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Abstract

We present a novel privacy-preserving federated adver-
sarial domain adaptation approach (PrADA) to address an
under-studied but practical cross-silo federated domain adap-
tation problem, in which the party of the target domain is in-
sufficient in both samples and features. We address the lack-
of-feature issue by extending the feature space through verti-
cal federated learning with a feature-rich party and tackle the
sample-scarce issue by performing adversarial domain adap-
tation from the sample-rich source party to the target party.
In this work, we focus on financial applications where inter-
pretability is critical. However, existing adversarial domain
adaptation methods typically apply a single feature extractor
to learn feature representations that are low-interpretable with
respect to the target task. To improve interpretability, we ex-
ploit domain expertise to split the feature space into multiple
groups that each holds relevant features, and we learn a se-
mantically meaningful high-order feature from each feature
group. In addition, we apply a feature extractor (along with
a domain discriminator) for each feature group to enable a
fine-grained domain adaptation. We design a secure protocol
that enables performing the PrADA in a secure and efficient
manner. We evaluate our approach on two tabular datasets.
Experiments demonstrate both the effectiveness and practi-
cality of our approach.

1 Introduction
Domain adaptation (DA) methods [Ganin and Lempitsky,
2015; Tzeng et al., 2017; Saito et al., 2018; Wang et al., 2019]
has shown notable success. Those methods typically estab-
lish alignment or minimize the discrepancy between source
and target domains by creating domain-invariant feature rep-
resentation through deep neural network (DNN) based feature
extractors. One major enabler of the adoption of DNN in DA
is the availability of a large amount of data with rich features
that supports the representation learning of DNN.

Due to increasingly strict legal and regulatory constraints
enforced on user privacy, private data from different organi-
zations (domains) cannot be directly integrated for training
machine learning models. In recent years, federated learning
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(FL) has emerged as a practicable solution to tackle data silo
issues without compromising user privacy.

Recently, a growing number of works have been pro-
posed to integrate domain adaptation into cross-silo FL set-
ting [Peterson, 2019; Peng et al., 2019; Li et al., 2020;
Song et al., 2020] for mitigating domain shift among inde-
pendent parties. These works conduct experiments typically
using image or text data that have sufficient features to per-
form meaningful representation learning. However, in many
real-world FL applications (e.g., finance and retail) where
data is stored in tabular format, the participating parties might
have insufficient features for building DNN-based domain
adaptation models. In addition, mainstream adversarial DA
methods [Ganin and Lempitsky, 2015; Tzeng et al., 2017;
Wang et al., 2019] typically apply a single feature extrac-
tor over the whole feature space to learn transferable feature
representations, which are likely to be high-dimensional and
low-interpretable with respect to the target task.

In this work, we focus on financial applications where the
target party has insufficient samples and features, and the
model interpretability is an important concern. To address
the lack-of-feature issue, we propose to extend the feature
space by collaborating with a feature-rich party through ver-
tical (feature-partitioned) federated learning (VFL) [Yang et
al., 2019]. We propose to split the feature space into groups of
relevant features and apply fine-grained DA to each group to
improve both feature transferability and model interpretabil-
ity. To protect data privacy, we develop a VFL framework
that enables collaborative domain adaptation modeling and
utilizes Partially Homomorphic Encryption (PHE) [Paillier,
1999] to protect private data.

The contributions of this paper are highlighted as follows:

1. To the best of our knowledge, this work is the first at-
tempt to study adversarial domain adaptation in the VFL
setting based on tabular data.

2. We develop a privacy-preserving VFL framework that
allows participating parties to collaboratively conduct
domain adaptation without exposing private data.

3. We propose a fine-grained domain adaptation over fea-
ture groups to reduce feature dimentionality, enhance
model interpretability, and facilitate the learning of
domain-invariant features.



