation

MR gradient
based

- -

GTG-
Shapley

gradient
based

yes ∆vi

WT-
Shapley

gradient
based

yes w|S| ∗∆vi

Table 1: Comparison of SV approximation algorithms

where πS,i(N) ’s first |S| bits filled by S randomly, the
(|S| + 1)-th bit is i, and the succeeding (|N | − |S| − 1)
bits are filled by N\S\{i} randomly.

The insights are two, 1) regardless of the order of the par-
ticipants in the combination S, its utility V (·) is equal. There
are p|S| = |S|!(|N | − |S| − 1)! permutations in total. 2) Su-
perficially, the probability of occurrence of each ∆vi is equal
(right part of Eq.6), which is 1/ |N |!, but the total permuta-
tions p|S| varies with different size of S. Resulting in the
contribution to SV is ∆vi multiplied by the weight w|S| that
varies significantly.

In particular, the denominator of w|S| is |N | multiplies(|N |−1
|S|

)
, a variant of Pascal’s Triangle (Yang Hui’s Trian-

gle), causing w|S| to decrease sharply as |S| increases when
|S| <= |N | /2.

However, only marginal gain is considered in the within-
round truncation of GTG-Shapley (Liu et al. 2021). Let
∆vi = V (N)–V (Prei(O)):

∆vi =

{
0, if∆vi < ε,

V (Prei(O) ∪ {i})− V (Prei(O)), if∆vi >= ε,
(7)

where ε denotes truncation threshold. In essence, the trunca-
tion criteria in GTG-Shapley treats each ∆vi equally, which
is contrary to the facts.

Derived from the second insight, if considering weight,
a more accurate and refined truncation criteria will be ob-
tained. Based on GTG-Shapley (Liu et al. 2021), the com-
plete pseudo code of WT-Shapley is listed in Algorithm 1.

Line 1-3 show parameters initialization, weights calcula-
tion is added. Line 5-9 show the same between-round trunca-
tion and guided sampling policy as GTG-Shapley (Liu et al.
2021). Line 13-23 show weighted within-round truncation
operation, which are also the major difference from GTG-
Shapley.

In summary, the main features of WT-Shapley and two
typical methods MR and GTG-Shapley are compared in ta-
ble 1.

As a variant of sampling-based algorithm, WT-Shapley,
GTG-Shapley and (Castro, G´omez, and Tejada 2008)
shares similar complexity, which is polynomial time if sub-
model’s constructing and evaluating cost would be zero
(Štrumbelj and Kononenko 2014).



Algorithm 1: WT: Weighted Truncation Shapley
Input: For communication round (t), the initial FL model
M (t−1), final FL model M (t), evaluation function V (·),
participants’ gradient updates {∆i}, aggregation algorithm
Agg(·)
Parameter: Between-round truncation threshold λ, within-
round truncation threshold η
Output: SVs φ(t)i , for all participants i ∈ N , for communi-
cation round (t)

1: Let w|S| = 1/(|N | ∗
(|N |−1
|S|

)
),∀ |S| ∈ [0, |N |)

2: Let v0 = V (M (t−1)), vN = V (M (t)), k = 0

3: Let φ(t)i = 0,∀i ∈ N
4: # between-round truncation
5: if |vN − v0| > λ then
6: while convergence criteria not met do
7: k = k + 1
8: # guided sampling
9: Ok = {Ok[1], . . . , Ok[n]} : partial (n − m) per-

mutation of participants i ∈ N
10: vk0 = v0
11: for j = 1, . . . , |N | do
12: # weighted within-round truncation
13: Let C = {Ok[1], . . . , Ok[j]}, S = C\{Ok[j]}
14: if w|S| >= η then
15: if w|S| ∗

∣∣vN − vkj−1∣∣ >= η ∗ |vN − v0| then
16: M̃

(t)
C = Agg(M (t−1), {∆C})

17: vkj = V (M̃
(t)
C )

18: else
19: vkj = vkj−1 # vkj − vkj−1 = ∆vOk[j] ⇒ 0
20: end if
21: else
22: vkj = vkj−1
23: end if
24: φ

(t)

Ok[j]
= k−1

k φ
(t)

Ok[j]
+ 1

k (vkj − vkj−1)

25: end for
26: end while
27: end if
28: return {φ(t)1 , . . . , φ

(t)
n }

5 Effective End-to-End Incentive Mechanism
Based on our proposed WT-Shapley, an effective end-to-end
incentive mechanism is designed for natural gas household
inspection application. As illustrated in Figure 2, the incen-
tive mechanism is seamlessly integrated with the FL frame-
work including AI model training and deployment, as well
as the contribution evaluation and monetary reward distribu-
tion.

