Robusta: Robust AutoML for Feature Selection via Reinforcement Learning

Xiaoyang Wang, Bo Li, Yibo Zhang, Bhavya Kailkhura, Klara Nahrstedt

University of Illinois at Urbana-Champaign
Lawrence Livermore National Laboratory
The Robustness of ML Pipeline

- Improving the robustness of neural networks has been studied intensively.
- **Real-world** (auto) ML pipeline does not only contain neural networks:
 - Google AutoML Tables
 - Microsoft AutoML
 - IBM AutoAI

- Feature selection is the **pre-step** of model training.
- What if we have already lost the accuracy before training the model?
Is Stable Feature Selection already an Answer?

• Stable feature selection aims to produce consistent feature selection results under small data perturbations.

• Main idea:
 • Take the intersection of feature selection results from different runs of a base algorithm (e.g., LASSO).

• The stability and robustness are orthogonal concepts.

• Example:
 • Feature A: 100% benign accuracy, 50% robustness.
 • Feature B: 100% benign accuracy, 90% robustness.
 • Feature C: 100% benign accuracy, 90% robustness.
 • A method that always pick A is stable.
 • A method that picks B or C at 50% chance is not stable.
Automated Robust Feature Selection

• **Goal:**
 • Automatically select a subset of features that improves the accuracy of downstream ML models (e.g., neural network) on adversarial samples and benign samples.

• **Robusta Method overview:**

 • **Part 1:**
 • The RL agent: Action, State, Reward.

 • **Part 2:**
 • Reward shaping function for the RL agent to deal with the sparse reward problem.

 • **Part 3:**
 • A feature scoring metric that improves the actions.
Part 1: The RL Framework for Feature Selection

- **Actions:**
 - Adding or removing a specific feature?
 - The action space explodes.
 - Apply a feature transformation or filter?
 - The granularity is too coarse.
 - Assign scores to features and pick the highest one.

- **Reward:**
 - A weighted sum of the two accuracies upon termination.

- **State:**
 - The accuracy on benign samples and the accuracy on adversarial samples.
Part 2: Reward Shaping (1/2)

• The Robusta agent gets a reward when the ‘game’ terminates.
 • The feature selection game has many steps, and the reward is **sparse**.

• We, therefore, apply reward shaping function:

 ![Diagram]

 - The output value of the reward shaping function is the accuracy change at **each step**.
 - Does the Robusta agent converge to the same policy with the reward shaping?
Part 2: Reward Shaping (2/2)

• The Robusta agent converges to the same policy with the reward shaping.
 • See Theorem 3.1 in our paper for more details.

• **Condition:**
 • The sum of shaped reward r' equals to the vanilla reward r.

• **Why?**
 • $r' + r = 2*r$
 • The reward shaping function only adds a const scaling factor to the cumulated reward.
Part 3: Feature Scoring Metric (1/3)

- Scoring metrics for benign accuracy:
 - Mutual Information score, F score, and the decision tree score.

- Scoring metric for adversarial accuracy:
 - **Current** metrics do not work well

- Use the feature attribution method (integrated gradient) to assign scores.
Part 3: Feature Scoring Metric for Robustness (2/3)

• Integrated gradient (IG) as feature scoring metric for robustness.
• IG computes the path integral w.r.t the model from the benign sample (reference input) to the corrupted/adversarial sample.

\[\text{Vanilla loss} \rightarrow \left(\frac{\ell(f_w; x, y)}{||x - x'||_\infty \leq \epsilon} \right) \rightarrow \max_{||x - x'||_\infty \leq \epsilon} ||IG_{f_w}(x, x + \delta, y)||_1 \rightarrow \text{IG Score} \]

\[\text{adversarial training loss} \]

- Theory backed.

Theorem 4.1. (Theorem 5.1 in Chalasani et al. 2018) If a loss function \(\ell(f_w; x, y) \) is convex, we have

\[\max_{||x - x'||_\infty \leq \epsilon} \left(\frac{\ell(f_w; x, y)}{||x - x'||_\infty \leq \epsilon} \right) \rightarrow \max_{||x - x'||_\infty \leq \epsilon} ||IG_{f_w}(x, x + \delta, y)||_1 \]

(13)
Step 3: Feature Scoring Metric for Robustness (3/3)

- Integrated gradient (IG) as feature scoring metric for robustness.
- IG computes the path integral w.r.t the model from the benign sample (reference input) to the corrupted/adversarial sample.

