
FedSGC: Federated Simple Graph Convolution for Node Classification

Tsz-Him Cheung , Weihang Dai and Shuhan Li
The Hong Kong University of Science and Technology

{thcheungae, wdaiaj, slidm}@connect.ust.hk

Abstract

Graph Neural Networks (GNN) have developed
rapidly and solved a wide range of graph-related
tasks. One advantage of GNN over traditional neu-
ral networks is the utilization of neighbouring in-
formation. However, under the increasing concern
in data privacy, accessing raw information from dif-
ferent parties may raise privacy concerns. To ad-
dress this, federated learning, as a distributed learn-
ing mechanism, is proposed to train models with
decentralized data owned by different data parties
without sharing or leaking the raw data. In this
work, we study the vertical and horizontal settings
for federated learning on graph data. We pro-
pose FedSGC to train the Simple Graph Convo-
lution model under three data split scenarios. We
also demonstrate that the prediction performance of
FedSGC is closely aligned with the non-federated
model trained in centralized manner.

1 Introduction
Graph neural networks (GNNs) have developed rapidly in the
past few years. GNN can be used to solve a wide range of
graph-related tasks such as node classification, graph classi-
fication, graph generation, node clustering and link predic-
tion [Zhang and Chen, 2018; Wang et al., 2017]. Recently,
there is a increasing trend of extending GNN to other machine
learning tasks, including computer vision, natural language
processing, traffic forecasting, recommendation systems and
protein folding problem [Li et al., 2017; Ying et al., 2018;
Fout, 2017]. One of the key success factors for GNN is the
utilization of neighbour information. But recently, the society
is increasingly concerned with the use of personal data. To
address this, federated learning (FL) was proposed to collab-
oratively train a machine learning model with decentralized
data without scarifying data privacy. For graph data, if the
node feature is owned by individual node parties, for exam-
ple user data in a social network application, accessing the
neighbouring information may raise concern about data secu-
rity and privacy. Therefore, there is a need to develop graph-
related federated learning methods to take advantage of the
recent advancement in GNN.

According to [Yang et al., 2019], federated learning can be
categorized into Vertical Federated Learning (VFL), Horizon-
tal Federated Learning (HFL) and Transfer Federated Learn-
ing (TFL). In this work, we further explore the settings of
VFL and HFL on graph data. In VFL, the data is split among
the feature space with shared common sample-ID. The fed-
erated parties work collaboratively to train a model without
revealing their feature and label information to other parties.
For graph problems, in addition to the node features, we treat
the topology as another form of “feature” that can be sensitive
and owned by different parties. This causes more variations
in the split of data, for example the topology information is
hold by one party and the feature information is hold by an-
other party. This renders the VFL on graph data a more com-
plicated problem than the standard VFL. A real-life applica-
tion scenario can be: consider two different companies, one
is a social network company and the other is a e-commerce
company. The social network company knows the interac-
tions between their users, which can be represented as a form
of graph data, and the e-commerce company knows the pur-
chase preference of their users, which can be represented as
a form of tabular data. If the social network company wants
to perform advertisement prediction on their users, the pur-
chase history owned by the e-commerce company is likely
to be useful. However, such purchase data can be sensitive.
Federated learning over the graph data and purchase data will
allow the two parties to collaborate without privacy concerns.

In HFL, the data is split in the sample-ID space with
shared common features. The first proposed and perhaps
most widely-used Federated Averaging (FedAvg) algorithm
solves HFL by averaging the models that had been trained
locally, using a centralized server [McMahan et al., 2017].
However, in graph problems, the learning of node represen-
tation typically requires information from other neighbour-
ing node parties and thereby prohibiting the training of local
models individually. This makes HFL on graph data more
challenging than on the common tabular data, which does not
require communications between horizontal participants.

In this work, we formally define three different data split
scenarios for graph data and propose FedSGC to apply fed-
erated learning techniques in node classification problems.
At a high level, FedSGC utilizes the linear computations in
Simple Graph Convolution (SGC) [Wu et al., 2019] and ap-
plies Homomorphic Encryption (HE) technique to protect the

data privacy during the exchange of information and update
of model. Our contribution can be summarized as follow:

• We propose three problems of privacy-preserving learn-
ing on horizontally partitioned and vertically partitioned
graph data in the setting of federated learning.