The FL framework contains three parts, which are 1) an
open ecosystem with many data contributors, 2) an FL plat-
form operator and 3) model users in the marketplace. It is
worth pointing out that a city-gas companies can play the
roles of data contributors and model users simultaneously.

The ecosystem of data contributors is open to any city-
gas company that intends to use FL AI models to improve

Figure 2: The end-to-end Incentive Mechanism framework

its safety inspection service. Participants of the ecosystem
collect inspection photos with professional annotation of the
listed potential hazards. During the interactive FL model
training, they provide computation power for local model
training and communication bandwidth for uploading model
updates and downloading global model through the interac-
tions with the platform operator.

The FL platform operator plays a key role for managing
the FL tasks and cultivating the ecosystem. It defines the
hazard identification application scenario according to do-
main knowledge and safety management standards. Mean-
while, a standard validation dataset is created, which con-
tains almost all typical hazards under different situations.
The AI model can only be deployed in real-world applica-
tions if it achieves the desired accuracy on the validation
set. During the iterative FL model training, the operator acts
as the coordinator to aggregate the model updates uploaded
by the participants and then broadcast the aggregated global
model. SV-based algorithms are adopted by the platform op-
erator to calculate the participants’ contribution based on
how their uploaded model updates affect the performance of
the aggregated model over the standard validation dataset. In
addition, the participant’s computation and communication
costs are counted as another dimension of its’ contribution
to the FL model. Last but not least, the platform operator
deploys the AI model to users with payments based on real-
time performance, and then distributes the monetary rewards
to participants according to their contributions.

The model users in the marketplace can be any city-gas
company in the ecosystem or an external company. They
trace the AI model’s inference results and corresponding
business values. Besides rewards to correct inferences, dif-
ferent amount of penalties are applied to false alarms and
missed identifications. The rewards and penalties are feed-
backed to the platform operator as a reference for model
pricing.

The workflow of the incentive mechanism integrated
within the FL framework is as follows.
• 1) The platform operator defines a hazard identifica-

tion application scenario and creates standard validation
dataset, then publishes an FL task to the open ecosystem.

• 2) City-gas company participants conduct FL model
training with the help of centralized coordination and se-
cure model aggregation service provided by the platform



operator.
• 3) Participants’ contributions are evaluated through

WT-Shapley and the computational resources used are
recorded.

• 4) The FL global model is downloaded by the model user
and deployed for real-time inference in real-world appli-
cation.

• 5) The business value generated by the AI model is eval-
uated and transferred to the platform operator.

• 6) The platform operator distributes rewards to ecosys-
tem participants according to their contributions.

Since the validation dataset created by domain experts is
composed of a variety of potential hazards and updated from
time-to-time newly detected potential hazards, the model
validation accuracy, e.g., F1 Score used in this paper, is usu-
ally consistent to its application performance for most model
users. Consequently, participants’ SVs calculated based on
the validation accuracy of sub-models corresponding to par-
ticipants coalitions, indicating their contribution to the FL
model’s business value. In real-world case, a very small por-
tion of household inspection photos have potential hazards.
These scarce photos are much more beneficial to improve
FL model accuracy than the normal ones. Therefore, par-
ticipants who contribute more photos with potential hazards
tend to get higher SVs, and our designed end-to-end incen-
tive mechanism would provide higher monetary rewards to
them accordingly. In this way, a positive cycle can be de-
rived, as shown in Figure 3, encouraging participants to pro-
vide more photos with potential hazards for the purpose of
promoting the performance of the FL model, accelerating AI
model adoption with higher business value obtained, achiev-
ing win-win situation among participants and model users
within a vibrant ecosystem.