2 Related Work
2.1 Federated Domain adaptation
Federated domain adaptation aims to conduct domain adap-
tation modeling among independent parties of different do-
mains without violating privacy. [Peterson, 2019] applies a
mixture of experts (MoE) strategy that each participant com-
bines a collaboratively-learned general model and a domain-
tuned private model to reconcile distribution differences
among participants. [Peng et al., 2019] leverages federated
adversarial domain alignment with a dynamic attention mech-
anism to enhance knowledge transfer. [Mohri et al., 2019]
proposes agnostic federated learning aiming to optimize the
global model for any target distribution formed by a mixture
of client distributions without overfitting data of any particu-
lar client.

2.2 Deep Neural Network on Encrypted Data
Protecting privacy is a crucial element of federated learning.
Homomorphic encryption (HE) is one of the major solutions
to address the privacy issue. Although HE is a promising so-
lution that allows computation to be performed on encrypted
data, its expensive computational cost makes it impractical
to be applied in training an entire DNN model. To address
this issue, GELU-NET [Zhang et al., 2018] adopts a client-
server architecture in which the client encrypts the data while
the server performs most computation on encrypted data.
ACML [Zhang and Zhu, 2020] focuses on a federated learn-
ing scenario where data and labels are distributed among two
independent parties that each owns one part of a DNN model.
It proposes to perform costly encryption-decryption opera-
tions only on the boundary of the two partial DNN models,
leaving the rest computation conducted in plaintext.

2.3 Model Interpretability
Many methods have been proposed for interpreting deep neu-
ral networks [Montavon et al., 2018]. These methods focus
on post-hoc interpretability that analyzes the relationships be-
tween input and output of the trained model rather than elu-
cidating model’s internal structures. Other methods [Chen et
al., 2019; Ho, 2020; Alvarez-Melis and Jaakkola, 2018] con-
struct prototypes or general concepts that shed light on the
decision-making process. e.g., [Chen et al., 2019] proposed
ProtoPNet that learns a set of prototypes each can be consid-
ered as the latent representation of a small prototypical part of
training images. Then, the label prediction can be made based
on a weighted combination of the similarity scores between
parts of the image and the learned prototypes.

3 Problem Definition
We consider following cross-silo federated domain adapta-
tion scenario that involves three parties. Party A is from
the target domain and it has only a small number of sam-
ples (XA,YA) ∈ RnA×(m+1). Party B is from the source
domain and it has a large amount of samples (XB ,YB) ∈
RnB×(m+1). These two parties share the same feature space
and have the same task. We consider conduct domain adapta-
tion from party B to party A, and we call these two parties ac-

tive parties because they initiate the domain adaptation proce-
dure. The two active parties have insufficient number of fea-
tures to support domain adaptation. Thus, we refer to a pas-
sive party C that is able to provide sufficient amount of com-
plementary features XBc ∈ RnB×mc

and XAc ∈ RnA×mc

for party B and party A, respectively. XBc

and XAc

have the
same feature space, and nB � nA and mc � m.

Figure 1: The virtual tabular data of the cross-silo federated domain
adaptation. Party A has a small amount of samples (XA,YA) while
Party B has a large amount of samples (XB ,YB). Party C pro-
vides complementary features XBc

for party B and XAc

for party
A. Thus, we form virtual datasets Ds = [XBc

;XB ;YB ] of the
source domain and Dt = [XAc

;XA;YA] of the target domain.

We align XBc

with (XB ,YB) along the feature axis
to form a virtual dataset Ds = [XBc

;XB ;YB ] of the
source domain. Likewise, we form a virtual dataset Dt =
[XAc

;XA;YA] of the target domain. The alignment can be
performed by leveraging privacy-preserving entity matching
approaches [Hardy et al., 2017]. Figure 1 shows virtual tabu-
lar datasets Ds and Dt formed among the three parties.

Under this setting, our PrADA approach is conducted from
two aspects: (1) extending the feature space of active parties
A and B through vertical federated learning with a feature-
rich passive party C; (2) performing domain adaptation from
party B of the sample-rich source domain to party A of the
sample-scarce target domain based on the extended yet dis-
tributed feature space. Our ultimate goal is to improve the
performance of the target task of party A.