• We present a novel federated graph neural network
FedSGC, which integrates Simple Graph Convolution
with federated learning.

• We demonstrate that our approach performs similarly
with non-federated version of SGC which is trained in a
centralized manner on three citation networks datasets.

2 Preliminaries and Related Work
2.1 Federated learning
Federated learning aims to train a machine learning model
while protecting the privacy of data, which is distributed
across multiple parties [Konečnỳ et al., 2016a; Konečnỳ et
al., 2016b; McMahan et al., 2016]. Attempts have been made
to solve the federated learning problem under different set-
tings.

VFL For vertical federated learning setting, several pre-
vious works leverage Homomorphic Encryption (HE) to se-
cure the data exchange. The encryption scheme allows
computation over encrypted ciphertext while keeping the
computed results as encrypted and match with the results
computed in plaintext [Rivest et al., 1978; Paillier, 1999;
Acar et al., 2018]. Among different levels of homomorphic
encrpytion (e.g. fully homomorphic encryption and partial
homorphic encryption), additively homomorphic encryption
(AHE) is commonly adopted. It allows certain additive oper-
ations to be carried out between ciphertexts while maintaining
certain degree of computation efficiency. Specifically, AHE
requires:

JuK + JvK = Ju+ vK (1)

a · JuK = Ja · uK (2)

, where u, v and a are three numbers in plaintext, J·K de-
notes the ciphertext of a number. By using AHE, one party
can encrypt the intermediate results and another party can
carry out addictive operations over the encrypted data to up-
date a global model without knowing the actual data. The
technique has been applied to linear models, like secure lin-
ear regression [Gascón et al., 2016] and logistic regression
[Hardy et al., 2017]. For tree-boosting model, [Cheng et al.,
2019] proposed SecureBoost in VFL setting to learn a fed-
erated XGBoost model through carefully analysing the inter-
mediate results and applying AHE to secure the communi-
cations. These methods usually achieve same prediction ac-
curacy when compared to the non-federated version, and are
simple and efficient to implement. Following their success,
we analyse the operation of Simple Graph Convolution and
apply HE to secure the intermediate data communications and
uses addictive operations to update the model.

HFL For horizontal federated learning settings, multiple
works have proposed that each party uses its local data to
train a local model with the same architecture and later update

the global model by averaging all the local models [McMa-
han et al., 2016]. This technique is usually referred to as the
Federated Averaging (FedAvg) algorithm. Although FedAvg
is simple to implement, the technique cannot be extended to
graph federated problem directly as in graph neural networks,
the feature propagation process requires accessing the infor-
mation from some node neighbours, thereby requiring an ad-
ditional secure communication channel between node parties.

2.2 Federated Graph Neural Network

Recently, a few approaches have been proposed to apply fed-
erated learning to graph neural networks. For vertical feder-
ated learning on graph data, VFGNN is proposed to tackle
one scenario of graph vertical federated learning, where the
nodes are the same across different data parties but with
different features and edges [Zhou et al., 2020]. VFGNN
uses relatively complex secret sharing and differential privacy
techniques and does not discuss other ways to split the data.
In our work, we discuss two other possible ways to split the
data and propose a more efficient way to train a federated
graph neural network that performs similarly with the non-
federated model.

For horizontal federated learning, [Zheng et al., 2021] fo-
cuses on solving the non-IID data problem among different
data parties and proposes a two-stage process to train a feder-
ated graph neural network and tune the hyperparameters us-
ing Bayesian optimization. In their work, the data is parti-
tioned horizontally: the feature of the training nodes are the
same, however, the training nodes and the graphs are different
among the data parties. [Wu et al., 2021] considers a privacy-
preserving recommendation task under horizontal federated
learning setting. Depending on the iterations between the
users and items, each user can form an individual user-item
graph for local model training. Once a while, the local models
are aggregated as the global model. In most of the proposed
horizontal federated learning settings over graph data, each
data party owns a private graph with the private node feature
information. Each data party can hence train its local graph
model and aggregate afterwards. In our work, we consider
a different scenario, where each party is a single node with
feature and connections to its immediate neighbours. Notice
that this setting is slightly more complicated but is commonly
found in real-life situations. For example, each user account
in a social network should only know its private informa-
tion and the neighbours (friends) it is connected to. Unlike
the previous settings, each node can no longer train its lo-
cal model individually since the training of graph neural net-
work typically requires the aggregation of feature information
among different node parties. Securing such feature informa-
tion in model training is a challenging problem to address.