Figure 3: Incentive mechanism derives a positive cycle for a
vibrant ecosystem

6 Experiments and Results
In order to evaluate the efficiency and effectiveness of our
proposed incentive mechanism, comprehensive experiments
are conducted using a public dataset and real-world house-
hold inspection photos. Firstly, experiments are carried out
using MNIST dataset (LeCun, Cortes, and Burges 2010), to
verify that our proposed WT-Shapley has advantage over the

state-of-the-art GTG-Shapley, to achieve better trade-off be-
tween computation cost and SV calculation accuracy. Sec-
ondly, the aforementioned advantage of WT-Shapley is fur-
ther verified in household inspection application using pho-
tos collected by multiple city-gas companies. Thirdly, we
prove that a validation dataset that incorporates domain ex-
pertise is essential to the effectiveness of our designed incen-
tive mechanism for the formation of a positive cycle in the
ecosystem. And finally, we report how an intelligent hazard
identification model helps household inspection application,
as well as how to quantify its business value and distributing
monetary rewards to participants.

6.1 Experiments on MNIST Dataset
As introduced in Section 2, the canonical SV calculation is
impractical for FL, and MR algorithm is the most accurate
gradient-based approach. Our experiments take MR as the
benchmark for measuring the accuracy of SVs calculated
by WT-Shapley and GTG-Shapley. Since the computation
cost is mainly introduced by constructing the sub-models
and evaluating its accuracy over the validation dataset, the
computation cost is represented by the number of different
sub-models involved in the SV approximate calculation al-
gorithms.

In order to compare the performance of WT-Shapley and
GTG-Shapley, experiments are carried out using MNIST
dataset divided and assigned to 10 FL participants in same
(i.i.d., MNIST-IID) and imbalanced (non-i.i.d., MNIST-
NON-IID) distribution scenarios and their performance are
reported in Figure 4 and 5 respectively. The left-upper and
left-lower sub-figures respectively plot the SV calculation
error rate and the number of sub-models with respect to the
decreasing threshold, while the right sub-figure reveals the
trade-off between the number of sub-models (i.e., computa-
tion cost) and the accuracy of participant contribution eval-
uation.

Figure 4: Performance comparison between WT-Shapley
and GTG-Shapley using MNIST-IID dataset

As discussed in Section 4, the performance of WT-
Shapley and GTG-Shapley algorithms are sensitive to the
within-round truncation threshold. In our experiments, the
threshold is set at equal intervals in the range of 1.0 and 1e-7
in log10 scale. As shown in Figure 4 and 5, when the thresh-
old decreases, the number of sub-models increases and the
error rate decreases. It is because that, the smaller thresh-
old, the smaller of the estimated marginal utility of those



Figure 5: Performance comparison between WT-Shapley
and GTG-Shapley using MNIST-NON-IID dataset

truncated coalitions, according to Equ 7. As a result, the ap-
proximate Shapley value is more close to the result of MR
algorithm, and according the more participant coalition sam-
ples involved.

When the threshold is reduced to a certain value, satura-
tion occurs, the number of sub-models or the error rate no
longer changes. As the minimum error rate is controlled by
convergence criterion of Monte-Carlo sampling (refer to line
6 of algorithm 1).

Aforementioned observations are valid for both WT-
Shapley and GTG-Shapley. However, due to the weight in-
troduced in WT-Shapley (line 15 of Algorithm 1), the cor-
responding thresholds are shifted when the number of sub-
models and SV error rate start to change significantly.

As analyzed in Section 4, after introducing the weight of
participant coalition, the truncation threshold in our WT-
Shapley could correctly implicate the marginal utility in
SV calculation. Hence the risk of truncating coalitions with
marginal utility higher than expectation could be reduced
compared with GTG-Shapley. It is verified by the results re-
ported in the right sub-figures of Figure 4, and 5, which plot
the trade-off between computation cost (i.e., the number of
sub-models) and SV accuracy (i.e., error rate). The differ-
ence between the area enclosed by the two polynomial fitting
curves and the coordinate axis can be considered as the ad-
vantage of our proposed WT-Shapley, i.e., the lower curve
which is closer to the origin of the coordinates with lower
computation cost and lower error rate. Intuitively, with the
comparable numbers of the sub-models, WT-Shapley could
obtained higher SV calculation accuracy; to achieve compa-
rable SV calculation accuracy, WT-Shapley takes less par-
ticipant coalitions into account.