4 Architecture Overview
Figure 2 illustrates the architecture of PrADA. Active party
p ∈ {A,B} owns label predictors Rp while the passive party
C owns feature extractors F = {Fi}ki=1 and domain dis-
criminators D = {Di}ki=1 for extracting transferable feature
representations from multiple feature groups. Instead of di-
rectly passing feature representations to the active party for
training the label predictor, party C leverages a set of aggre-
gators G = {Gi}ki=1 to compress each feature representation
learned from a feature group into a scalar value representing
a high-order feature and feeds these high-order features into
the label predictor. Active parties have no feature extractors
because we assume active parties have insufficient raw fea-
tures to conduct effective domain adaptation, and these raw



features are highly business-related such that their contribu-
tions to the model decision should be interpretable. Thus,
active parties feed their raw features directly into their label
predictors. The feature extractors and domain discriminators
are trained locally at party C while label predictor is trained
collaboratively by both active party (either A or B) and pas-
sive party C in a privacy-preserving manner, which we will
elaborate in the section 7.

Figure 2: Architecture of PrADA. Passive party C locally trains k
pairs of {Fi, Di}ki=1 that each corresponds to a feature group by
optimizing (4). Active party p ∈ {A,B} and passive party C col-
laboratively train {Fi}ki=1 and Rp by optimizing (5) using µpc , xp

and yp.

5 Feature Grouping
PrADA leverages feature grouping (FG) to improve both the
interpretabiltiy of label predictors and the transferability of
feature extractors. We propose that party C creates multiple
feature groups from the feature space such that features in
the same group are tightly relevant, and party C assigns each
feature group a feature extractor alone with a domain discrim-
inator to learn domain-invariant feature representations. We
hypothesize that a more fine-grained adaptation between each
of the two domains’ feature group can improve the transfer-
ability of the domain-invariant feature representations.

We adopt logistic regression (LR) model as the label pre-
dictor. LR considers each input feature as a fundamental in-
terpretable unit. Therefore, instead of directly passing feature
representations learned from feature extractors to LR model
of active party, party C leverages a set of aggregators to com-
press each feature representation into a scalar value represent-
ing a high-order feature, and then it feeds these high-order
features into the LR model. As a result, the LR model takes
as input a manageable number of meaningful high-order fea-
tures (from party C). The procedure of party C generating
high-order features is described as follows:

(1) Party C turns to domain expertise to group its fea-
tures into k feature groups. Based on this grouping, we ob-
tain k groups of relevant features {xp

c

(i)}
k
i=1 for each sample

xp
c ∈ R1×mc

dawn from Xpc , p ∈ {A,B}. (2) Party C
leverages k feature extractors F = {Fi}ki=1 to extract k fea-
ture representations {fp

c

(i)}
k
i=1 = {Fi(xp

c

(i))}
k
i=1. (3) Party C

leverages k aggregators {Gi}ki=1 to compress {fp
c

(i)}
k
i=1 into a

vector of k high-order feature values:

µp
c

= [G1(fp
c

(1));G2(fp
c

(2)); . . . ;Gk(fp
c

(k))] (1)

where Gk(fp
c

(k)) returns a scalar value representing the high

order feature for feature group xp
c

(i). Figure 2 depicts the pro-
cedure described above. For performing federated adversar-
ial domain adaptation, party C feeds {fp

c

(i)}
k
i=1 into domain

discriminators for minimizing domain discrimination losses
and passes µp

c

to active party for minimizing label predic-
tion loss, as described in section 6.

6 Federated Adversarial Domain adaptation
The federated adversarial domain adaptation of PrADA in-
volves two stages: pre-training and fine-tuning. The pre-
training stage is performed between the source party B and
party C. It aims to train feature extractors that can learn both
domain-invariant and label-discriminative features. The fine-
tuning stage is performed between the target party A and
party C, and it aims to train the target LR model of party A
leveraging pre-trained feature extractors.

6.1 Pre-training Stage
The essential idea of adversarial domain adaptation is to train
feature extractors to learn features that are both discriminative
to the task and invariant to the change of domains.