Compared to the application of federated learning in other
data modalities, such as tabular data, image data and text data,
there is less work focusing on graph data. To the best of
our understanding, there is no other literature considering the
same data split as we proposed. Moreover, existing methods
are not designed in a communication efficient way and are
hard for practical uses.

(a) Case 1 (b) Case 2 (c) Case 3

Figure 1: Illustration of three types of data partitions in federated node classification.

3 Method
3.1 Problem Setting
We propose three data split scenarios for federated node clas-
sification task:

• Case 1: Two parties collaborate to train a SGC model
in a vertical federated learning setting. The first party
owns the topology and label information (Active Topol-
ogy Party). The second party owns the feature informa-
tion (Passive Feature Party).

• Case 2: Two parties collaborate to train a SGC model in
a vertical federated learning setting. The first party owns
the topology information (Passive Topology Party). The
second party owns the feature and label information (Ac-
tive Feature Party)

• Case 3: Multiple node parties collaborate to train a SGC
model in a horizontal federated learning setting. Each
node party owns its feature, the connections to its 1-hop
neighbour and its label.

The three cases are illustrated in Figure 1. In the following
sections, we first review and analysis the Simple Graph Con-
volution (SGC) model, then explain three FedSGC workflows
to train the SGC model for the three proposed cases.

3.2 Overview of Simple Graph Convolution (SGC)
In graph convolution, there are two major processes: feature
propagation and feature transformation. At each layer of the
graph convolution, the feature of each node is aggregated with
the features from its neighbouring nodes. Then, the aggre-
gated feature is transformed linearly. Canonical Graph Con-
volution Network (GCN) further applies a nonlinear activa-
tion function, typically as ReLU, and outputs the result as
the node feature of a specific layer [Kipf and Welling, 2017].
To reduce the computation effort, [Wu et al., 2019] proposed
SGC, which linearized the GCN operations, and found that
it performs comparably with other baselines in several node
classification tasks. SGC removes the nonlinear activation
functions in GCN and computes the prediction with S denotes
the normalized adjacency matrix with self-loop, Θk denotes
the learnable linear transformation weight matrix at layer k

and σ is the final nonlinear activation function at the last layer
for classification task:

S = D̃−
1
2 ÃD̃−

1
2 (3)

Ŷ = σ(S...SXΘ(1)...Θ(K)) (4)

where Ã = A + I is the adjacency matrix with self-loop
and D̃ is the diagonal degree matrix of Ã. By multiplying
S for K times, each node can aggregate the information up
to its K-hop neighbourhood. The expression can be further
simplified as:

Ŷ = σ(SKXΘ) (5)

Equation 5 can be viewed as a logistic regression prob-
lem with σ as the sigmoid function and SKX as the “pre-
processed” feature set. Such formulation shows certain linear
relationships between the topology, the feature and the pa-
rameters, which favours the use of addictively homomorphic
encryption to protect the data privacy in federated learning
setting. Here, we further state the gradient of the binary cross
entropy loss w.r.t the the SGC parameters:

Ŷ = σ(SKXΘ) =
1

1 + e−SKXΘ
(6)

L =
1

n

n∑
i=1

Yi log Ŷi + (1− Yi) log(1− Ŷi) (7)

∂L
∂Θ

=
1

n
(Ŷ − Y)T (SKX) (8)

3.3 FedSGC
Case 1: FedSGC with Vertical Active Topology party
(FedSGC-VAT) First, we consider a federated learning set-
ting with two parties. The first party (party A) owns the
topology information S and target label Y , where the second
party (party B) owns the feature X and the parameter Θ (Fig-
ure 1a). To train a federated SGC, we need to protect the nor-
malized adjacency matrix S, Y and raw feature X not to be
learned by other parties during the model training. Here, we