Table 2, takes a close look at the trade-off by revealing
exact value of the number of sub-models and SV calcula-
tion in moderate situation. Consistent with the observation
on Figure 4 and 5, WT-Shapley achieves better trade-off and
its advantages is most significant in MNIST-NON-IID sce-
nario. WT-Shapley achieves an even lower error rate with
about 1/5 - 1/2 number of sub-models of GTG-Shapley.

It is an interest observation that the advantages of WT-
Shapley over GTG-Shapley is most significant in MNIST-
NON-IID scenarios. This might because the weight intro-
duced in WT-Shapley plays a better selection effect, and the
sub-models’ marginal utilities with greater impact on SV are

error rate @ com-
parable number of
sub-models

number of sub-
models @ compa-
rable error rate

Experiment
ID

GTG-
Shapley

WT-
Shapley

GTG-
Shapley

WT-
Shapley

MNIST-IID 0.950%
@246

0.797%
@211

677
@0.723%

383
@0.719%

MNIST-
NON-IID

40.0%
@178

6.71%
@139

1008
@5.00%

222
@4.90%

Table 2: Performance of WT-Shapley and GTG-Shapley un-
der comparable conditions of computation cost and SV cal-
culation accuracy

City-gas
company

Normal Hazardous Irrelevant Total

C1 850 50 100 1000
C2 700 200 100 1000
C3 400 500 100 1000

Table 3: City-gas companies’ training dataset in household
safety inspection application

retained.
In real-world applications, non-i.i.d. is more prevalent due

to various sizes of city-gas companies, and imbalance in
dataset size or proportion.

6.2 Household Inspection Application Evaluation
The WT-Shapley algorithm and the WT-Shapley -based
incentive mechanism are further evaluated by the appli-
cation of household natural gas safety inspection. More
specifically, YOLOv4-tiny object detected model (Wang,
Bochkovskiy, and Liao 2021) is trained to detect the water
heater and chimney flue on inspection photos. The photo is
identified as irrelevant if no water heater is detected, as nor-
mal if both water heater and chimney flue are detected, as
hazardous if water heater is detected but no chimney flue is
detected.

In order to join the FL task initiated by the FL plat-
form operator, each city-gas company annotates its inspec-
tion photos manually using a box to indicate the position of
water heater and chimney flue, if any, on them. In our ex-
periments, three companies jointed, each of which has 1000
human-annotated photos, including hazardous, normal, and
irrelevant categories as shown in Table 3. Note that, there
are differences in the distribution of these categories among
the three companies, in order to compare the impacts on SV-
based contribution to the FL model.

WT-Shapley Algorithm Advantages For both of WT-
Shapley and GTG-Shapley algorithms, the between-round
truncation criterion is met after 10 rounds of FL model
aggregation, which can reduce computation cost dramati-
cally compared with canonical and MR approximate SV al-
gorithms. Different from GTG-Shapley, our proposed WT-
Shapley taking the probability of participant coalitions into
account. Similar to experiments on public dataset, Figure 6
shows that WT-Shapley could reduce the computation cost



Validation
dataset

Normal Hazardous Irrelevant Total

V1
(Standard)

60 480 60 600

V2
(Alternative)

330 210 60 600

Table 4: The standard and alternative validation dataset in
household safety inspection application

and improve SV accuracy in the household safety inspection
application. For instance, to achieve comparable error rate
at around 2.56%, WT-Shapley and GTG-Shapley requires
53 and 49 sub-models respectively, indicating around 7.5%
computation cost saving. The advantage of WT-Shapley is
expected to be more significant with the increasing number
of FL participants.