In our setting, party C leverages k feature extractors F =
{Fi}ki=1 and their corresponding k domain discriminators
D = {Di}ki=1 to learn domain-invariant feature represen-
tations from k feature groups. Specifically, the ith feature
extractor Fi learns feature representation from the ith feature
group and then the ith domain discriminatorDi maps this fea-
ture representation to a domain label d ∈ {0, 1}. The overall
domain discrimination loss is computed as follows:

Ladv(F ,D) = −ExBc∼XBc

k∑
i=1

log[Di(Fi(x
Bc

(i) ))]

− ExAc∼XAc

k∑
i=1

log[1−Di(Fi(x
Ac

(i) ))] (2)

To make feature extractors obtain task-specific discrimina-
tive features, we optimize label prediction loss to train both
source LR model RB of party B and feature extractors F via
VFL between party B and party C. The label prediction loss
is defined as follows:

Lce(F , RB) =

E(xBc ,xB ,yB)∼DB [`ce(R
B([µB

c

;xB ]),yB)] (3)

where µB
c

is the high-order feature vectors passed from
party C and xB is the feature vectors possessed by party B.



In our federated setting, Ladv and Lce are optimized sep-
arately: Ladv(F ,D) is optimized locally at party C since
it only involves data of party C, while Lce(F , RB) is opti-
mized collaboratively by party B and party C through VFL
since it involves features of the two parties. To this end, we
train parameters {θfi}ki=1 of feature extractors F , {θdi}ki=1

of domain discriminators D , and θRB of LR model RB by
solving following two optimization problems.

argmin
{θfi}

k
i=1

argmax
{θdi}

k
i=1

(−λLadv(F ,D)) (4)

argmin
{θfi}

k
i=1,θRB

Lce(F , RB) (5)

where λ is a hyperparameter that controls the trade-off be-
tween the two losses {θdi}ki=1 are trained by minimizing the
domain discrimination loss, θRB is trained by minimizing the
label prediction loss, and {θfi}ki=1 are trained by minimizing
the label prediction loss while at the same time maximizing
the domain discrimination loss.

Figure 2 shows the workflow of pre-training stage and Al-
gorithm 1 describes the procedure of optimizing (4) and (5).

Algorithm 1 Federated Pre-training

1: Initialization: feature extractors F , domain discrimina-
tors D , batch indices I

2: Input: Ds = [XBc

;XB ;YB ], XAc

3: for e = 1, 2, ..., E do
4: for i ∈ I do
5: Party C do:
6: xA

c ←− sample a mini-batch from XAc

;
7: xB

c ←− select ith mini-batch from XBc

;
8: update models in F ,D by optimizing (4)

using xB
c

and xA
c

;
9: compute µB

c

by (1) using xB
c

;
10: encrypt µB

c

and send [[µB
c

]] to party B;
11: PartyB do:
12: xB ←− select ith min-batch from XB ;
13: yB ←− select ith min-batch from YB ;
14: PartyB and Party C do:
15: minimize (5) using Algorithm 2 with

[[µB
c

]],xB ,yB ;
16: end for
17: end for

6.2 Fine-tuning Stage
The fine-tuning stage aims to train LR model RA of party A
using target data Dt based on pre-trained feature extractors of
party C. For each iteration, party C applies (1) to compute fea-
ture vectors µA

c

and then send homomorphically encrypted
[[µA

c

]] to party A for computing the label prediction loss:

Lce(F , RA) =

E(xAc ,xA,yA)∼DA [`ce(R
A([µA

c

;xA]),yA)] (6)

The fine-tuning stage follows similar procedure described
in Algorithm 1 except that it does not require party C to opti-
mize (4). Since parties B and A are two independent parties,

the source LR model RB cannot be reused by party A and
thus the target LR model RA has to be trained from the ran-
dom initialization.