Step Active Topology Party A (with S, Y) Passive Feature Party B (with X)

0 Create encryption key pairs and send the public key
to B, initialize K Initialize Θ

1 Compute and send XΘ to A

2 Compute Ŷ = σ(SKXΘ) and send
J 1
n (Ŷ − Y)TSKK to B

3 Compute J ∂L
∂ΘK = J 1

n (Ŷ − Y)TSKKX and send
J ∂L
∂ΘK + JRBK to A

4 Decrypt J ∂L
∂ΘK + JRBK and send ∂L

∂Θ +RB to B

5 Update Θ

Table 1: Model training procedure of FedSGC-VAT

Step Passive Topology Party A (with S) Active Feature Party B (with X,Y)

0 Create encryption key pairs and send the public key
to B, initialize K Initialize Θ

1 Compute SK and send JSKK to B

2 Compute JZK = JSKKXΘ and JSKXK = JSKKX ,
send JZK + JRB1K and JSKXK + JRB2K to A

3 Decrypt JZK + JRB1K and JSKXK + JRB2K,
send Z +RB1 and SKX +RB2 to B

4 Compute ∂L
∂Θ = 1

n (σ(Z)− Y)T (SKX) and update Θ

Table 2: Model training procedure of FedSGC-VAF

assume that the two parties hold different but partially over-
lapping users, which can be identified using their IDs. Simi-
lar to other vertical federated learning algorithms like [Cheng
et al., 2019], we align the data across the two parties using
a privacy-preserving protocol of inter-database intersections
[Liang and Chawathe, 2004]. Then, we collaboratively train
the FedSGC model without violating privacy. The main steps
of FedSGC-VAT under the discussed settings is illustrated in
Table 1. The major idea is to encrypt the sensitive data using
AHE. In step 3 of Table 1, party B can multiply X with the
encrypted information from A as HE allows scalar multipli-
cation and cipher-text addition. Step 1 to 5 will be performed
iteratively until some convergence conditions are satisfied. If
A needs to make inference on record i, it can notify party B
and execute step 1 and 2 with the corresponding Xi and SK

i .

Case 2: FedSGC with Vertical Active Feature party
(FedSGC-VAF) The second setting is similar to case 1 ex-
cept the first party A owns the normalized adjacency matrix
S only; and the second party B owns the feature X and tar-
get label Y (Figure 1b). Similar with case 1, we assume that
there are certain overlapping data between A and B and align
the data across using a privacy-preserving protocol of inter-
database intersections [Liang and Chawathe, 2004]. Then,
the two parties collaboratively train the FedSGC model with-
out leaking the S,X and Y to the other party. The major
steps is illustrated in Table 2. At inference time, B can send

the encrypted Zi using the correspondingXi to A for decryp-
tion in Step 2-3 (Table 2) and compute the prediction σ(Zi)
accordingly.

Case 3: FedSGC with Horizontal Node party (FedSGC-
HN) In this setting, every node in the graph owns its own
featureXi, target label Yi and connections to its 1-hop neigh-
bour N(i), where N(i) denotes the set of node IDs of the 1-
hop neighbours from node i (Figure 1c). Unlike the conven-
tional horizontal federated learning, the nodes cannot com-
pute individual gradients and aggregate the parameters as
there is a feature propagation step, which relies on the in-
formation from other parties. To achieve this, we propose
to perform message passing through encrypted communica-
tions between nodes. We also employ a parameter server
for parameter aggregation and message decryption. The ma-
jor steps is illustrated in Table 3. In Step 2-3, each node is
performing message passing by sending the encrypted trans-
formed feature and encrypted feature to neighbour nodes.
Since each node does not know the degree information of
its neighbouring node, it aggregates the messages by divid-
ing the summed encrypted node features with its node de-
gree |N(i)| + 1, which is slightly different from the original
SGC using