- **Empirically** useful:
 - Manually remove the perturbations on the features with high integrated gradient score.

The proportion of MNIST adversarial examples becomes benign (solid line), the same adversarial example (dash line), a new adversarial example (dot line) by removing adversarial perturbations from a subset of features.
Framework Design Recap

• Actions:
 • Using multiple metrics to score features.
 • Selecting features based on their score.

• State:
 • The accuracy on benign samples and the accuracy on adversarial samples.

• Reward:
 • The change of the accuracies and the ultimate accuracy.

• Practical Considerations:
 • Delete bad features and step back.
 • Terminate if no progress.
Experimental Result

• Setting:
 • We assume the feature engineering is invisible to adversary.
 • We consider transferable adversarial attack from a surrogate model trained with full features.
 • Adversarial samples will go through the feature engineering pipeline.

• Quantitative result:

| Table 1: Performance (accuracy on benign samples) of the ML Model using selected features |
|--|-----------------|-----------------|-----------------|-----------------|
| DATA SET (ε) | STABLE | LASSO | CONCRETE | ROBUSTA |
| SPAM (8/255) | 91.7 | 80.06% | 80.36% | 77.27% |
| ISOLET (1/10) | 91.7 | 76.65% | 81.54% | 81.99% |
| MNIST (1/10) | | 94.55% | 97.21% | 95.76% |
| MNIST (2/10) | | 94.54% | 97.24% | 95.71% |
| MNIST (3/10) | | 94.58% | 97.22% | 95.68% |
| CIFAR (8/255) | | 94.43% | 94.44% | 90.92% |

* We bold the numbers if the best method outperforms all the others by 3%.

| Table 2: Robustness (accuracy on adversarial examples) of the ML model using selected features under PGD attack |
|--|-----------------|-----------------|-----------------|-----------------|
| DATA SET (ε) | STABLE | LASSO | CONCRETE | ROBUSTA |
| SPAM (8/255) | 18.10% | 55.36% | 49.73% | 68.03% |
| ISOLET (1/10) | 25.98% | 42.74% | 24.13% | 48.02% |
| MNIST (1/10) | | 77.82% | 77.93% | 83.19% |
| MNIST (2/10) | | 38.27% | 27.10% | 44.87% |
| MNIST (3/10) | | 14.14% | 4.67% | 18.11% |
| CIFAR (8/255) | | 7.25% | 14.29% | 36.74% |

* We bold the numbers if the best method outperforms all the others by 3%.
Experimental Result

• Quantitative result:

| TABLE 3: Average accuracy on benign and adversarial examples of the ML model using selected features. |
|---|---|---|---|---|
| DATA SET (c) | STABLE | LASSO | CONCRETE | ROBUSTA |
| SPAM (8/255) | 54.99% | 67.71% | 65.05% | 72.65% |
| ISOLET (1/10) | 59.50% | 59.70% | 52.84% | 65.01% |
| MNIST (1/10) | / | 41.29% | 87.57% | 89.48% |
| MNIST (2/10) | / | 35.55% | 62.17% | 70.29% |
| MNIS (3/10) | / | 32.58% | 50.95% | 56.90% |
| CIFAR(8/255) | / | 50.84% | 54.37% | 63.83% |

* We bold the numbers if the best method outperforms all the others by 3%.

| TABLE 4: Trade-off ratio between performance and robustness of the ML model using selected features. |
|---|---|---|---|---|
| DATASET (c) | STABLE | LASSO | CONCRETE | ROBUSTA |
| SPAM (8/255) | 5.07 | 1.45 | 1.62 | 1.13 |
| ISOLET (1/10) | 3.58 | 1.79 | 3.38 | 1.71 |
| MNIST (1/10) | / | 1.21 | 1.24 | 1.15 |
| MNIST (2/10) | / | 2.47 | 3.60 | 2.13 |
| MNIS (3/10) | / | 6.68 | 20.82 | 5.28 |
| CIFAR (8/255) | / | 13.02 | 6.61 | 2.47 |

* The closer to 1.0, the better.

• The feature selection step does have impact on the robustness.
• Our method mitigates the negative impact.