Algorithm 2 Privacy-preserving Federated Training

1: Input: [[µC ]],xp,yp, where p ∈ {B,A}
2: run Algorithm 3 with [[µC ]],xp,yp;
3: run Algorithm 4 with [[µC ]],xp;

7 Privacy-preserving Federated Learning
As shown in (3) (6), minimizing label prediction loss for
training LR model involves data from a active party (either
party B or A) and the passive party C. In this section, we elab-
orate our proposed secure protocol that enable the two inde-
pendent parties to collaboratively train the LR model without
exposing their data. First, we define the LR model as follows:

Rp([µC ;xp]) = σ([µC ;xp]W + b) (7)

where σ is the sigmoid function and p ∈ {A,B} denote
a active party, W ∈ Rm+k is the weights of model Rp and
b ∈ R1 is the bias. In this section, we denoteµC as the feature
vectors from party C and xp as raw features from the active
party p. We further decompose the input of σ as follows:

z = µCWC + xpWp + bp (8)

where WC ∈ Rk is for the input µC from party C while
Wp ∈ Rm is for the input xp from party p. Note that both
Wp and WC are owned by the active party p, but the real
value of WC is concealed from party p during training so
that party p cannot infer private data of party C.

We extend the PHE-based secure protocol applied to the
setting where one party has features and another has only la-
bels [Zhang and Zhu, 2020] to our setting where features are
distributed among two parties. Our new secure protocol in-
cludes two stages, described in section 7.1 and 7.2, respec-
tively. We denote the PHE encryption, addition and multipli-
cation as [[·]], ⊕ and ⊗, respectively. Note that in our setting,
only party C can encrypt and decrypt exchanging messages.

7.1 Privacy-Preserving Forward Propagation
Algorithm 3 aims to compute the label prediction loss in (3)
without exposing private data. To this end, party C encrypts
µC with PHE and sends encrypted [[µC ]] to party p to prevent
privacy leakage. When receiving [[µC ]], party p computes
[[z̃C ]] and zp, and sends [[z̃C ]] to party C with random noise
εp. Party C then decrypts [[z̃C + εp]], adds it with µCεCt , and
sends the result to party p. TheµCεCt is for cancelling out the
accumulated random noise εCt embedded in W̃C

t at current
iteration. Last, party p computes the loss `ce(σ(z),yp).

7.2 Privacy-Preserving Backward Propagation
During the privacy-preserving backward propagation as de-
scribed in Algorithm 4, the active party p securely updates LR
model Rp and backpropagate gradients to party C. As shown
in (8), we partitioned weights of Rp into Wp and WC . On



Algorithm 3 Privacy-preserving Forward Propagation

1: Initialization: LR model parameters W̃C
0 and Wp

0 , ac-
cumulated noise εC0

2: Input: [[µC ]],xp,yp, p ∈ {A,B}
3: Party p:
4: compute logit:
5: [[z̃C ]]←− [[µC ]]⊗ W̃C

t ;
6: zp ←− xpWp

t + bp;
7: add noise [[z̃C + εp]]←− [[z̃C ]]⊕ εp;
8: send [[z̃C + εp]] to party C;
9: Party C:

10: z̃C + εp ←− decrypt [[z̃C + εp]];
11: zC + εp ←− z̃C + µCεCt + εp;
12: send zC + εp to party p;
13: Party p:
14: remove noise zC ←− zC + εp;
15: z ←− zp + zC ;
16: compute loss `ce(σ(z),yp);

one hand, party p updates Wp
t and bpt in plaintext since party

p owns these weights. On the other hand, party p collabo-
rates with party C to securely update WC . Specifically, party
p computes encrypted [[∆WC

t ]], adds it with noise εp and
then sends [[∆WC

t + εp]] to party C. Party C in turn decrypts
[[∆WC

t + εp]] and sends ∆W̃C
t + εp back to party p, where

∆W̃C
t = ∆WC

t + εC

η , εC is the random noise added by party
C and η is the learning rate. To cancel out the accumulated
noise embedded in W̃C

t+1, party C sends the encrypted ac-
cumulated noise [[εCt+1]] to party p, which in turn calculates
the gradient [[δC ]] of loss `ce w.r.t µC and sends [[δC ]] back to
party C, which decrypts [[δC ]] and backpropagates δC locally.