√
|N(i)|+ 1 ·

√
|N(j)|+ 1 as the denominator

for normalization between node i and j. By repeating Step 2
and 3 for K rounds, the information is passed among K-hop
neighbours, which is same as computing SKXΘ in central-

Step Node i (with Xi, Yi, N(i)) Parameter Server P

0 Create encryption key pairs, initialize K and Θ,
distribute the public key, K and Θ to all nodes

1 Compute JHiΘK and JHiK

2 Send JHiΘK and JHiK to node j ∈ N(i)

3

Receive {JHjΘK} and {JHjK} for j ∈ N(i)
Update JHiΘK = 1

|N(i)+1|
∑

j∈N(i)∩{i}JHjΘK
Update JHiK = 1

|N(i)+1|
∑

j∈N(i)∩{i}JHjK
Repeat Step 2 and 3 for K rounds

4 Send JHiΘK + JRiK to S

5 Decrypt JHiΘK + JRiK and send HiΘ +Ri to Node i

6 Compute J ∂L
∂ΘKi = (σ(HiΘ)− Yi)T JHiK

Send J ∂L
∂ΘKi to P

7 Decrypt J ∂L
∂ΘKi and compute ∂L

∂Θ = 1
n

∑n
i=1

(
∂L
∂Θ

)
i

Update Θ and distribute Θ to all nodes

Table 3: Model training procedure of FedSGC-HN

ized manner. For the inference prediction, a node can perform
Step 2 to 5 and compute Ŷi = σ(HiΘ) as the prediction.

4 Experiments and Results
Datasets In this section, we empirically demonstrate that
FedSGC achieves similar accuraccies with SGC trained in
centralized settings, whilst maintaining the the security and
privacy under federated learning condition. We follow the
experiment setup in [Wu et al., 2019] and conduct the ex-
periments on CiteSeer, Cora and PubMed citation networks
datasets transductively [Sen et al., 2008]. The datatset statis-
tics are summarized in Table 4.

Dataset Nodes Edges Classes Train/Test
Cora 2,708 5,429 7 140/1,000
Citeseer 3,327 4,732 6 120/1,000
Cora 19,717 444,338 3 60/1,000

Table 4: Dataset statistics of the the citation network datasets

Experiment Settings For the SGC baseline and
FedSGC, we train the models using SGD. We tune the
learning rate, weight decay and the number of epochs on
each dataset using the hold-out validation set available
publicly. We compare the training and test accuracy with the
SGC baseline for K = 1 and K = 2.

Results First, we compare the convergence between non-
federated SGC and FedSGC under different federated settings
(case 1-3). In Figure 2, the training loss profile of SGC is
very close to that in FedSGC. The convergence behaviour of
SGC and FedSGC are very much alike. Then, we also investi-
gate the prediction performance between SGC and FedSGC.
We compare their final training and test accuracy in Table 5.
From the results, we verify that the prediction performance

Dataset Model Training
Accuracy

Test
Accuracy

Cora (K = 1)

SGC 0.99 0.78
FedSGC-VAT 0.99 0.79
FedSGC-VAF 0.99 0.79
FedSGC-HN 0.99 0.79

Cora (K = 2)

SGC 0.99 0.82
FedSGC-VAT 0.98 0.82
FedSGC-VAF 0.99 0.82
FedSGC-HN 0.99 0.82

CiteSeer (K = 1)

SGC 0.95 0.70
FedSGC-VAT 0.96 0.70
FedSGC-VAF 0.96 0.70
FedSGC-HN 0.95 0.71

CiteSeer (K = 2)

SGC 0.92 0.72
FedSGC-VAT 0.92 0.72
FedSGC-VAF 0.92 0.72
FedSGC-HN 0.90 0.72

PubMed (K = 1)

SGC 0.93 0.75
FedSGC-VAT 0.93 0.75
FedSGC-VAF 0.93 0.75
FedSGC-HN 0.93 0.74

PubMed (K = 2)

SGC 0.89 0.74
FedSGC-VAT 0.88 0.73
FedSGC-VAF 0.88 0.73
FedSGC-HN 0.87 0.72

Table 5: Training and test accuracy for SGC, FedSGC-VAT,
FedSGC-VAF and FedSGC-HN on citation networks datasets for
K = 1, 2