Figure 6: Performance comparison between WT-Shapley
and GTG-Shapley using household safety inspection dataset

Effectiveness of Incentive Mechanism As introduced in
Section 5, the standard validation dataset (V1), as shown in
Table 4, is co-created by domain experts and data scientists
based on their knowledge and experience. The proportion of
hazardous photos is relatively high for the purposes of 1)
verifying that the model could identify most potential haz-
ards under various situations with high business value in the
real-world application; 2) keep the dataset within a reason-
able size to save the cost of SV calculation and application
adoption. In order to illustrate the importance of the stan-
dard validation dataset to the effectiveness of our incentive
mechanism, we purposely introduce an alternative valida-
tion dataset (V2) with more balanced number of normal and
hazardous photos, as shown in Table 4.

Refer to Table 3, the percentage of hazardous photos in
city-gas company C1, C2 and C3 increases in turn. Consis-
tently, we can observe their increasing Shapley Values, in
Figure 7. The experimental results verified our analysis in
Section 5, that companies providing more hazardous photos
make higher contribution to the FL model, and thus receiv-
ing higher monetary rewards. Since our end-to-end incentive
mechanism could encourage participants to contribute data
more important to FL model, it is effective to form the posi-
tive cycle for vibrant ecosystem.

In the case of the alternative validation dataset V2 (refer
to Table 4), participants’ contribution does not increase with

Figure 7: Participant Shapley Values using V1 (standard
validation dataset) in household safety inspection applica-
tion

the percentage of hazardous photos as shown in Figure 8. As
a result, the incentive mechanism could not encourage city-
gas companies to contribute hazardous photos which are im-
portant to intelligent hazard identification FL models.

Therefore, it proves that the standard validation dataset is
essential, and it is necessary for data scientists and domain
experts to work closely to construct a standard validation
dataset that can truly reflect business values.

Figure 8: Participant Shapley Values using V2 (alternative
validation dataset) in household safety inspection applica-
tion

It is worthy to point out that, as shown in both Figure 7
and 8, WT-Shapley results is more close to MR benchmark
than GTG-Shapley, with the comparable computation cost
in terms of number of sub-models. For Figure 7, at the same
number of sub-models: 49, error rates of GTG-Shapley and
WT-Shapley are 2.64% and 2.44% respectively, for Figure 8,
at the same number of sub-models: 45, error rates of GTG-
Shapley and WT-Shapley are 0.785% and 0.520% respec-
tively.

Application Value of FL Model As one of the biggest
natural gas operator in China, ENN Group’s business has
expanded to more than 200 cities, providing gas services for
24m families and 190k enterprises.

The reported household safety inspection application was
launched internally in ENN on Jun 30, 2021, with an average



of 100k calls per day, with accuracy around 90%.
From the following two aspects, the AI model proves its

business value. Firstly, the AI model can check hundreds of
thousands of photos in full rather than sampling manually,
thus 140 hours of labor can be saved for 100k photos in-
spection. And secondly, the AI model pre-inspects daily in-
cremental photos, reducing the scope of manual inspections
dramatically.

Meanwhile, more city-gas companies request the use of
AI models to inspect accumulated photos. With applica-
tion feedback, the standard validation dataset is iteratively
enriched and improved, thus the participants’ contribution
evaluated by WT-Shapley always fits the real business value.

7 Conclusions and Future Work
In this paper, we reported our works and experience of cross-
silo FL application on intelligent safety inspection in en-
ergy sector. We proposed 1) WT-Shapley, an efficient and
improved Shapley Value approximation algorithm based on
state-of-the-art approach for participant contribution evalu-
ation; 2) an end-to-end incentive mechanism based on WT-
Shapley by leveraging knowledge of both data scientists and
domain experts. Since the reported application launched on
Jun, 2021, the business values generated by AI model is
evaluated and the proposed end-to-end incentive mechanism
is verified to be effective, the contributions evaluated by WT-
Shapley can truly representing business values.

However, both WT-Shapley and GTG-Shapley are based
on Monte-Carlo sampling, which have the common prob-
lem of ignoring the best sub-combination, a more efficient
method still needs to be explored. In terms of application,
we will promote the online application to safety inspectors
and residential users, and continue to explore co-create in-
telligence in other scenarios in energy sector.
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