8 Experiments
8.1 Experimental datasets and settings
We evaluate our proposed PrADA based on two datasets: one
is Census Income dataset, and another is a real-world finan-
cial dataset called PPD loan default. For each dataset, we run
experiments under following four settings:

1. A-Local: Party A only uses its local data to train mod-
els without leveraging VFL and DA.

2. A-VFL: Party A uses target domain data Dt to train
models via VFL with party C.

3. AB-VFL: Assuming party A and B are from the same
organization. Party A uses Dt and Ds of both domains
to train models via VFL with party C (with no DA).

4. B → A: We conduct PrADA discussed in sections 5
and 6 to perform federated adversarial domain adapta-
tion from party B to party A.

In settings 2 and 3, we adopt SecureLR and SecureBoost
implemented in FATE [WeBank, 2018] as comparing models.
These two models are VFL version of XGBoost and LR, re-
spectively, and they are using PHE to protect data privacy. To
explore the effectiveness of PrADA model, we propose two

Algorithm 4 Privacy-preserving Backward Propagation

1: Initialization: learning rate η
2: Input: [[µC ]],xp, p ∈ {A,B}
3: Party p:
4: δl ←−∇σ`ce w.r.t the activation function σ;
5: backpropagate gradients δl:
6: [[∆WC

t ]]←− [[µC ]]⊗ δl;
7: ∆Wp

t ←− xpδl;
8: ∆bpt ←− δl;
9: add noise [[∆WC

t + εp]]←− [[∆WC
t ]]⊕ εp;

10: send [[∆WC
t + εp]] to party C;

11: Party C:
12: ∆WC

t + εp ←− decrypt [[∆WC
t + εp]];

13: add noise ∆W̃C
t + εp ←− ∆WC

t + εC

η + εp;
14: εCt+1 ←− εCt + εC and [[εCt+1]]←− encrypt εCt+1;
15: send [[εCt+1]], ∆W̃C

t + εp to party p
16: Party p:
17: remove noise ∆W̃C

t ←− ∆W̃C
t + εp

18: update weights and bias of logistic regression model:
19: W̃C

t+1 ←− W̃C
t − η∆W̃C

t ;
20: Wp

t+1 ←−Wp
t − η∆Wp

t ;
21: bpt+1 ←− b

p
t − η∆bpt ;

22: [[δC ]]←− δl ⊗ (W̃C
t+1 ⊕ [[εCt+1]]);

23: send [[δC ]] to party C;
24: Party C:
25: δC ←− decrypt [[δC ]];
26: update feature aggregators in G and feature extractors
27: in F based on gradient δC using SGD;

different ablations, i.e. PrADAw/o DA: without domain adap-
tation; PrADAw/o FG: without feature grouping. We report
AUC and KS (Kolmogorov-Smirnov test) [Chakravarti et al.,
1967] of all trained models on the test data of target party A.

8.2 Experiments on Census Income
Census income is a census dataset from the UCI Ma-
chine Learning Repository. We split this dataset into a
undergraduate source domain and a postgraduate target do-
main. The source domain has 80000 examples while the tar-
get domain has 4000 examples. Our goal is to help party A
of the target domain to predict whether a person’s income ex-
ceeds 50,000 US dollars or not.

After data preprocessing, the census income dataset con-
tains 36 features, 31 of which are categorical. We put 5 nu-
merical features on active parties (i.e., A and B) while the 31
categorical features on passive party C. We split 31 features
on party C into 4 feature groups including employment, de-
mographics, household, and migration. Thus, the LR model
has parameter dimension of 9 (5+4).

The experimental results are shown in Table 1. From these,
we observe that: (1) The performance of models consistently
improves from the A-Local to A-VFL and to AB-VFL,
demonstrating that leveraging additional features and sam-
ples indeed improve the model performance. (2) PrADA
outperforms PrADAw/o DA of AB-VFL setting in AUC by
2.0% and in KS by 2.5%, demonstrating the effectiveness of



Setting Model AUC (%) KS (%)
A-Local LR 70.65 34.85

XGBoost 72.29 39.82
A-VFL SecureLR 71.56 35.21

SecureBoost 74.90 40.87
PrADAw/o DA 73.12 37.18

AB-VFL SecureLR 73.76 40.16
SecureBoost 78.23 44.64
PrADAw/o DA 78.52±0.40 44.56±0.52

B→ A PrADAw/o FG 80.01±0.30 46.35±0.24
PrADA 80.53±0.32 47.06±0.26

Table 1: Comparison between models on census income dataset.