(a) Citeseer (b) Cora (c) PubMed

Figure 2: Illustration of the training loss profile when training SGC and FedSGC on citation networks for K = 1, 2

(a) (b)

Figure 3: Illustration of the scalability of FedSGC for different numbers of (a) nodes and (b) features

of FedSGC is closely aligned with the SGC model that is
being trained in centralized manner. Under the vertical set-
tings, FedSGC-VAT and FedSGC-VAF produces the accuracy
within 1% with the SGC baseline. For horizontal setting, the
accuracy differences are within 2%. One possible reason of
the slight mis-match may be the different normalization used
in the horizontal setting.

Scalability Our framework results in a learned model
closely aligned with the centralized model by design. The
model updates performed are mostly the same with the only
differences being the message passing protocol. Privacy is
also guaranteed by ensuring raw features or graph values are
not passed in plain text between the parties. The main limi-
tation however is the bottleneck from performing encryption.
FedSGC applies encryption over the raw, transformed feature
or the adjacency matrix depending on the setting. We test
the scalability of FedSGC by comparing the execution time
per model update for different numbers of training nodes n
and feature sizes f (see Figure 3). Our results show that
FedSGC-HN scales well with the number of training nodes
as the encryption can be done in parallel within each node
parties. However, as the encryption is applied to the feature
vector and the transformed feature. There are f+c parameters
to be encrypted with c denoting the number of classes. The
execution time is longer if the feature size is large. FedSGC-
VAT scales well with increased number of feature size, with
nc values to be encrypted. For FedSGC-VAF, there are n2

values to be encrypted in the adjacency matrix, thus requiring
a longer time when the number of training nodes is large. As
the adjacency matrix is usually sparse, it is beneficial to in-
vestigate if there is a more efficient way to encrypt the sparse

matrix to speed up the process.

5 Analysis
We analyse the security of FedSGC under the assumption that
all federated parties are semi-honest. For FedSGC-VAT, the
passive feature party only pass the transformed feature XΘ
to the active topology party. From the active topology party,
all the transmitted information are encrypted. Both parties
cannot reconstruct the data from others. In case 2, all the
communications in FedSGC-VAF are encrypted. Even party
B knows the value of Z = SKXΘ, it cannot reconstruct
back SK as XΘ is typically non-invertable. In FedSGC-HN,
the communications between horizontal node parties are en-
crypted. Upon decryption, each node will only learn the ag-
gregated transformed feature (i.e. HiΘ in Step 6 of FedSGC-
HN). During training, the server only knows the parameter Θ
and the gradient information from the node parties.

6 Conclusion
In this study, we propose FedSGC-VAT, FedSGC-VAT and
FedSGC-HN to solve three federated learning settings in
graph data. We demonstrate through experiments that
FedSGC leads to performance closely aligned to the non-
federated model trained in centralized manner. We also show
that the privacy and security can be properly preserved. How-
ever, FedSGC requires a longer time to perform encryption.
Also, the proposed FedSGC workflows may not transfer well
to other more complicated GNN models. Nevertheless, the
feasibility of such a framework has been demonstrated, where
a SGC problem can be easily adapted to a federated approach.

References
[Acar et al., 2018] Abbas Acar, Hidayet Aksu, A. Selcuk

Uluagac, and Mauro Conti. A survey on homomorphic
encryption schemes: Theory and implementation. ACM
Comput. Surv., 51(4):79:1–79:35, 2018.

[Cheng et al., 2019] Kewei Cheng, Tao Fan, Yilun Jin, Yang
Liu, Tianjian Chen, and Qiang Yang. Secureboost: A
lossless federated learning framework. arXiv preprint
arXiv:1901.08755, 2019.

[Fout, 2017] Alex M Fout. Protein interface prediction using
graph convolutional networks. PhD thesis, Colorado State
University, 2017.

[Gascón et al., 2016] Adrià Gascón, Phillipp Schoppmann,
Borja Balle, Mariana Raykova, Jack Doerner, Samee Za-
hur, and David Evans. Secure linear regression on ver-
tically partitioned datasets. IACR Cryptol. ePrint Arch.,
2016:892, 2016.