PrADA on bridging the divergence between source and tar-
get domains. (3) PrADA outperforms PrADAw/o FG in AUC
and KS by 0.52% and 0.71% respectively, demonstrating the
effectiveness of FG-based domain adversarial training on im-
proving the transferability of feature extractors.

8.3 Experiments on Loan Default
PPD loan default is a loan default risk dataset for the online
lending industry published by FinVolution Group. It contains
loan data issued in 2014. We consider 40000 samples of loans
issued in the first three quarters of 2014 as the source domain
while the 3000 samples of loans issued in the forth quarter as
the target domain. This is an Out-Of-Time scenario in finan-
cial risk control. Our goal is to help party A to build a loan
predictor to predict whether a loan will default or not.

After data preprocessing, PPD dataset has 162 features, 27
of which are categorical. For protecting privacy, user and fea-
ture names are anonymized. We put 6 demographics features
and labels on active parties while the rest 156 features on
passive party C. We split features of party C into 5 groups
including user location, third-party period, education, social
network, and micro-blog. We embed all categorical features.
The LR model has parameter dimension of 11 (6+5)

The experimental results are reported in Table 2. From
these, we observe that: (1) Table 2 reports a similar trend
as Table 1 that the performance of models improves with
more data involved in training. (2) PrADA outperforms
PrADAw/o DA of AB-VFL setting in AUC by 0.3% and in
KS by 0.78%, demonstrating the effectiveness of PrADA
on mitigating domain divergence. (3) PrADA outperforms
PrADAw/o FG, demonstrating the superiority of FG-based DA
over conventional DA.

8.4 Model Interpretability
We demonstrate model interpretability by visualizing the im-
pact of features on target model RA using SHAP [Lundberg
and Lee, 2017], which is a tool widely used to explain black-
box models. We select census income dataset for this purpose
since the semantic meaning of features in PPD is anonymized.

Figure 3 plots the SHAP values of every feature for all sam-
ples to illustrate the impact of those features on the prediction
output. Features are ranked in descending order. The color
represents the feature value (red high, blue low). The hori-
zontal location shows whether the effect of a feature value is

Setting Model AUC (%) KS (%)
A-Local LR 54.34 11.10

XGBoost 54.29 9.34
A-VFL SecureLR 62.97 22.43

SecureBoost 65.78 24.79
PrADAw/o DA 64.85 26.02

AB-VFL SecureLR 72.55 39.28
SecureBoost 74.69 41.66
PrADAw/o DA 75.03±0.40 41.78±0.41

B→ A PrADAw/o FG 75.21±0.31 41.04±0.26
PrADA 75.33±0.18 42.56±0.35

Table 2: Comparison between models on PPD loan default dataset.

Figure 3: The impact of features on model predictions.

associated with a higher or lower prediction. Specifically, em-
ployment, gender, stock dividends, captial gain and house-
hold are the five most influential features, in which household
is negatively correlated with the prediction while the other
four features have positive impact on the label prediction.

8.5 Computation Cost
We compare the computation cost among SecureLR, Secure-
Boost and PrADA using FATE 1.6. The experiments are con-
ducted on a machine with 72 Intel Xeon Gold 6140 CPUs and
320 GB RAM. All experiments are simulated in standalone
deployment mode.

Setting Model Time(h)
AB-VFL SecureLR 1.12

SecureBoost 2.16
PrADAw/o DA 4.10

PT Time FT Time
B→ A PrADA 5.47 0.52

Table 3: Training time (hours) on census income dataset. PT and FT
denote pre-taining time and fine-tuning time, respectively.

Table 3 reports the results that the training time of
PrADAw/o DA is 4.10 hours, which is approximately twice the
training time spent by SecureBoost. In the setting of B→ A,
PrADA takes 5.47 hours to train because DA involved. How-
ever, once pre-train is finished, PrADA only takes half an
hour to performance fine-tune stage.
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