[Hardy et al., 2017] Stephen Hardy, Wilko Henecka,
Hamish Ivey-Law, Richard Nock, Giorgio Patrini,
Guillaume Smith, and Brian Thorne. Private federated
learning on vertically partitioned data via entity reso-
lution and additively homomorphic encryption. CoRR,
abs/1711.10677, 2017.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning
Representations, ICLR 2017, 2017.

[Konečnỳ et al., 2016a] Jakub Konečnỳ, H Brendan McMa-
han, Daniel Ramage, and Peter Richtárik. Federated op-
timization: Distributed machine learning for on-device in-
telligence. arXiv preprint arXiv:1610.02527, 2016.

[Konečnỳ et al., 2016b] Jakub Konečnỳ, H Brendan McMa-
han, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for
improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[Li et al., 2017] Yaguang Li, Rose Yu, Cyrus Shahabi, and
Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint
arXiv:1707.01926, 2017.

[Liang and Chawathe, 2004] Gang Liang and Sudarshan S.
Chawathe. Privacy-preserving inter-database operations.
In Intelligence and Security Informatics, Second Sympo-
sium on Intelligence and Security Informatics, ISI 2004,
volume 3073, pages 66–82. Springer, 2004.

[McMahan et al., 2016] H Brendan McMahan, Eider Moore,
Daniel Ramage, and Blaise Agüera y Arcas. Federated
learning of deep networks using model averaging. arXiv
preprint arXiv:1602.05629, 2016.

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statis-

tics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale,
FL, USA, volume 54, pages 1273–1282. PMLR, 2017.

[Paillier, 1999] Pascal Paillier. Public-key cryptosystems
based on composite degree residuosity classes. In Jacques
Stern, editor, Advances in Cryptology — EUROCRYPT
’99, pages 223–238. Springer, 1999.

[Rivest et al., 1978] R L Rivest, L Adleman, and M L Der-
touzos. On data banks and privacy homomorphisms. Foun-
dations of Secure Computation, Academia Press, pages
169–179, 1978.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine,
29(3):93, 2008.

[Wang et al., 2017] Chun Wang, Shirui Pan, Guodong Long,
Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the
2017 ACM on Conference on Information and Knowledge
Management, pages 889–898, 2017.

[Wu et al., 2019] Felix Wu, Amauri H. Souza Jr., Tianyi
Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, volume 97 of Proceedings of Ma-
chine Learning Research, pages 6861–6871. PMLR, 2019.

[Wu et al., 2021] Chuhan Wu, Fangzhao Wu, Yang Cao,
Yongfeng Huang, and Xing Xie. Fedgnn: Federated graph
neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925, 2021.

[Yang et al., 2019] Qiang Yang, Yang Liu, Tianjian Chen,
and Yongxin Tong. Federated machine learning: Concept
and applications. ACM Trans. Intell. Syst. Technol., 10(2),
2019.

[Ying et al., 2018] Rex Ying, Ruining He, Kaifeng Chen,
Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-
scale recommender systems. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 974–983, 2018.

[Zhang and Chen, 2018] Muhan Zhang and Yixin Chen.
Link prediction based on graph neural networks. arXiv
preprint arXiv:1802.09691, 2018.

[Zheng et al., 2021] Longfei Zheng, Jun Zhou, Chaochao
Chen, Bingzhe Wu, Li Wang, and Benyu Zhang. Asfgnn:
Automated separated-federated graph neural network.
Peer-to-Peer Networking and Applications, 14(3):1692–
1704, 2021.

[Zhou et al., 2020] Jun Zhou, Chaochao Chen, Longfei
Zheng, Xiaolin Zheng, Bingzhe Wu, Ziqi Liu, and
Li Wang. Privacy-preserving graph neural network for
node classification. arXiv preprint arXiv:2005.11903,
2020.

	Introduction
	Preliminaries and Related Work
	Federated learning
	Federated Graph Neural Network

	Method
	Problem Setting
	Overview of Simple Graph Convolution (SGC)
	FedSGC

	Experiments and Results
	Analysis
	Conclusion

